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Reactive oxygen and nitrogen species have been implicated in
many biological processes and diseases, including immune
responses, cardiovascular dysfunction, neurodegeneration, and
cancer. These chemical species are short-lived in biological set-
tings, and detecting them in these conditions and diseases
requires the use of molecular probes that form stable, easily
detectable, products. The chemical mechanisms and limitations
of many of the currently used probes are not well-understood,
hampering their effective applications. Boronates have emerged
as a class of probes for the detection of nucleophilic two-elec-
tron oxidants. Here, we report the results of an oxygen-18 –
labeling MS study to identify the origin of oxygen atoms in the
oxidation products of phenylboronate targeted to mitochon-
dria. We demonstrate that boronate oxidation by hydrogen per-
oxide, peroxymonocarbonate, hypochlorite, or peroxynitrite
involves the incorporation of oxygen atoms from these oxidants.
We therefore conclude that boronates can be used as probes to
track isotopically labeled oxidants. This suggests that the detec-
tion of specific products formed from these redox probes could
enable precise identification of oxidants formed in biological
systems. We discuss the implications of these results for under-
standing the mechanism of conversion of the boronate-based
redox probes to oxidant-specific products.

Reactive oxygen species (ROS),2 including superoxide
(O2

. /HO2
�), hydrogen peroxide (H2O2), and peroxynitrite

(ONOO�/ONOOH), have been implicated in (patho)physio-
logical mechanisms in redox biology and medicine (1–4). Both
superoxide and H2O2 are relatively slow reacting and/or weak
oxidants (4 –6) but in biological systems can be converted to
more reactive species (see Fig. 1), including peroxynitrite (7, 8),
peroxymonocarbonate (HCO4

�) (9, 10), or hypochlorous acid
(HOCl) (11), resulting in enhanced redox signaling and/or
damage to cell components (5, 12, 13). Because of the short
lifetime of most ROS in biological settings, detection and quan-
titative analyses of those species have remained a challenge, and
development of new probes for redox biology is an active area
of research. Most chemical probes used for the detection of
cellular oxidants lack selectivity toward a single species. For
example, dichlorodihydrofluorescein (DCFH), dihydrorhod-
amine-123 (DHR123), and Amplex Red undergo two-electron
oxidation to fluorescent dichlorofluorescein, rhodamine, and
resorufin, respectively, and nitro blue tetrazolium undergoes
four-electron reduction to diformazan, without incorporation
of the reactive species detected into the product formed (Fig. 1).
This often leads to ambiguity regarding the identity of the spe-
cies detected and prevents tracking of the oxidants using iso-
tope-labeling approach. ROS detection and their unambiguous
identification in biological systems requires the use of chemical
probes, which upon reaction form species-specific product(s)
(14 –19). As an example, spin traps react with most radicals by
the formation of a covalent bond between the probe and the
radical trapped, and the product formed is typically highly spe-
cific for the trapped species. Also, the conversion of hydroethi-
dine (HE) into 2-hydroxyethidium (2-OH-E�) has been used to
detect O2

. in cultured cells in vitro and in animal models in vivo
(20 –27). Other products formed from the HE probe, including
diethidium and 2-chloroethidium (2-Cl-E�), have been pro-
posed as specific marker products of one-electron oxidants and
hypochlorous acid, respectively (28, 29).

Oxidation of boronate-based probes into phenolic products
has been utilized for the detection of H2O2 (30 –32). An array of
boronate probes, with similar chemical reactivities and a simi-
lar mechanism of response to H2O2 but with different modes of
detection, has been reported (33–37). Also, fluorogenic boro-
nate probes targeted to various subcellular compartments have
been described (31, 38–40). Triphenylphosphonium (TPP�)-
conjugated phenylboronic acid (called MitoB) was designed for
MS-based detection of mitochondrial H2O2 (41–43). Resist-
ance of boronates to heme-catalyzed oxidation makes them
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good candidates for the detection of oxidants in the in vivo
settings. Boronate-based probes are oxidized more than a thou-
sand times faster by HOCl and nearly a million times faster
by ONOO� than by H2O2 (kH2O2 � 1 M�1s�1; kHOCl � 104

M�1s�1; kONOO� � 106 M�1s�1), and the reaction typically
involves a minor pathway, with the formation of ONOO�-spe-
cific product(s) (7, 44–48). Recently, it has been reported that
peroxymonocarbonate, the product of the reaction of H2O2
with CO2, reacts with coumarin boronic acid nearly 50 times
faster than H2O2 (kHCO4� � 102 M�1s�1) (10).

Although the identities of the oxidation, chlorination, and
nitration products of boronate probes have been established in
many cases, and the reaction mechanisms have been proposed,
the origin of oxygen atoms in the oxidation and nitration prod-
ucts of boronate probes has not been experimentally deter-
mined. Understanding the mechanisms of formation of the oxi-
dation products is required for their rigorous use as specific
ROS markers in the in vitro and in vivo settings. Also, the poten-
tial for selective monitoring of the specific oxidizing species,
through use of isotopically labeled oxidant and monitoring iso-
topic labeling of the specific products, remains to be explored.

Here, we report on the incorporation of an oxygen atom from
the biologically relevant two-electron oxidants, including
H2O2, HCO4

�, HOCl, and ONOO� in the oxidation and nitra-
tion products of the mitochondria-targeted phenyl boronate
probe (oMitoPhB(OH)2) (Fig. 2). In addition, we demonstrate
the involvement of oxygen atoms from superoxide in the for-
mation of the hydroxylated product, 2-OH-E�, during oxida-
tion of hydroethidine by O2

. (Fig. 3), corroborating the pro-
posed mechanism of the conversion of HE into 2-OH-E�.

Results

We have investigated the incorporation of oxygen atoms
from different biologically relevant nucleophilic oxidants (Fig.
1) capable of oxidizing boronate probes into the products
formed. We chose oMitoPhB(OH)2 as a model boronate probe
(Fig. 2) because its reactivity toward H2O2, HOCl, and ONOO�

has been studied previously in detail and the products charac-
terized (49 –51). To demonstrate the formation of 18O-labeled

superoxide, we have also tracked the incorporation of the 18O
atom into the hydroxylation product of hydroethidine.

Hydrogen peroxide

Upon oxidation by H2O2, a conversion of oMitoPhB(OH)2
into the phenolic product (oMitoPhOH) occurs (Fig. 4). H2O2
oxidizes the phenylboronate substrate into a phenoxyboronate
intermediate that, upon hydrolysis, yields the phenolic product
and boric acid. To determine whether the phenolic oxygen
atom derives from H2O2 or water, we performed the oxidation
of oMitoPhB(OH)2 by H2

16O2 in H2
18O and by H2

18O2 in
H2

16O (Fig. 5). The product detected in the presence of H2
16O2

showed the molecular mass of oMitoPh16OH (m/z � 369); in
the presence of H2

18O2, the product had a molecular mass of
371 (Fig. 5, a and b), attributed to oMitoPh18OH. Liquid chro-
matography with tandem MS (LC-MS/MS) analyses indicated
no formation of oMitoPh18OH during the oxidation of the
probe by H2

16O2 in H2
18O, whereas it was the predominant

product in the presence of H2
18O2 (Fig. 5c). We conclude that

during oxidation of boronates by H2O2, the oxygen atom in the
phenolic product derives exclusively from H2O2 and not from
water.

Peroxymonocarbonate

In the presence of CO2, H2O2 is in equilibrium with a more
potent oxidant, peroxymonocarbonate (HOOCO2

�) (Fig. 6a)
(9, 52, 53). Formation of this species has been implicated, for
example, in the enhanced hyperoxidation of cellular peroxire-
doxins and protein tyrosine phosphatase 1B–mediated signal-
ing cascade observed in the presence of bicarbonate (12,
54–56). Recently, it was shown that the rate of oxidation of the
coumarin boronate probe in the presence of H2O2 is increased
after the addition of bicarbonate (10). Therefore, we tested if
the H2O2-derived HCO4

� incorporates the oxygen atom into
oMitoPhB(OH)2 probe.

First, we confirmed that the experimental conditions we used
would allow us to detect increased formation of the phenolic
product during the reaction of the probe with H2O2 upon addi-
tion of NaHCO3. In fact, with increased concentration of
NaHCO3, the rate of product formation increased, as deter-
mined by LC-MS– based monitoring of the accumulation of

Figure 1. In contrast to commonly used redox probes DCFH, DHR123, Amplex
Red, and NBT, spin traps, boronate-based probes, and HE incorporate atoms
from the oxidants into the products formed.

Figure 2. Conversion of oMitoPhB(OH)2 boronate probe in the phenolic prod-
uct, oMitoPhOH, in the presence of nucleophilic two-electron oxidants.

Figure 3. Conversion of HE into 2-OH-E� by O2
. .

Isotope tracing in redox probes
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oMitoPhOH over the incubation time (Fig. 6, b and c). This
effect was observed for both H2

16O2 and H2
18O2, when moni-

toring the 16O- or 18O-phenolic products, respectively (Fig. 6c).
The relative increase in the yield of the phenolic product in the
case of oMitoPh18OH was higher than in case of oMitoPh16OH,
which we attribute to the presence of small amounts of
oMitoPh16OH but not oMitoPh18OH in the probe stock solu-
tion. The representative LC-MS chromatograms for both
H2

16O2 and H2
18O2, with increased concentrations of NaHCO3

are shown in Fig. 6, d and e. Under those conditions, HC16O4
�

and HC18O2
16O2

� were formed, respectively. Incorporation
of an 18O atom into the phenolic product indicates the
involvement of the peroxyl moiety of HCO4

� in the oxida-
tion reaction. Obtained data are consistent with the addition
of the deprotonated form of peroxymonocarbonate (CO4

2�)
to the boronate moiety, with elimination of the carbonate
anion and incorporation of an oxygen atom from the peroxyl
part of the oxidant.

Hypochlorite

Boronates are oxidized more than a thousand times faster by
HOCl than by H2O2 at neutral pH (44). The product of the
reaction is a phenol (or alcohol), which may undergo chlorina-
tion in the presence of excess HOCl (47, 51, 57). To determine
the source of the oxygen atom during the conversion of
oMitoPhB(OH)2 into oMitoPhOH, we generated H16OCl and
H18OCl in situ from myeloperoxidase (MPO)-catalyzed oxida-
tion of chloride anions by H2

16O2 and H2
18O2, respectively (Fig.

7a). To confirm the formation of HOCl in the investigated sys-
tem, we also performed similar incubations using H2

18O2 in the
presence of the HE probe, and monitored the chlorination
product, 2-Cl-E� (29).

Incubation of oMitoPhB(OH)2 with H2O2, MPO, and potas-
sium chloride (KCl) led to a significant increase in the produc-
tion of the phenolic product, confirming that HOCl was the
major species responsible for oxidation under the conditions
used (Fig. 7b). The omission of KCl or MPO resulted in a sig-
nificantly lower yield of the product. Also, addition of small
amounts of dimethyl sulfoxide (DMSO), known to rapidly scav-

Figure 4. Oxidation of the oMitoPhB(OH)2 probe by H2O2.

Figure 5. Incorporation of an oxygen atom into the phenolic product
during the oxidation of oMitoPhB(OH)2 by H2O2. a, chemical structures of
the products. b, online mass spectra of the products. c, LC-MS/MS traces of the
phenolic products containing 16O (left panel) or 18O (right panel). LC-MS/MS
analyses were performed after incubation (20 min) of oMitoPhB(OH)2 (20 �M)
alone (control), with H2

16O2 (10 mM) in H2
18O (90%), or with H2

18O2 (10 mM) in
H2

16O.

Figure 6. NaHCO3-enhanced oxidation of oMitoPhB(OH)2 by H2O2 and
incorporation of an oxygen atom from HCO4

� into the phenolic product.
a, chemical scheme of the formation of HCO4

� and acid-base equilibria
involved. b, dynamics of the formation of oMitoPhOH in the absence and
presence of NaHCO3. c, relative increase in the yield of oMitoPhOH after 1-h
incubation of the probe with H2

16O2 or H2
18O2 in the absence and presence of

NaHCO3. d and e, LC-MS/MS traces of the phenolic products containing 16O
(d) or 18O (e) atoms. LC-MS/MS analyses were performed after incubation (1 h)
of oMitoPhB(OH)2 (1 �M) alone (control), with H2

16O2 (50 �M, d), or with
H2

18O2 (50 �M, e). All solutions contained 0.1 M phosphate buffer and 0.1 mM

dtpa, and the pH of the solutions was adjusted to 7.0.
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enge HOCl (47, 58), led to a significant attenuation of the for-
mation of the phenolic product. Formation of HOCl was fur-
ther confirmed by the detection of 2-Cl-E� in analogous
systems, using the HE probe instead of the boronate (Fig. 7,
d–f). It previously was shown that HOCl and taurine chloram-
ine are able convert HE into 2-Cl-E� (29).

Replacement of H2
16O2 with H2

18O2 in the incubation mix-
ture containing oMitoPhB(OH)2, MPO, and KCl resulted in a
switch from oMitoPh16OH to oMitoPh18OH (Fig. 7c). In the
case of both isotopologs, the signal was maximal in a mixture
containing H2O2, MPO, and KCl and decreased upon the addi-
tion of DMSO. We conclude that the oxygen atom in the prod-
uct of oMitoPhB(OH)2 oxidation by HOCl derives from the
oxidant.

Peroxynitrite

Similar to H2O2, ONOO� reacts with boronates to form a
corresponding phenol as the major product. The rate constant
of the reaction, however, is significantly higher (�106 M�1s�1

for ONOO� and �1 M�1s�1 for H2O2), and the reaction typi-
cally involves a minor pathway, leading to ONOO�-specific

minor products (59). The high rate constant provides an oppor-
tunity to estimate the absolute flux of ONOO� in cultured cells
(48, 60, 61). Formation of ONOO�-specific products provides
an opportunity to selectively monitor ONOO� formation in
chemical and biological systems (14). We have previously
applied this approach to demonstrate the formation of
ONOO� during the reaction of nitroxyl with oxygen (62). In
the case of oxidation of oMitoPhB(OH)2 by ONOO�, the minor
products include cyclo-oMitoPh and oMitoPhNO2 (Fig. 8),
formed in 10 and 0.5% yields, respectively (51). Although the
mechanism of the oxidation of boronates by ONOO� has been
extensively studied, both experimentally and using theoretical
calculations (44, 45, 47, 49), the isotope-labeling studies have
not been performed. We decided to test the proposed reaction
mechanism by reacting oMitoPhB(OH)2 with 18O-labeled
ONOO�, produced in situ from co-generated fluxes of nitric
oxide (�NO) and 18O2

. (7, 8). �NO flux was generated from the
decomposition of spermine NONOate, whereas 18O2

. flux was
produced during xanthine oxidase (XO)-catalyzed oxidation of
hypoxanthine (HX) in the presence of 18O2. The identity of
18O2

. has been confirmed by using the HE probe and monitoring
the incorporation of 18O atoms into the superoxide-specific
product 2-OH-E� (see below). Co-generation of �N16O and
18O2

. leads to the formation of 16ON18O18O�, providing an
opportunity to track different oxygen atoms from ONOO�

during the conversion of oMitoPhB(OH)2 into oMitoPhOH
and oMitoPhNO2. Incubation of oMitoPhB(OH)2 with 16ON
18O18O� led to the formation of the major phenolic product,
which showed the mass (m/z � 371) to be two units higher
than when using 16ON16O16O� (m/z � 369) (Fig. 9, a and b).
LC-MS/MS traces of the phenolic products showed no forma-
tion of the oMitoPh18OH in the presence of 16ON16O16O�,
although it was a predominant product when 16ON18O18O�

was generated (Fig. 9c). In addition, changing the solvent to
H2

18O failed to produce oMitoPh18OH (Fig. S1). These data
indicate that the formation of the phenolic product during the
reaction of boronates with ONOO� is associated with the
incorporation of the oxygen atom from the peroxyl part of
the oxidant. Among the minor, ONOO�-specific, products
formed, cyclo-oMitoPh did not change its mass when switching
from 16ON16O16O� to 16ON18O18O� (Fig. S1) as no oxygen
atom is incorporated. Cyclo-oMitoPh was formed in maxi-
mal yields when �NO and O2

. were co-generated, and its

Figure 7. Incorporation of an oxygen atom into the phenolic product
during oxidation of oMitoPhB(OH)2 by HOCl. a, method generating HOCl.
b and c, LC-MS/MS traces of the phenolic products containing 16O (b) or 18O
(c). LC-MS/MS analyses were performed after incubation (15 min) of oMitoPh-
B(OH)2 (50 �M) alone (control), with H2

16O2 (0.1 mM, b), or with H2
18O2 (0.1 mM,

c) in the presence or absence of MPO (20 nM) and KCl (0.1 M). All solutions
contained 0.1 M phosphate buffer, pH 7.4. d, scheme of the conversion of HE
into 2-Cl-E�. e, online mass spectrum of 2-Cl-E� detected from reaction of HE
with bolus HOCl. f, confirmation of HOCl generation using 2-Cl-E� marker
product. All experimental conditions were the same as described above, but
the oMitoPhB(OH)2 probe was replaced by HE (50 �M).

Figure 8. Oxidation of the oMitoPhB(OH)2 probe by ONOO�.
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peak intensity was similar for both 16ON16O16O� and
16ON18O18O� (Fig. S1).

Formation of the other minor product, oMitoPhNO2, was
associated with an increase in the mass of this product by two
units (m/z � 400) in the presence of 16ON18O18O� as com-
pared with the product formed by 16ON16O16O� (m/z � 398)
(Fig. 9, a and b). This indicates that only one oxygen atom orig-
inated from the peroxyl (18O-labeled) part of ONOO�. Analy-
ses of the LC-MS/MS traces indicate that oMitoPhN16O18O
was formed only when 16ON18O18O� was produced (Fig. 9c),
and oMitoPhN16O2 was the product of the reaction with
16ON16O16O�, even when the reaction was carried out in
H2

18O (Fig. S1). The data on the oxidation of oMitoPhB(OH)2
by ONOO� indicate that the oxygen atoms introduced into the
products originate from the oxidant and not from the solvent.
These data are consistent with the occurrence of two reaction
pathways, including heterolytic and homolytic cleavage of the
peroxyl bond in the adduct of ONOO� to the boronate probe
(Fig. 10). The major pathway, involving a heterolytic cleavage,
leads to the formation of the phenolic product, with the oxygen
atom incorporated from the peroxyl moiety of the oxidant, sim-
ilar to the reaction with other tested oxidants, H2O2, HCO4

�,
and HOCl. The minor pathway, involving the homolytic cleav-
age of the peroxyl bond, leads to the formation of �NO2 and a
phenyl-type radical, which recombine within the solvent cage
to form a nitrobenzene-type product (oMitoPhNO2) (Fig. 10).
The intramolecular addition of the phenyl radical to the phenyl
ring of the TPP� moiety yields the cyclic product (cyclo-
oMitoPh) without incorporating any atom from the oxidant.

Superoxide

The production of 16ON18O18O� for the study of the oxida-
tion of boronates by ONOO� involved co-generation of �NO
and 18O2

. . To confirm the formation of 18O2
. in the incubation

mixture containing HX, XO, and 18O2, we performed the incu-
bation in the presence of the HE probe and monitored the

incorporation of 18O atoms into the 2-OH-E� product. HE is
the most widely used probe for the detection of O2

. in biological
systems ranging from cultured cells to animals (21, 63). In the
presence of O2

. , HE is oxidized to 2-OH-E�, a specific marker
product for O2

. (Fig. 3) (20 –24). Derivatives of HE for site-spe-
cific detection of O2

. have been reported (64 –66). Those probes
share the same oxidative chemistry with HE (65). A multistep
mechanism of the conversion of HE to 2-OH-E� has been pro-
posed that involves the oxidation of HE to the HE radical cation
(HE��), followed by the reaction of HE�� with O2

. to form
2-OH-E� (21, 67). This has been supported by pulse radiolysis
data, showing the formation and rapid decay of HE�� in the
presence of pulse-generated O2

. (68) and an increase in the yield
of 2-OH-E� by the addition of peroxidase in the presence of a
steady flux of O2

. (67). Here, we provide direct proof of the
production of 18O2

. in the HX/XO/18O2 system and the incor-
poration of the oxygen atom from O2

. into the product during
oxidation of HE to 2-OH-E�.

To follow the oxygen atoms, we incubated HE with 16O2
. or

18O2
. , produced during enzymatic oxidation of HX by XO in the

presence of 16O2 or 18O2, and monitored the formation of
2-16OH-E� and 2-18OH-E� (Fig. 11a). The mass spectra of the
products showed m/z values of 330 and 332 when the probe was
incubated with 16O2

. or 18O2
. , respectively (Fig. 11b). The

increase in the mass of the product from 18O2
. is consistent with

incorporation of 18O into the molecule. The LC-MS/MS traces
(Fig. 11c) indicate significant formation of 2-16OH-E� and neg-
ligible formation of 2-18OH-E� in the presence of 16O2

. (HX/
XO/16O2). In the presence of 18O2

. (HX/XO/18O2), only a small
peak of 2-16OH-E� and an intense peak because of 2-18OH-E�

were observed. Furthermore, incubation of HE with 16O2
. in a

solvent containing 90% of H2
18O led to the formation of

2-16OH-E� but not 2-18OH-E� (not shown). These data con-
firm the formation of 18O2

. in the HX/XO/18O2 system and
indicate that during the oxidation and hydroxylation of HE, the

Figure 9. Incorporation of an oxygen atom into the phenolic and nitrated products during oxidation of oMitoPhB(OH)2 by ONOO�. a, chemical
structures of the products. b, online mass spectra of the detected products. c, LC-MS/MS traces of the phenolic and nitrated products containing 16O (left panels)
or 18O (right panels). LC-MS/MS analyses were performed after incubation (30 min) of oMitoPhB(OH)2 (20 �M) alone (control) or with in situ– generated
ON16O16O� or ON18O18O�. ON16O16O� and ON18O18O� were produced by cogenerated fluxes of �NO (0.2 �M/min) and 16O2

. or 18O2
. (0.2 �M/min), respectively.
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oxygen atom in the product originates from O2
. , consistent with

a mechanism involving the reaction of HE�� with O2
. and form-

ing the hydroperoxyl intermediate (Fig. 12).

Discussion

Isotope tracing is a powerful technique in the study of the
mechanism of chemical and enzymatic reactions as well as cel-
lular metabolism (69 –71). Isotopically labeled oxidants have
been used to identify the spin adducts of O2

. and other oxygen-
centered radicals using an EPR spin trapping technique (72).
EPR spin trapping, however, is only useful for the detection of
radical species and has only limited applicability to detect intra-
cellular ROS. Oxygen tracing in other probes used for cellular
oxidants has not been reported.

In this study, we have investigated the origin of the oxygen
atom in the products of the reaction of mitochondria-targeted
boronate probe with four biologically relevant, two-electron
oxidants: hydrogen peroxide, peroxymonocarbonate, hypo-
chlorite, and peroxynitrite. The results support the previously
proposed mechanisms of the probes’ oxidation and formation
of the specific products and provide a solid foundation for the
use of those products for identification and tracking isotopi-
cally labeled oxidants.

New insights into the selective detection of peroxynitrite

Although initially assumed to be completely selective (spe-
cific) for H2O2, boronate-based probes also respond to other
biologically relevant nucleophilic oxidants, including HCO4

�,
HOCl, ONOO�, and amino acid hydroperoxides (44, 57, 73).
The main oxidation product in case of all the listed oxidants is
the corresponding phenol. In the presence of excess HOCl or
ONOO�, the phenolic product may undergo chlorination or
nitration, respectively, providing an opportunity to identify the
oxidant by profiling the products formed (14, 44). As an exam-
ple, in the presence of HOCl, the peroxy-caged luciferin probe
is converted not only to luciferin but also to chloroluciferin
(47). The reaction of boronate probes with ONOO� is of special
interest, as this reaction typically proceeds via two pathways of

Figure 10. Proposed mechanism of incorporation of oxygen atoms into the oxidation and nitration products of oMitoPhB(OH)2 from H2O2, HCO4
�, HOCl, and

ONOO�.

Figure 11. Incorporation of an oxygen atom into the hydroxylated prod-
uct during oxidation of HE in the presence of O2

.. a, chemical structures of
the products. b, online mass spectra of the products. c, LC-MS/MS traces of
2-OH-E� containing 16O (left panel) or 18O (right panel). LC-MS/MS analyses
were performed after incubation (30 min) of HE (20 �M) alone (control) or
with 16O2

. or 18O2
. (0.2 �M O2

. /min, generated from HX/XO and 16O2 or 18O2,
respectively).
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the decomposition of peroxynitrite adduct to the boronate: (i)
major pathway (�85–90%) involving heterolytic cleavage of the
peroxyl bond, leading to the formation the phenolic product
and (ii) minor pathway (10 –15%), involving a homolytic cleav-
age of the peroxyl bond, with the formation of phenyl-type rad-
ical and �NO2, which upon recombination form nitrobenzene-
type product (Fig. 10) (45). We have proposed using that
product as a specific marker for ONOO� (50), and with such an
approach, we demonstrated the formation of ONOO� during
the reaction of nitroxyl with oxygen (O2) (62). In the case of the
oMitoPhB(OH)2 probe, the nitrated product, oMitoPhNO2,
accounts for only 0.5% of ONOO� consumed. The other minor
product, cyclo-oMitoPh, is formed at 10% yield, via a rapid
intramolecular addition of the phenyl-type radical to one of the
phenyl rings of the TPP� moiety (Fig. 10) (51). Both minor
products have been detected in macrophages stimulated to pro-
duce ONOO� (51) and can be used as specific marker products
for intracellular ONOO�.

Detection of ONOO� in cells has remained a challenge, as
most methods were based on the nitrative and/or oxidative
properties of ONOO�-derived radicals (e.g. �OH, �NO2, CO3

. )
(74). However, the same radical species can be formed in bio-
logical systems in ONOO�-independent reactions. For exam-
ple, although nitrated tyrosine residues are commonly used as
an endogenous marker of ONOO�, the same product is formed
by �NO2 from the MPO-catalyzed oxidation of nitrite by H2O2.
Dihydrorhodamine, a fluorogenic probe used for ONOO�

detection, cannot distinguish the two pathways of �NO2 forma-
tion either. Boronate probes, including oMitoPhB(OH)2 pro-
vide the first chemical tool to distinguish these two nitration
pathways (51). Formation of the cyclic and nitrobenzene-type
products from oMitoPhB(OH)2 occurs in the presence of
ONOO� but not in the presence of MPO/H2O2/NO2

� (51).
This shows that monitoring the conversion of oMitoPhB(OH)2
into cyclo-oMitoPh and oMitoPhNO2 products can be used to
selectively detect ONOO� formed in cell-free and cellular sys-
tems. Although other boronate probes may not form the cyclic
product during the reaction with ONOO�, in most cases they
produce nitrobenzene-type minor products. These products
may be used to confirm the identity of the oxidant detected. For
example, a new boronate probe recently was developed to
detect ONOO� in �-amyloid aggregates (76). The minor prod-
uct(s) formed during the reaction of the probe with ONOO�

should be characterized and high-performance LC (HPLC)– or
LC-MS– based profiling should accompany fluorescence mea-
surements, which report the yield of the phenolic product. This
product is common for various nucleophilic oxidants, as exem-
plified here by H2O2, HCO4

�, HOCl, and ONOO�. Amino
acid– and protein-based hydroperoxides also oxidize boronate
probes to the phenolic products (73).

Oxidation of aromatic boronates involves initial formation of
phenoxyboronic acid, followed by its hydrolysis into phenolic
product (Fig. 4). The results obtained in this study demonstrate
that during the oxidation of boronates by H2O2, HCO4

�,
HOCl, or ONOO�, the oxygen atom in the phenolic product
derives from those oxidants, not from water. In the case of
HCO4

� and ONOO�, the oxygen atoms in these oxidants are
not equivalent, and the data obtained support the mechanism
involving the nucleophilic addition of CO4

2� or ONOO� to the
boron atom, via their peroxyl moieties, followed by elimination
of a carbonate or nitrite anion, respectively (Fig. 10). Also, in the
case of the formation of nitrobenzene-type product, the pattern
of labeling of oMitoPhNO2 during the reaction of oMitoPh-
B(OH)2 with ONOO� provides insight into the mechanism of
the minor pathway of the reaction. Incorporation of only one
oxygen-18 atom into the nitrated product from 16ON18O18O�

is consistent with the initial homolytic cleavage of the peroxyl
bond in the adduct, formation of phenyl-type radical and �NO2,
and recombination of both radicals (Fig. 10).

2-Hydroxyethidium as a specific marker for O2
.

The HPLC or LC-MS-based analysis of 2-OH-E� is regarded
as a “gold standard” of the detection of O2

. in biological systems
(77). However, the utility of 2-OH-E� as the marker of cellular
O2

. recently has been questioned, based on the lack of increase
of its amount in HepG2 cells treated with H2O2 or rotenone
(78). However, the ability of those treatments to induce O2

. gen-
eration in the used cell model has not been shown. Numerous
reports demonstrate the utility of HE, MitoSOX Red, and
hydropropidine, when coupled with HPLC-based analyses, to
detect O2

. in different cellular models, as reviewed elsewhere
(20, 21, 63). In those reports, 2-OH-E�, 2-OH-Mito-E�, and
2-OH-Pr2� were used as specific marker products for O2

. .
Hydroxylation of ethidium-based probes remains a method of
choice for the detection of O2

. in cell-free and cellular systems
(17, 22, 64 – 66, 79).

The presented results demonstrate that the specificity of
2-OH-E� for O2

. derives from incorporation of an oxygen atom
from this species. Together with the pulse radiolysis data on the
oxidation of HE by pulse-generated O2

. (68), the 2:1 stoichiom-
etry of the reaction (67), and the lack of incorporation of oxygen
from water, observed in this study and during oxidation of HE
by Fremy’s salt (80), the obtained data are consistent with the
mechanism shown in Fig. 12. Initial oxidation of HE by the
protonated form of O2

. (hydroperoxyl radical, HO2
�) produces a

radical cation of HE, which rapidly reacts with O2
. to form a

hydroperoxide, containing oxygen atoms from O2
. (Fig. 12).

This product must undergo rapid transformation in aqueous
solutions to 2-OH-E� as no intermediates have been detected
by HPLC analyses.

Figure 12. Proposed mechanism of incorporation of oxygen atom from O2
. into 2-OH-E� during oxidation of the HE probe.
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Concluding remarks

In summary, we demonstrated that the oxygen atoms in
the oxidation and nitration products of the boronate probe,
oMitoPhB(OH)2, originate from the corresponding oxidants,
H2O2, HCO4

�, HOCl, or ONOO�. Also, in the case the con-
version of the HE probe into 2-OH-E�, oxygen comes from
O2

. . The presented data indicate that it is possible to track iso-
topically labeled oxidants by monitoring the incorporation of
the isotopes into the oxidation/nitration products using the
boronate and hydroethidine probes. Because no incorporation
of the atoms from ROS/reactive nitrogen species occurs in most
other commonly used probes, including DCFH, DHR123,
Amplex Red, and NBT, they cannot be used for such purposes.
The results obtained also corroborate the mechanisms of the
conversion of HE into 2-OH-E� by O2

. and of oxidation and
nitration of boronate-based probes, proposed previously based
on product analyses, EPR experiments, and density functional
theory calculation. We expect that oxygen-18 labeling studies
using 18O2, H2

18O, and H2
18O2, may also be used in cell-free or

cellular systems to reveal whether metal-induced hydrolysis
and/or high-valent iron-oxo species may contribute to the hy-
droxylation of the probes (81). The reaction of the probes with
18O-labeled oxidants also can be used to prepare isotopically
labeled standards of the oxidation products. Furthermore,
H2

18O2- or H18O2C16O2
�-mediated oxidation of boronates

represents a convenient route for the synthesis of 18O-labeled
alcohols and phenols.

Experimental procedures

Materials

Ortho-MitoPhB(OH)2 and its oxidation and nitration prod-
ucts were synthesized, as described previously (49 –51). The
stock solution of oMitoPhB(OH)2 (0.1 M) was prepared in
DMSO and stored at �20 °C. The HE probe was obtained from
Invitrogen (Carlsbad, CA). The stock solution of HE (20 mM)
was prepared in deoxygenated DMSO under argon atmosphere
and stored at �80 °C. The standards of the oxidation products
were synthesized, as described previously (22, 82). For experi-
ments involving HOCl, both probes were dissolved in ethanol
(EtOH) to avoid the scavenging effect of DMSO on HOCl (47).
Water-18O (97% oxygen-18), H2

18O2 (90% oxygen-18), 18O2
(97% oxygen-18), HX, XO, superoxide dismutase (SOD), and
catalase were obtained from Sigma-Aldrich. MPO was from
Calbiochem.

Determination of the flux of O2
.

O2
. was generated from the XO-catalyzed oxidation of HX in

a phosphate buffer solution (25 mM, pH � 7.4) containing 0.1
mM diethylenetriamine pentaacetic acid (dtpa). The solution
was continuously purged with O2. The flux of O2

. was deter-
mined, as described previously (7, 83, 84), by performing the
incubation in the presence of ferricytochrome c (50 �M) and
monitoring the rate of its reduction following an increase in
absorbance at 550 nm (�� � 2.1 � 104 M�1 cm�1) (85). Super-
oxide dismutase completely blocked the reduction of ferricyto-
chrome c under the conditions used.

Determination of the flux of �NO
�NO was generated from the thermal decomposition of

spermine NONOate in a phosphate buffer (25 mM, pH � 7.4)
containing 0.1 mM dtpa. The flux of �NO was determined, as
described previously (7, 84), by monitoring the rate of decay of
spermine NONOate following a decrease in absorbance at 252
nm (� � 8 � 103 M�1cm�1). The release of two molecules of
�NO per one molecule of spermine NONOate consumed was
assumed in the calculations (86).

Oxidation of oMitoPhB(OH)2 by H2O2

To analyze the product of oxidation of oMitoPhB(OH)2 by
H2O2, oMitoPhB(OH)2 (20 �M) was incubated at room temper-
ature with H2O2 (10 mM) for 20 min in a phosphate buffer (25
mM, pH � 7.4) containing 0.1 mM dtpa. When performing the
reaction in water-18O, the final concentration of H2

18O was
90% (by volume).

Oxidation of oMitoPhB(OH)2 by HCO4
�

Oxidation oMitoPhB(OH)2 by HCO4
� was studied by incu-

bation of the probe with H2O2 in phosphate-buffered (0.1 M)
aqueous solution containing dtpa (0.1 mM) in the presence of
NaHCO3 (25 and 50 mM). To maximize the involvement of
HCO4

� in probe oxidation, the probe concentration was low-
ered to 1 �M, the H2O2 concentration was lowered to 50 �M,
and the pH was adjusted to 7.0.

Oxidation of oMitoPhB(OH)2 by HOCl

To study oxidation of oMitoPhB(OH)2 by HOCl, the probe
(50 �M, from a stock solution in EtOH) was incubated with
H2O2 (0.1 mM), KCl (0.1 M), and MPO (20 nM) for 15 min at
25 °C in a phosphate-buffered (0.1 M) aqueous solution. Where
indicated, DMSO was added (final concentration of 0.2% v/v) to
scavenge HOCl.

Oxidation of oMitoPhB(OH)2 by ONOO�

To react oMitoPhB(OH)2 with ONOO�, oMitoPhB(OH)2
(20 �M) was incubated with spermine NONOate (200 �M, gen-
erating 0.2 �M/min �NO), HX (200 �M), and XO (0.1 milliunit/
milliliter, 0.2 �M O2

. /min) in an O2-saturated phosphate buffer
(25 mM, pH � 7.4) containing 0.1 mM dtpa and 5 kilounits/
milliliter catalase. The deoxygenated stock solutions of all com-
ponents were mixed under argon atmosphere in a hypoxic
chamber (final reaction volume: 200 �l). The incubation was
started immediately after mixing by passing oxygen gas (16O2 or
18O2) through the solution for 10 min, followed by 20 min fur-
ther incubation at room temperature. Incubation in water-18O
was performed in the presence of 90% (by volume) of H2

18O.

Chlorination of HE by HOCl

The reaction of HE with HOCl and the formation of 2-Cl-E�

was investigated in the presence of H2O2, MPO, and KCl under
conditions identical to those described above for the oMitoPh-
B(OH)2 probe but using HE (50 �M, from a stock solution in
EtOH).

Oxidation of HE by O2
.

Conversion of HE into 2-OH-E� was studied by incubation
of HE (20 �M) with HX (200 �M) and XO (0.1 milliunit/millili-
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ter, 0.2 �M O2
. /min) in an oxygen-saturated phosphate buffer

(25 mM, pH � 7.4) containing 0.1 mM dtpa and 5 kilounits/
milliliter catalase. To better control the type of O2 isotopolog
present in the solutions, samples were first deoxygenated to
remove 16O2 and then reoxygenated using 16O2 or 18O2. The
deoxygenated stock solutions of all components were mixed
under argon atmosphere in a hypoxic chamber (final reaction
volume 200 �l). The incubation was started immediately after
mixing by passing O2 gas (16O2 or 18O2) through the solution
for 10 min, followed by 20 min further incubation at room tem-
perature. To stop the incubation, SOD was added (final concen-
tration: 0.1 mg/ml) and the sample was taken for LC-MS/MS
analysis. The addition of SOD at the beginning of incubation
resulted in complete inhibition of 2-OH-E� formation. When
using water-18O as a solvent, the final concentration of H2

18O
was 90% (by volume).

LC-MS/MS analysis of oMitoPhB(OH)2 oxidation products

The oxidation products of oMitoPhB(OH)2 were analyzed
using a Shimadzu Nexera2 ultra-HPLC system equipped with
UV-visible absorption and LC-MS8030 MS detectors (Colum-
bia, MD). The presence of a positive charge (because of the
presence of the TPP� moiety) allows a sensitive detection by
MS, as reported previously for the MitoB probe (41–43). The
incubation mixture was injected into a Raptor Biphenyl column
(Restek, Bellefonte, PA; 100 mm � 2.1 mm, 2.7 �m) equili-
brated with a mobile phase containing 80% water, 20% MeCN,
and 0.1% formic acid. The products were eluted by increasing
the content of MeCN (containing 0.1% formic acid) from 20%
to 60% over 5.5 min. The mobile phase flow rate was 0.5
ml/min. Detection events included continuous scanning of the
spectra of the eluate, as well as detection of the specific oxida-
tion products in an MRM mode. MRM transitions were as
follows: 397 � 135 for oMitoPhB(OH)2, 369 � 107 for
oMitoPh16OH, 371 � 263 for oMitoPh18OH, 398 � 262 for
oMitoPhN16O2, 400 � 262 for oMitoPhN16O18O, and 351 �
183 for cyclo-oMitoPh. The MRM transitions of other oxida-
tion products have been reported elsewhere (50, 51, 79).

LC-MS/MS analysis of HE oxidation products

Detection of HE oxidation products, including 2-Cl-E�

and 2-OH-E�, was performed using a Shimadzu Nexera2
ultra-HPLC system equipped with UV-visible absorption
and LC-MS8030 MS detectors. The reaction mixture was
injected into a Raptor Biphenyl column (Restek, Bellefonte, PA;
100 mm � 2.1 mm, 2.7 �m) equilibrated with the mobile phase
containing 90% water, 10% acetonitrile (MeCN), and 0.1% for-
mic acid. The products were eluted by increasing the content of
the organic mobile phase (MeCN, 0.1% formic acid) from 10%
to 65% over 4.5 min at the flow rate of 0.4 ml/min. Detection
events included continuous scanning of the spectra of the elu-
ate, as well as detection of the specific oxidation products in an
MRM mode. MRM transitions for 2-Cl-E�, 2-16OH-E�, and
2-18OH-E� were 348 � 320, 330 � 300, and 332 � 302, respec-
tively. The MRM transitions of other oxidation products were
as reported previously (19, 29, 75, 79).
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