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Sperm head shaping is a key event in spermiogenesis and is
tightly controlled via the acrosome–manchette network. Linker
of nucleoskeleton and cytoskeleton (LINC) complexes consist of
Sad1 and UNC84 domain– containing (SUN) and Klarsicht/
ANC-1/Syne-1 homology (KASH) domain proteins and form
conserved nuclear envelope bridges implicated in transducing
mechanical forces from the manchette to sculpt sperm nuclei
into a hook-like shape. However, the role of LINC complexes in
sperm head shaping is still poorly understood. Here we assessed
the role of SUN3, a testis-specific LINC component harboring
a conserved SUN domain, in spermiogenesis. We show that
CRISPR/Cas9-generated Sun3 knockout male mice are infertile,
displaying drastically reduced sperm counts and a globozoo-
spermia-like phenotype, including a missing, mislocalized, or
fragmented acrosome, as well as multiple defects in sperm fla-
gella. Further examination revealed that the sperm head abnor-
malities are apparent at step 9 and that the sperm nuclei fail to
elongate because of the absence of manchette microtubules and
perinuclear rings. These observations indicate that Sun3 dele-
tion likely impairs the ability of the LINC complex to transduce
the cytoskeletal force to the nuclear envelope, required for
sperm head elongation. We also found that SUN3 interacts with
SUN4 in mouse testes and that the level of SUN4 proteins is
drastically reduced in Sun3-null mice. Altogether, our results
indicate that SUN3 is essential for sperm head shaping and male
fertility, providing molecular clues regarding the underlying
pathology of the globozoospermia-like phenotype.

Spermiogenesis involves drastic morphological changes of
spermatids, including acrosome formation, elongation and
condensation of the nucleus, and disposal of residual cyto-
plasm, to differentiate into mature spermatozoa consisting of a
head and a tail (1, 2). During this complex process, a transient
cytoskeletal structure called the manchette appears concur-
rently with spermatid nucleus elongation. The manchette,
which is first evident in step 8 spermatids in mice (3), is com-
posed of parallel arrays of microtubules aligned with the long
axis of the nucleus and a belt-like perinuclear ring made of
actins where the microtubules are anchored, forming a sleeve-
like structure that encircles the spermatid nucleus (4 –6). It is
believed that manchette microtubules emanate from perinuclear
rings, as these microtubules appear from the post-acrosomal
region in mouse and bovine spermatids (7). As spermatids differ-
entiate, the microtubular structure and the perinuclear ring move
caudally to the posterior pole of spermatid nucleus, sculpting the
nucleus into a hook-like morphology.

The important role of the manchette in sperm head shaping
has been demonstrated in several studies in which disruption of
manchette-related proteins resulted in various forms of sperm
head abnormalities and eventually impaired male fertility. For
example, loss of functional HOOK1 causes ectopic positioning
of the manchette microtubular structure within spermatids,
resulting in abnormal sperm head morphologies, such as club-
shaped and crescent forms (8). Similarly, disruption of RIM-
BP3, a HOOK1-interacting protein located in the manchette,
also causes ectopic positioning of manchette and sperm head
abnormalities similar to those of Hook1 mutant mice (9).
The microtubule plus-end-tracking protein CLIP-170 localizes
prominently to the manchette rings during manchette forma-
tion, and male mice with knockout of Clip-170 are subfertile
because of defective sperm head shaping and abnormal elonga-
tion of the manchette tubules (2, 10). Despite the essential role
of the manchette in spermiogenesis, how the microtubule man-
chette is assembled and regulated remains poorly understood.

Sad1/UNC84 (SUN)6 homology proteins are a family of
nuclear membrane proteins that share a conserved C terminus,
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the SUN domain. SUN proteins and Klarsicht/ANC-1/Syne-1
homology (KASH) proteins form a linker of nucleoskeleton and
cytoskeleton (LINC) complex that functions like a bridge across
the inner and outer nuclear membranes to physically connect
the nucleus to the cytoskeleton (11). This complex is responsi-
ble for various important cellular functions, such as mechano-
transduction, cellular signaling, nuclear anchorage, and posi-
tioning. So far, five SUN proteins have been described in
mammals and have been demonstrated or suggested to play
roles in germ cell development (12–17). SUN1 and SUN2 are
ubiquitously expressed in various tissues (12, 13) and mediate
meiotic telomere attachment to the nuclear envelope (18 –22).
SUN3, SUN4, and SUN5 are specifically expressed in the testes
(14 –17). SUN5 localization is restricted to the head–tail junc-
tions of sperm and is essential for anchoring the sperm head to
the tail (23). SUN4 localizes to the spermatid nuclear envelope
in close association with manchette microtubules (15, 16).
Knockout of Sun4 in mice disrupts the lateral interactions of
the manchette to the nucleus, and the nucleus thus fails to elon-
gate, eventually resulting in a globozoospermia-like phenotype
and male infertility (15, 16). SUN3 protein expression begins at
postnatal day 15, and, similar to SUN4, its localization is closely
associated with the manchette in developing spermatids (14).

However, because of the lack of animal models, whether Sun3
indeed plays a role in spermiogenesis is not clear.

To investigate the physiological functions of Sun3 during
mammalian spermatogenesis, we generated a Sun3 knockout
mouse model using CRISPR/Cas9 genome editing technology.
We found that Sun3�/� male mice are infertile, displaying
abnormal sperm head morphology and irregular acrosome
localization, likely resulting from disruption of manchette
assembly. These findings demonstrate that Sun3 is essential for
sperm head shaping during spermiogenesis.

Results

Generation of Sun3�/� mice by CRISPR/Cas9-mediated
genome editing

Consistent with previous findings (14, 16), SUN3 was
expressed testis-specifically (Fig. S1A) and was detected in
spermatids, localizing to the nuclear pole distal to the acrosome
and overlapping with �-tubulin and SUN4 (Fig. S1B). To inves-
tigate the biological function of SUN3, we generated Sun3-null
mice using CRISPR/Cas9 genome editing technology (Fig. 1A).
Sanger sequencing of genomic DNA from the mutant mice
revealed that a thymidine was inserted between nucleotide posi-
tion 184 and 185 (c.184_185insT) in exon 4 of Sun3, predicted to

Figure 1. Generation of Sun3�/� mice. A, diagram illustrating the CRISPR/Cas9 targeting strategy to generate Sun3 knockout mice. A thymine deoxyribotide
was inserted in exon 4 between nucleotide positions 184 and 185, predicted to cause a frameshift at amino acid position 63 that introduces a premature stop
codon at position 64 (p.Pro62Leufs*2). B, representative Sanger sequencing chromatograms showing the thymine deoxyribotide inserted between nucleotide
positions 184 and 185, as indicated by the red arrow. C, Western blotting using the rabbit anti-SUN3 antibody confirms the lack of full-length SUN3 proteins in
testis lysates from 8-week-old Sun3�/� mice.
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result in premature translation termination (p.Pro62Leufs*2) (Fig.
1B). Western blotting analyses further confirmed that full-length
SUN3 proteins were absent in the testes of Sun3�/� mice (Fig. 1C
and Fig. S2).

Deletion of Sun3 impairs spermatogenesis

Mice lacking Sun3 appeared normal, displaying no obvious
abnormalities in development and behavior. Given the testis-
restricted expression pattern of SUN3, we studied fertility in
Sun3�/� male mice. Mating attempts of Sun3�/� males with
WT females did not produce any offspring, indicating that
Sun3�/� males are infertile. Sun3�/� females showed no overt
abnormalities in fertility.

Sun3�/� mice had smaller testes (Fig. 2, A and B) and sharply
declined epididymal sperm numbers (0.17 � 0.03 million/ml)
compared with WT mice (12.80 � 0.36 million/ml) (Fig. 2C).
To further characterize the spermatogenic defects in Sun3�/�

mice, H&E staining of testis and epididymis sections was per-
formed. All types of spermatogenic cells were present in an
orderly way in Sun3�/� seminiferous tubules and mature sper-
matozoa, and a canonical hook-shaped head could be seen in
the lumen of tubules (Fig. 2D, a and b). However, in Sun3�/�

mice, all elongating and elongated spermatids as well as sper-
matozoa were observed to have a noncanonical round head
(Fig. 2D, c and d). Consistent with the result of sperm counting
per epididymis, the numbers of these noncanonical spermatids

Figure 2. Deletion of Sun3 impairs spermatogenesis. A, representative images of testes from 8-week-old Sun3�/� and Sun3�/� mice. Each grid represents
1 mm. B, average testes/body weight ratio of 8-week-old Sun3�/�and Sun3�/� mice (n � 5). C, epididymal sperm number of 8-week-old Sun3�/� and Sun3�/�

mice (n � 3). D, representative images of H&E-stained testicular sections (a– d) and epididymides (e and f) from 8-week-old Sun3�/� and Sun3�/� mice. b and
d, higher-magnification images of the rectangular area outlined with white boxes in a and c, respectively. Scale bars � 50 �m. E, TUNEL assay performed on
testicular sections from 8-week-old Sun3�/� and Sun3�/� mice. c and d, higher-magnification images of the rectangular area outlined with white boxes in a and
b, respectively. Scale bars � 50 �m. F, percentage of TUNEL-positive tubules in testis sections from 8-week-old Sun3�/�and Sun3�/� mice (n � 3). F, quantifi-
cation of TUNEL-positive cells per TUNEL-positive tubule. 298 tubules were examined from three Sun3�/� mice. 375 tubules were examined from three
Sun3�/� mice. Data are presented as mean � S.D. Student’s t test; *, p � 0.05; **, p � 0.01.
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and spermatozoa were apparently lower in seminiferous
tubules and in the cauda epididymides of Sun3�/� mice com-
pared with those in Sun3�/� mice (Fig. 2D, e and f). Further-
more, a TUNEL assay in combination with a germ cell–specific
marker (MVH) was performed, and the results indicated apo-
ptosis in cells with a small amorphous nuclear shape, which
corresponds to the noncanonical spermatids in Sun3�/� mice
(Fig. 2E). The frequency of TUNEL� tubules (11.99% � 0.75%
versus 32.00% � 3.17%) and the number of TUNEL� cells per
TUNEL� tubule (1.70% � 0.15% versus 2.52% � 0.15%)
in Sun3�/� mice were significantly increased compared with
Sun3�/� mice (Fig. 2F), suggesting that the spermatids of
Sun3�/� mice underwent apoptosis. These results indicate that
Sun3 is essential for spermatogenesis and particularly for the
development of spermatids.

Sun3�/� mice produce round-headed spermatozoa

We further analyzed the sperm morphology in the epididy-
mis and found that, in contrast to the typical hook-shaped
appearance of sperm heads in Sun3�/� mice, all sperm heads
in Sun3�/� mice were amorphous with a smaller and more
rounded shape (Fig. 3, A and B). Additionally, �89.67% �
2.02% of spermatozoa from Sun3�/� mice also displayed vari-
ous midpiece defects, such as irregular caliber, bending, coiling,
and/or cracking (Fig. 3, A and C, and Fig. S3). Immunofluores-
cence staining of peanut agglutinin (PNA), a marker of acro-

somes, was performed on sperm smears and seminiferous
tubules. In Sun3�/� mice, acrosomes with a typical crescent
shape were found on top of the nucleus in the anterior dorsal
part of the sperm head. However, acrosomes of spermatozoa
from Sun3�/� mice were missing, mislocalized, or fragmented
(Fig. 3D).

Because failure of sperm head elongation usually leads to a
rounded head appearance, to understand the specific step at
which head abnormalities occur in Sun3�/� mice, we com-
pared spermatids of Sun3�/� and Sun3�/� mice at different
steps of spermiogenesis. PAS staining revealed that the mor-
phology of spermatids until steps 7 and 8 were comparable in
Sun3�/� and Sun3�/� mice, indicating that the development of
round spermatids was normal in Sun3�/� mice (Fig. 4). At step
9, the nuclei of spermatids became flattened and started to
elongate along with condensation of chromatin in Sun3�/�

mice, whereas in Sun3�/� mice, spermatids still had a round
nucleus although the chromatin had been condensed. At step
10, spermatid nuclei in Sun3�/� mice became thinner and
more elongated; however, the nuclei of spermatids were small
and deformed and remained round in Sun3�/� mice (Fig. 4).
We also noted that the number of spermatids was markedly
reduced from step 10. Altogether, these findings demonstrate
that abnormal morphology of Sun3�/� spermatids occurs
when spermatids start to elongate.

Figure 3. Morphological abnormalities of spermatozoa from Sun3�/� mice. A, representative images of spermatozoa from 8-week-old Sun3�/� and
Sun3�/� mice. Spermatozoa from Sun3�/� mice present with typical morphology, whereas spermatozoa from Sun3�/� mice present an amorphous head
accompanied by various midpiece defects, such as thickening (i and ii), coiling (ii and v), thinning (iii–v), and cracking (iv). Scale bars � 10 �m. B, quantification
of spermatozoa with an amorphous head from 8-week-old Sun3�/�and Sun3�/� mice (n � 3). Student’s t test; ****, p � 0.0001. C, quantification of spermatozoa
with a defective midpiece from 8-week-old Sun3�/�and Sun3�/� mice (n � 3). Student’s t test; ***, p � 0.001. D, representative images of spermatozoa from
8-week-old Sun3�/�and Sun3�/� mice stained for PNA (red) and �-tubulin (green). DNA was counterstained with Hoechst. Scale bars � 10 �m.
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Manchette assembly is disrupted in Sun3�/� spermatids

Because the microtubule manchette is essential for elonga-
tion of spermatids, and SUN3 localization is closely associated
with the manchette (4, 14), we next wanted to find out whether
the structure of the manchette was disrupted after Sun3 dele-
tion. Coimmunofluorescence staining of testis sections with
antibodies against �-tubulin, a marker of manchette microtu-
bules, and PNA was conducted. In Sun3�/� mice, manchette
microtubules were found to be tightly attached to the nuclear
periphery at the caudal region opposite the acrosome of sper-
matids; however, these structures were not detected in
Sun3�/� mice despite some weak and diffuse labeling that was
ectopically positioned (Fig. 5A). To confirm loss of manchette
microtubules in Sun3 knockout spermatids, immunofluores-
cence staining on testis cell smears was performed. In Sun3�/�

mice, spermatids from step 1 to step 16 could be distinguished
based on the morphology of the acrosome, and the acrosome
covering the anterior side of the nucleus as well as the micro-
tubules of the manchette tightly surrounding the caudal region
could be seen from step 7/8 to step 14/15 in Sun3�/� sperma-

tids. In Sun3�/� mice, we did not detect any morphological
abnormalities in spermatids until step 7/8, and acrosomes cov-
ering the anterior side of the nucleus appeared to be normal in
round spermatids. However, the typical microtubule arrays
of the manchette were not observed in all spermatids from
Sun3�/� mice. Aberrantly polymerized microtubule bundles
that were dissociated from the nucleus were observed in about
5% of spermatids (Fig. 5B). Moreover, the perinuclear ring, a
belt-like structure surrounding the nucleus where manchette
microtubules insert, was also absent in spermatids from
Sun3�/� mice (Fig. S4). Transmission EM (TEM) further
revealed the presence of manchette microtubule bundles that
were closely associated with the nuclear envelope in elongating
spermatids from Sun3�/� testes; however, these recognizable
structures were not seen in elongating spermatids from Sun3�/�

testes, although some disorganized microtubule bundles that
had lost their interaction with the nucleus were observed (Fig.
5C). Thus, we conclude that SUN3 is not only indispensable for
manchette formation but also likely required for the organiza-
tion of manchette during sperm head shaping in mice.

Figure 4. Abnormalities of spermatids occur when spermatids start to elongate in Sun3�/� mice. PAS staining of testis sections from 8-week-old Sun3�/�

and Sun3�/� mice revealed abnormal sperm nuclei from step 9 in Sun3�/� mice. Scale bars � 50 �m.
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SUN3 interacts with SUN4 in mouse testes

Deletion of SUN4, another SUN protein that associates with
the manchette, also leads to defects in acrosome and manchette
formation in mice (15), similar to the findings in Sun3-null
mice. To explore whether SUN3 interacts with SUN4 in testes,
we performed immunoprecipitation using an anti-SUN3 anti-
body with testis lysates from Sun3�/� mice. Western blotting
detected SUN3 and SUN4 in lysates immunoprecipitated by
the anti-SUN3 antibody but not in IgG-immunoprecipitated
lysates (Fig. 6, A and B). Immunofluorescence staining in
Sun3�/� and Sun3�/� testicular sections revealed clear signals

of SUN4 proteins surrounding the caudal region of the
nucleus opposite the acrosome, where the manchette locates
in step 7/8 spermatids, elongating spermatids, and elongated
spermatids in Sun3�/� mice, whereas only unspecific diffuse
signals were observed in the cytoplasm of spermatids from
Sun3�/� mice (Fig. 6C). Western blotting of testicular
lysates revealed that the level of SUN4 proteins was drasti-
cally reduced in adult Sun3�/� mice compared with
Sun3�/� mice (Fig. 6D). These findings demonstrated that
SUN3 and SUN4 interact and that SUN3 is required to main-
tain the level of SUN4 proteins in vivo.

Figure 5. Manchette formation is disrupted in Sun3�/� mice. A, representative images of testis sections from 8-week-old Sun3�/� and Sun3�/� mice,
stained by anti-PNA (red) and anti-�-tubulin (green) antibodies. DNA was counterstained with Hoechst. Scale bars � 20 �m. B, representative images of
spermatids from 8-week-old Sun3�/� and Sun3�/� mice, stained by anti-PNA (red) and anti-�-tubulin (green) antibodies. DNA was counterstained with
Hoechst. Types 1–5 show various abnormal spermatids in Sun3�/� mice. Scale bars � 2 �m. C, manchette microtubule bundles were not observed in Sun3�/�

mice by transmission EM. Red rectangles show the presence of manchette microtubule bundles in Sun3�/� mice, whereas yellow rectangles indicate the
absence of such microtubule bundles in Sun3�/� mice. Scale bars � 2 �m.
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Discussion

Sperm head shaping is a key event during spermiogenesis,
and misshaping of sperm heads often leads to male infertility
(24). In this study, we generated mice lacking Sun3 through
CRISPR/Cas9 technology and investigated the function of
SUN3 during spermiogenesis. We found that loss of SUN3
leads to a drastic reduction in sperm numbers, a globozoosper-
mia-like phenotype accompanied by multiple sperm tail defects
resulting from failure of manchette formation during sperm
head shaping, and, ultimately, male infertility. Additionally, we
also demonstrated that SUN3 interacts with SUN4 in vivo and
is required to maintain the level of SUN4 proteins in testes.
We report, for the first time, that Sun3 is indispensable for
sperm head shaping and particularly required for manchette
formation.

A typical manchette is characterized by highly organized
microtubule bundles attached to the perinuclear ring, forming
a sleeve-like structure surrounding the posterior part of the
spermatid nucleus (5, 25). This transient structure appears
when spermatids are going to elongate and disappears when the
sperm heads are properly shaped. Several genes have been
reported to be implicated in manchette function in mice,
including Hook1, Katnb1, Lrguk1, Meig1, Pacrg, and Spef2 (8,
26–29). The manchettes in these mutant mice displayed a
highly disorganized structure and/or perturbed disassembly,

resulting in spermatozoa with a deformed shape (8, 26–29).
However, we found that, in most cases, the canonical man-
chette structure was not detected in spermatids after Sun3
knockout, and some aberrantly polymerized straight microtu-
bule bundles were observed in a few step 8 –16 spermatids
(�5%), but these bundles were completely dissociated from
the nucleus. The nuclear shape of the epididymal sperm
from Sun3 knockout mice was generally rounder than that
observed in other disrupted manchettes. This suggests that
SUN3 is essentially required for formation and coupling of
the manchette.

SUN3 and SUN4 are exclusively expressed in spermatids and
colocalize in close association with the manchette (14, 16, 30),
suggesting a cooperative function in coupling of the manchette
to the nuclear periphery so that the cytoplasmic forces can be
transduced to shape the sperm nuclei. In Sun4�/� mice, man-
chette microtubules were disorganized, lost their lateral inter-
action with the nucleus, and, in some cases, were even com-
pletely missing, resulting in a globozoospermia-like phenotype
(15). Deletion of Sun4 caused SUN3 mislocalization with a
tendency to form aggregates in the cytoplasm, suggesting that
SUN3 localization depends on SUN4 (15). In this study, man-
chette tubules were not observed in the majority of spermatids
in Sun3�/� mice, although a few spermatids showed some
straight microtubule bundles, but these structures were disso-

Figure 6. SUN3 interacts with SUN4 in mouse testes, and SUN4 protein levels are drastically reduced in Sun3�/� mice. A, Western blotting of immuno-
precipitated testis extract showing the presence of SUN3 proteins in lysates immunoprecipitated by rabbit anti-SUN3 antibodies. Rabbit IgG was used as a
negative control. B, Western blotting showing the presence of SUN4 proteins in testis lysates immunoprecipitated by guinea pig anti-SUN3 antibodies. Rabbit
IgG was used as a negative control. IP, immunoprecipitation; WB, Western blotting. C, immunofluorescence staining of SUN4 (red), SP56 (green), and Hoechst
(blue) on testis cell spreads from 8-week-old Sun3�/� and Sun3�/� mice, showing mislocalization of SUN4 in Sun3�/� spermatids. Scale bars � 20 �m. D,
Western blotting showing the levels of SUN4 proteins in Sun3�/� and Sun3�/� testes. �-Actin was used as a loading control. For A, B, and D, the bands
corresponding to the sizes of proteins of interest are indicated by arrows.
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ciated from nuclei, which closely resembled the phenotype of
Sun4�/� mice. Interestingly, the level of SUN4 proteins was
drastically reduced in Sun3�/� testes, indicating that SUN3 is
also required to maintain the level of SUN4 proteins in vivo.
Thus, it indicates that the functions of SUN3 and SUN4 are
likely interdependent. It is worth mentioning that we tried
many times to optimize the experimental protocols of coimmu-
noprecipitation using the anti-SUN4 antibody; however, we
could not detect SUN3 in lysates immunoprecipitated by anti-
SUN4 antibodies, for which the possibilities that anti-SUN4
antibody might not be suitable for coimmunoprecipitation
experiments or that the interaction of SUN4 with the anti-
SUN4 antibody may interfere with binding of SUN3 with
SUN4 should be considered. It would be interesting to con-
duct further studies to confirm the interaction between
SUN3 and SUN4, to investigate how SUN3 interacts with
SUN4, and particularly how they coordinate and function in
assembly or stabilization of the manchette cytoskeletal
structure.

Anchorage and positioning of the cell nucleus plays an
important role during diverse developmental processes such as
fertilization, cell migration, and establishment of polarity (31–
33). In mammalian somatic cells, the LINC complex, composed
of SUN domain and KASH domain proteins, forms a pro-
tein bridge within the perinuclear space that connects the
nucleus with the cytoskeleton (34, 35). Two spermiogenesis-
specific LINC complexes have been described; one is SUN1�–
NESPRIN3, localized on the anterior acrosomal side, and the
other is SUN3–NESPRIN1, situated at the posterior pole of the
spermatid nucleus (14). However, unlike the various functions
of SUN proteins in spermatogenesis, the known KASH domain
proteins appear to be not that important. Mice mutant for
KASH domain proteins, Nesprin1 or Nesprin3, were fully fer-
tile, and disruption of genes encoding for other important
KASH proteins (Nesprin2, Nesprin4, and Lrmp) also displayed
no overt impact on fertility (36, 37). So far, only KASH5 has
been shown to be essential for spermatogenesis. KASH5 is pre-
dominantly expressed at meiotic stages and aggregated at one
nuclear pole in round and elongated spermatids (18). Mice
lacking KASH5 manifested meiotic arrest; thus, we currently do
not know whether KASH5 plays a role in spermiogenesis as
well. However, given the localization pattern of KASH5 in sper-
matids, it is a poor candidate as a LINC complex partner for
SUN3. Thus, we assume that NESPRIN1 is not essentially
required for spermiogenesis and that SUN3 may form links
with other alternative KASH proteins to physically couple the
manchette to the nucleus.

Altogether, our study indicates that Sun3 is required for
sperm head shaping during mammalian spermiogenesis. Dis-
ruption of Sun3 in mice caused a drastic reduction in sperm
numbers and severe sperm head defects because of man-
chette formation failure, ultimately resulting in male infer-
tility. These results will deepen our understanding of the role
of LINC complexes in sperm head shaping and provide new
molecular cues regarding the underlying pathology of
globozoospermia.

Experimental procedures

Mice

Sun3�/� mice were generated using CRISPR/Cas9 genome
editing as described previously (38). To generate Sun3�/�

mice, a guide RNA sequence (GGCGTTGCTTAAAGACA-
TGA) targeting exon 4 (5�-GACTCCGCATGCTCTAAGGA-
3�) of the Sun3 gene was coinjected with Cas9 mRNAs into
B6D2F1 (C57BL/6 	 DBA/2) zygotes, which were subse-
quently transferred to the oviducts of pseudopregnant ICR
female mice. Sanger sequencing of tail genomic DNA con-
firmed a female founder mouse carrying a homozygous 1-nt
insertion in exon 4 of Sun3 (5�-GACTCCGCATGCTCTAAG-
GA-3�, the inserted T nucleotide is underlined). The female
founder mouse was crossed to WT C57BL/6 mice. The result-
ing heterozygous mice were crossed to obtain homozygous
mutants. Animal experiments were approved by the Institu-
tional Animal Care Committee of the University of Science and
Technology of China. The following sequences of primers were
used to confirm the genotype of Sun3 mice: 5�-GGCAGGCT-
GAGAAAGACACACATG-3� and 5�-GGCTTCACAGCTG-
ACAATGGCAT-3�.

Western blotting

Testes from adult mice (8 –12 weeks old) were homogenized
in radioimmune precipitation assay buffer (25 mM Tris-HCl
(pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate,
and 0.1% SDS) supplemented with protease inhibitors using a
Tissuelyzer and then cleared by centrifugation. Western blot-
ting was carried out as described previously (39, 40). Antibodies
included rabbit polyclonal anti-SUN3 (Proteintech, 26434-
AP-1, 1:1000), guinea pig polyclonal anti-SUN3 (1:3000) (16),
rabbit polyclonal anti-SUN4 (Proteintech, 19721-1-AP, 1:3000)
and anti-�-actin (Abcam, ab8227, 1:100).

Sperm counting

Adult male mice were sacrificed by cervical dislocation.
Their epididymides were dissected, minced into small pieces in
1 ml of Dulbecco’s modified Eagle’s medium, and incubated at
37 °C in a 5% CO2 humidified incubator for 1 h to allow sperm
release. Sperm counts were determined using a hemocytometer
under a microscope (Nikon Eclipse E200).

Histological examination, TUNEL assay, and
immunofluorescence staining

Mice were euthanized by cervical dislocation. Testes were
removed and fixed overnight in Bouin’s solution (for H&E and
PAS) or 4% paraformaldehyde (for immunofluorescence stain-
ing and the TUNEL assay). Samples were dehydrated through a
graded series of ethanol, embedded in paraffin, and sectioned at
5 �m for subsequent H&E and PAS staining. Sperm smears
were prepared from epididymis as described previously (41). To
prepare testis smears, testes were peeled off the testicular cap-
sule, cut into pieces in PBS, and filtered through a 200-mesh cell
strainer. The filtered cell suspensions were spread onto a glass
slide.

H&E and PAS staining of tissue sections or sperm smears was
performed as described previously (41). The TUNEL assay was
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performed using the In Situ Cell Death Detection Kit (Roche,
11684795910) according to the manufacturer’s instructions.
For immunofluorescence, tissue sections, testis smears, or
sperm smears were blocked in antibody dilution buffer (10%
normal donkey serum, 3% BSA, and 0.05% Triton X-100 in PBS)
for 30 min, followed by overnight incubation at 4 °C with pri-
mary antibodies against �-tubulin (Sigma, F2168, 1:200), rabbit
polyclonal anti-SUN4 (1:3000), and lectin PNA (Invitrogen,
L32458, 1:200). After washing with PBST four times, sections
were incubated with secondary antibodies (Invitrogen, Alexa
Fluor 488 goat anti-mouse IgG and Alexa Fluor 555 donkey
anti-rabbit IgG, 1:200) at 37 °C for 1 h. Finally, sections
were mounted with Vectashield mounting medium (Vector
Laboratories, H-1000) containing Hoechst 33342 (Invitrogen,
H21492). Staining of epididymal sperm mitochondria was
performed using MitoTracker probes (Molecular Probes,
M-7512). Images were captured using a Nikon Eclipse 80i
microscope (Nikon) equipped with a digital camera incorpo-
rating a charge-coupled device (Hamamatsu) and analyzed
using NIS-Element microscope imaging software (Nikon).

Coimmunoprecipitation

Tissue extracts were prepared using a Dounce homogenizer
in cold immunoprecipitation buffer with 1% Triton X-100, 0.5%
sodium deoxycholate, 0.1% SDS, 1 mM Na3VO4, 1 mM EDTA, 1
mM EGTA, 50 mM Tris (pH 7.5), and 150 mM NaCl dissolved in
500 ml of PBS supplemented with 1 mM phenylmethylsulfonyl
fluoride and protein inhibitor mixture (Roche, 04693116001).
All reagents were of analytical grade. Lysates were then centri-
fuged at 15,000 	 g at 4 °C for 15 min, and the supernatant was
divided into two aliquots. Each aliquot was incubated with 1.5
�g of rabbit anti-SUN3 antibody (Proteintech, 26434-AP-1) or
rabbit IgG nonspecific antibody (CST, 2729S). After incubation
at 4 °C overnight with rotation, beads were washed five times
with radioimmune precipitation assay buffer. Finally, the beads
were resuspended in 3	 SDS-sample buffer (120 mM Tris/HCl,
10% SDS, 20% glycerol, 20% 2-mercaptoethanol, and bromphe-
nol blue (pH 6.8)), boiled at 100 °C for 15 min, and subsequently
subjected to Western blotting.

Transmission EM

Ultrastructural analysis of Sun3�/� mouse testes was per-
formed as described previously (42). Briefly, testes from
Sun3�/� and Sun3�/� mice were fixed in 4% paraformaldehyde
containing 0.05% glutaraldehyde in 0.1 M phosphate buffer and
then post-fixed in 1% osmium tetroxide. Dehydration was car-
ried out in ethanol, and the samples were embedded in Epon
812. Ultrathin sections were obtained, counterstained with ura-
nyl acetate and lead citrate, and examined with a JEOL JEM-
1230 transmission electron microscope.

Statistical analysis

Testis/body weight ratio, sperm number, sperm morphol-
ogy, and TUNEL-positive cells in Sun3�/� and Sun3�/� mice
were analyzed statistically by using Student’s t test. Results are
presented as mean � S.D. Statistical significance is defined as
p � 0.05.

Author contributions—Q. G. and R. K. methodology; Q. G. and R. K.
writing-original draft; C. Y. and M. A. resources; C. Y. visualization;
M. A., X. J., H. M., and Q. S. writing-review and editing; X. J. and
Q. S. conceptualization; H. M. formal analysis; Q. S. funding
acquisition.
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