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• The model outputs temporal health im-
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be overlaid with SDGs in mind.
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The Sustainable Development Goals (SDGs) recognise the critical need to improve population health and envi-
ronmental sustainability. This paper describes the development of a microsimulation model, MicroEnv, aimed
at quantifying the impact of environmental exposures on health as an aid to selecting policies likely to have
greatest benefit. Itsmethods allow the integration ofmorbidity andmortality outcomes and the generation of re-
sults at high spatial resolution. We illustrate its application to the assessment of the impact of air pollution on
health in London. Simulations are performed at Lower Layer Super Output Area (LSOA), the smallest geographic
unit (population of around 1500 inhabitants) for which detailed socio-demographic data are routinely available
in the UK. The health of each individual in these LSOAs is simulated year-by-year using a health-state-transition
model, where transition probabilities from one state to another are based on published statistics modified by rel-
ative risks that reflect the effect of environmental exposures. This is done through linkage of the simulated pop-
ulation in each LSOAwith 1 × 1 km annual average PM2.5 concentrations and area-based deprivation indices. Air
pollution is a leading cause of mortality and morbidity globally, and improving air quality is critical to the SDGs
for Health (Goal 3) and Cities (Goal 11). The evidence of MicroEnv is aimed at providing better understanding of
the benefits for population health and health inequalities of policy actions that affect exposure such as air quality,
and thus to help shape policy decisions. Future workwill extend themodel to integrate other environmental de-
terminants of health.
� 2019 The Authors. Published by Elsevier B.V.  This is anopenaccess article under the CCBY         license (http://
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1. Introduction

Reducing the adverse consequences of poor environmental condi-
tions is an important objective of several of the Sustainable Develop-
ment Goals (United Nations, 2017), including, but not limited to, Goal
7 (affordable, clean energy), Goal 11 (sustainable cities and communi-
ties), and Goal 13 (climate action). Policies aimed at improving environ-
mental conditions also have benefits to health, either through direct
effects or as co-benefits (such as increasing physical activity). Therefore,
excess mortality due to air pollution is used as one of the indicators of
health under SDG 3 (health, well-being). Quantifying the potential im-
pact on health of policies aimed at achieving these SDGs, or of reducing
environmental exposures in general, is of increasing interest to policy-
makers in order to track progress and evaluate effectiveness of policies
and their respective impacts on health. Such policies include those
aimed at the transition to a low carbon economy, many of which have
potential impacts that are often, but not always, beneficial for health.
Among the prominent issues of concern are those of outdoor air pollu-
tion and population health.

Substantial epidemiological evidence has shown the large impact
that air pollution has on population health (Brunekreef and Holgate,
2002). TheWorld Health Organisation (WHO) has estimated an annual
impact of air pollution to be around 7 million premature deaths world-
wide,with 3million of these attributable to outdoor air pollution (WHO,
2014), whilst the Lancet Commission on Pollution and Health puts the
combined figure at 9 million (Landrigan et al., 2018). There is good ev-
idence that people exposed to higher air pollution are at a higher risk of
non-communicable diseases such as ischemic heart disease (IHD) and
stroke. In the UK, it has been estimated that air pollution contributes
to around 40,000 premature deaths (Royal College of Physicians,
2016). As exposure to air pollutants is generally higher in urban set-
tings, the trend of rapid urbanization over recent decades has tended
to increase burdens globally (United Nations, 2018). Air pollution may
also often contribute to socio-economic inequalities in health (O'Neill
et al., 2003). Inequalities within society in developed countries, such
as the UK, can be seen to exacerbate poor health (Marmot, 2017). The
importance of reducing air pollution exposures is reflected in the SDG
indicators 7.1.2 (access to clean energy in homes), 11.6.2 (air quality
in cities), and 3.9.1 (air pollution-related mortality).

Empirical scientific evidence is necessary to evaluate potential policy
interventions which may help achieve these SDGs. Many methods of
impact quantification are based on life-table methods (such as (Miller
andHurley, 2003)), or a combination of life-table and separate direct es-
timation of morbidity impact, as has been used by Hamilton et al.
(2015) to assess the health impacts of energy efficiency retrofits to UK
homes. These methods do not fully integrate morbidity and mortality
modelling and mostly have not been applied with detailed segmenta-
tion of the population by area or demographic group.

Microsimulation methods have become an increasingly popular
modelling tool for the use of health impact assessment (Rutter et al.,
2011; Schofield et al., 2018). They allow public health policies to be
evaluated through scenario modelling (Zucchelli et al., 2012) and can
be used at high spatial resolutions where some data may be missing
(Ballas et al., 2006; Smith et al., 2011). Buildingmicrosimulationmodels
with multiple disease states allows quantification of illness as well as
mortality, potentially including multiple co-morbidities. This was dem-
onstrated by (Lymer et al., 2016)who looked at the co-morbidities of di-
abetes and cardiovascular disease (CVD) due to obesity in Australian
adults. Previous studies have also assessed the burden of obesity on
non-communicable diseases (NCDs) such as CVD and cancer (Webber
et al., 2014) and in another application, the effect of deprivation on
screening methods for CVD (Kypridemos et al., 2016).

In this work, we sought to develop a flexible modelling method
(MicroEnv) capable of examining the impact of various environmental
influences on the health of populations. The aim of the model is to be
able to integrate evidence on both morbidity and mortality from
multiple forms of exposures, at high spatial resolution, in order to assess
the health impacts of changes in different environmental conditions.
The objective of this paper is to describe the development of this
model, based on microsimulation, and to demonstrate its application
to investigate changes in population exposure to background PM2.5,
and associated morbidity and mortality (including health inequalities)
from Ischemic Heart Disease (IHD) in London, UK. We then consider
the strengths and weaknesses of this modelling approach for assessing
policy interventions, comparing this model against other models, and
describing how such methods may be used to investigate the effective-
ness of policies aimed at achieving the SDGs.
2. Methods

Our microsimulation model simulates individuals at local area level
and currently includes exposure to particulate air pollution and socio-
demographic status coupled with population aging. In this paper we
demonstrate its application for London, although the model has also
been structured and parameterized for assessing health impacts in the
population of Rennes, France. The model's general structure is shown
in Fig. 1, and the data sources used in Table 1. Supplementary data (Ap-
pendices B and C) provide further details on the input data sources used
in the model.

The first step is to generate the population for the region under in-
vestigation. Here, Greater London's initial population was defined for
each Lower Layer Super Output (LSOA) level using an updated (2015)
version of 2011 census data (ONS, 2018a). An LSOA is a geographic
unit with, on average, a population of around 1500 inhabitants of
which there are 4835 in Greater London. Each individual within an
LSOA is generated, replicating its exact age and gender structure.
Hence, around 8.5 million individuals are generated for the whole of
Greater London. To incorporate morbidity into the model in the form
of ischemic heart disease (IHD) prevalence, we specified a three-state
transition model in which individuals may be in one of the following
states:

H1. : being free of diagnosed ischaemic heart disease (IHD)

H2. : having been diagnosed with IHD (prevalent IHD)

H3. : dead from any cause.

At year zero of the simulation, a subset of the population is initialized
as having diagnosed ischaemic heart disease using prevalence data at 5-
year age bands for the UK in 2016 as the baseline (the latest available
data, from the Global Burden of Disease (GBD) Results Tool (Institute
for Health Metrics and Evaluation, 2019). This was also the source for
the age and gender specific IHD incidence and mortality rates used in
our model. The methods employed in constructing the GBD Results
Tool is documented elsewhere (GBD 2017 Disease and Injury
Incidence and Prevalence Collaborators, 2018). Briefly, GBD employ
DISMOD-MR 2.1, a Bayesian meta-regression tool, used in combination
with routine clinical data to estimate incidence, prevalence andmortal-
ity rates for various countries. Further details of the health data used in
the model are provided in the supplementary data (Appendix
B) including a comparison of the GBD Results Tool outputs to English
Health Survey data.

The health state of each member of the simulated population is
updated year-by-year by performing sequential Bernoulli trials
(random experiments with two possible outcomes). For individ-
uals in a non-diseased state (H1), an initial Bernoulli trial deter-
mines whether he/she develops disease. Following this, a second
Bernoulli trial is performed to determine whether the individual
dies (moves to H3 state). For individuals already in a diseased
state, only the second trial is required. Note that we assume that
once diagnosed with IHD, a person remains in the ever diagnosed
IHD state(H2) until death, so that the probability of complete



Fig. 1. Schema of the microsimulation model.
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recovery to a state of being without diagnosed IHD is zero even
though some people with IHD may become entirely asymptomatic
following treatment. We are only required to calculate three
health-state transition probabilities (as shown in Fig. 1). These
are the:

• probability of incidence from a healthy state, P(I|H1),
• probability of mortality from a healthy state due to all but non IHD
causes, PðMgIHDjH1Þ,

• probability of mortality from a diseased state, P(M|H2).
Table 1
Data sources and relative risks used in the microsimulation model.

Datasets used in MicroEnv

Data type Year Additional info

Population 2015 Population by single year of age, gender and LSOAa

Socio-economic
deprivation

2015 Decile of the Index of Multiple Deprivation (IMD) for

Air pollution 2014 Annual averages of PM2.5 at 1 × 1 km grid (mapped t
General fertility rates 2015 Number of live births per 1000 females aged 15–44 a

LSOA-specific female population each year
Mortality (all-cause) 2016 Period projections by year of age and gender (UK)
IHD mortality, incidence
and prevalence

2016 By gender and 5-year age bands (UK)

Relative risks used in MicroEnv

Relative risk Coefficient used

IHD incidence 1.08 per 10 μg/m3 (PM2.5)
IHD case fatality 1.21 per 10 μg/m3 (PM2.5)
All-cause mortality 1.06 per 10 μg/m3 (PM2.5)

1.7 between most and least dep
1.5 between most and least dep

a LSOA – Lower Layer Super Output Area.
2.1. Incidence probabilities

The health transition probabilities to new diagnosis of IHD, P(I|H1),
are determined by age and gender specific incidence rates derived
from the GBD Results Tool, which are reported per 100,000 of the total
UK population. GBDoutputs can then be converted to give the incidence
probability for the total population (i.e. including in the denominator
those with and without diagnosed IHD), P(I). Application of Bayes the-
orem (see supplementary data Appendix A for further details) can be
used to calculate the health transition probability for incidence in
Reference

ONS (2018a)
each LSOA DCLG (2015)

o LSOA) Ricardo Energy and Environment (2017)
t local authority level. Applied to the ONS (2018b)

ONS (2017)
GBD Results Tool (Institute for Health Metrics
and Evaluation, 2019)

Reference

Wilkinson et al. (2018)
Wilkinson et al. (2018)

rived decile (males)
rived decile (females)

Pope III et al. (2002)
ONS (2015)
ONS (2015)
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those without diagnosed disease, P(I|H1), as:

P IjH1ð Þ ¼ P H1jIð ÞP Ið Þ
P H1ð Þ ð1Þ

P IjH1ð Þ ¼ P Ið Þ
1−P H2ð Þð Þ ð2Þ

2.2. Mortality probabilities

Death rates (from any cause) in those with and without diagnosed
IHD are derived from published statistics using two key assumptions:
(i) that the death rate from non-IHD causes is equal in those with and
without diagnosed IHD, and (ii) the simplifying assumption that IHD
mortality can only occur in those with recognised (prevalent) IHD. In
a later version of this model, we will alter this assumption to reflect
the occurrence of sudden cardiac death in those without recognised
IHD.

The transition probability to death (from all non-IHD causes) from a
healthy state, PðMgIHDjH1Þ, is again calculated by invoking conditional

probabilities:

P MfIHDjH1
� �

¼
P H1jMfIHD
� �

P MfIHD
� �

P H1ð Þ ð3Þ

P MfIHDjH1
� �

¼ P MfIHD
� �

ð4Þ

Here, PðMgIHDÞ is the probability of death from any cause other than

IHD which is calculated by subtracting the age and gender specific IHD
mortality probability from the all-cause mortality rates (PðMgIHDÞ ¼ Pð
MAll−causeÞ−PðMIHDÞ), as published by the Office for National Statistics
(ONS) (ONS, 2017). This subtraction is performed following the applica-
tion of the relative risks described Sections 2.4 and 2.5, thus, avoiding
the double counting ofmortality ratemultipliers. Assuming that disease
prevalence and other-cause mortality are considered independent
events, PðH1jMgIHDÞ ¼ PðH1Þ and PðH2jMgIHDÞ ¼ PðH2Þ: This means

that baseline other-cause mortality rates are the same for those with
and without disease.

The transition probability to death from diseased state is the sum of
the conditional IHD mortality and other-cause mortality probabilities:

P MjH2ð Þ ¼ P MIHDjH2ð Þ þ P MfIHDjH2
� �

ð5Þ

P MjH2ð Þ ¼ P H2jMIHDð ÞP MIHDð Þ
P H2ð Þ þ

P H2jMfIHD
� �

P MfIHD
� �

P H2ð Þ ð6Þ

P MjH2ð Þ ¼ P MIHDð Þ
P H2ð Þ þ P MfIHD

� �
ð7Þ

The above is derived using the same reasoning as above,PðH2jMgIHD
Þ ¼ PðH2Þ;whichmeans:

PðH2jMgIHDÞ
PðH2Þ ¼ 1and IHDmortality is assumed

to only be possible from a prevalent state: P(H2|MIHD) = 1.
Finally, the probabilities for remaining in the same health state in a

given year, are calculated via subtraction of the transition probability
from unity. For example, the probability of non-incident disease is
given by; Pð~IjH1Þ ¼ 1−PðIjH1Þ. The model allows projections of change
in underlying mortality rates; however, a simplifying assumption is
used which holds rates constant at those for the base year (2016).
Once an individual has died, they are removed from any subsequent
calculations.
2.3. Births and migration

Newborns are added to the simulated population each year using
published 2015 UK ONS general fertility rates (GFR – live births per
1000 females aged 15–44 per year) provided at local authority level
(ONS, 2018b). GFRs are applied to the size of the LSOA-specific female
population aged 15–44 at the end of each simulation year. Further de-
tails are provided in supplementary data Appendix C. In the current im-
plementation, migration of people from year-to-year (both within the
city and into and out of it) is assumed to be zero. This simplifying as-
sumption is in part made because of the complexity and uncertainties
of having to update LSOA data each year based on a very large matrix
of LSOA-to-LSOA migration probabilities. It is a reasonable assumption
for short term assessments, but increasingly less secure for analyses
over longer-term horizons.

2.4. Socio-economic deprivation

The effect of deprivationwas taken into account bymultiplyingmor-
tality rates by a relative risk derived from analyses published by theONS
(ONS, 2015) for England and Wales (map provided in supplementary
data Appendix C). These data indicate a broadly linear relationship be-
tween decile of the Index of Multiple Deprivation (IMD) and mortality
risk, where decile 1 is most deprived (representing the most deprived
10% of the population). In men, the risk of death in the most deprived
decile of IMD was 1.7 times that of men in the least deprived decile; in
women the corresponding figurewas 1.5. Thus, to adjust the population
average risk (at an average IMDdecile of 5.5) for an LSOAof IMDdecile, j
(j = 1, 2,…10), we applied a relative risk as follows:

RR depr;menð Þ ¼ 1:7 5:5− jð Þ=9 ð8Þ

RR depr;womenð Þ ¼ 1:5 5:5− jð Þ=9 ð9Þ

A relative risk for deprivation is also applied to IHD mortality rates,
although not for IHD incidence due to lack of empirical evidence.

2.5. Air pollution

To quantify the impact of outdoor air pollution on IHD, we used ev-
idence from review of the published epidemiological literature on the
effect of air pollution on each of the key state transition probabilities
(Wilkinson et al., 2018). We assumed that the effect of air pollution on
the transition probability for diagnosis of IHD, P(I|H1), is represented
by epidemiological studies of the relative risk of disease incidence in re-
lation to the concentration of PM2.5 (which we refer to as RR(inci-
dence)). The relative risk for death (from any cause) among those
with a diagnosis of IHD, P(M|H2), was based on review of studies that
reported the effect of air pollution on survival (‘case fatality’) in people
following diagnosis of an IHD event (RR(case fatality)). For the current
analyses we assumed these relative risks to be 1.08 and 1.21 per 10
μg/m3 increase in PM2.5, respectively.

The relative risk for the effect of air pollution on the overall risk for
death from all causes was derived from published evidence, and as-
sumed to be 1.06 for a 10 μg/m3 increase in PM2.5 (Pope III et al.,
2002). Thiswasused toderived a relative risk ofmortality in thosewith-
out recognised IHD adjusted to take account of the effect of air pollution
on death among those with IHD.

PM2.5 concentrations used to compute the area-specific relative risks
were based on 1×1 kmgridmodelled background air pollution concen-
trations for 2014 (DEFRA, 2015) using the ADMS pollution dispersion
model. Further details are reported elsewhere (Ricardo Energy and
Environment, 2017) and the annual average air pollution has been
mapped at LSOA level and is presented in supplementary data Appendix
C. Modelled gridded values were mapped to provide an average expo-
sure for each LSOA. Annual average pollutant concentrations, x, at
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LSOA level are input into relative risk calculations, using the difference
between x (base case and alternative scenarios) and the UK population
weighted average concentration, μ. Relative risks are applied to all state
transitions needed to estimate impact. For example, for disease inci-
dence the relative risk of PM2.5 exposure would be calculated as:

RR incidenceð Þ ¼ RR PM2:5; incidenceð Þ x−μð Þ
=10 ð10Þ

Details of all relative risks used in themodel are provided in Table 1.

2.5.1. Scenarios modelled
To illustrate how the model may be used to derive estimates of the

effect of potential interventions that alter the concentration of PM2.5,
four simulation scenarios have been run, one with concentrations held
at baseline (here 2014) levels, and three with altered levels reflecting
theoretical interventions:

A) WHO: Compliance with World Health Organisation guidelines
(WHO, 2005) (i.e. ambient outdoor PM2.5 annual mean does
not exceed 10 μg/m3 – only affects LSOAs where PM2.5 N 10 μg/
m3)

B) NECD (National Emissions CeilingDirective): UK emission reduc-
tions in line with EU Directive 2016/2284/EU resulting in the
baseline concentration reducing by 3.6 μg/m3 across Greater
London (GLA, 2017)

C) No Anth: Complete removal of PM2.5 of anthropogenic origin.

An assumption is made that these interventions result in an instan-
taneous reduction in PM2.5 levels within effected LSOAS, taking place at
simulation initialisation (year zero). Throughout the simulation, PM2.5

levels remain static with time. The impact of each scenario's change in
air pollution exposure on mortality and IHD prevalence rates was then
estimated using results from the three scenariomodel runswith respect
to those in the base case scenario:

Δ IHD Prevalence ¼ Nscenario
diseased

Nscenario
population

−
Nbase case

diseased

Nbase case
population

ð11Þ

ΔMortality ¼ Nscenario
deaths

Nscenario
population

−
Nbase case

deaths

Nbase case
population

ð12Þ

In scenarios where PM2.5 emissions have reduced, a cessation lag is
applied to the relative risks associated with mortality. This accounts
for the fact that a reduction in PM2.5 doesn't lead to an immediate health
benefit. For all-cause mortality, we have used the recommended lag
from the US Environmental Protection Agency (US EPA, 2010). Whilst
there is some uncertainty in the lag structure, a smooth function is
used to reflect that 30% of the benefit of reduced PM2.5 occurs in the
first year, 50% over years 2 to 5 and 20% over years 6 to 20. In the case
of IHDmortality, an exponential decay curve is used, as informed by ev-
idence on smoking cessation (Lightwood and Glantz, 1997).

2.6. Computation and model outputs

The simulation software is written in Python v3.6 (Van Rossum and
Drake, 2011). Running annual Bernoulli trials for each of the 8 million
population of London is a relatively computational-intensive process,
generally requiring High Performance Computing (HPC) facilities to
allow parallel processing of the populations of multiple (typically 100)
LSOAs. The simulation for a typical LSOA produces a file of around
30 KB and takes around a minute to run for a 50-year simulation on a
2.9 GHz processor. This means that the simulations would take around
three and a half days for Greater London if performed without parallel
processing (longer for multiple policy scenarios). The model outputs a
database, which contains the annual health status of each individual
within the simulated population (both alive and dead). This data is
stored in a compressed comma separated values (‘.csv.gz’) file for each
LSOA. Parallel processing is again used to aggregate the data into age,
gender, deprivation decile and year stratified output files – 240 KB for
100 LSOAs. A post-processing script is used to aggregate and plot the re-
sults; further analyses can then be undertaken as required to compute
numbers of new cases of disease, the prevalent population, deaths,
and years of life lost by population group and year. Outputs may also
be processed in Geographical Information Systems (GIS) or statistical
programming software.

3. Results

We illustrate the use of the model by its application by simulating
the impact of air pollution on population heath in London, UK. Air pollu-
tion can be used as a marker of sustainable development, as measures
taken to achieve a low-carbon economy, such as reductions in transport
or industry impact on atmospheric emissions, and thus effect a reduc-
tion in air pollution, including climate modifying pollutants. Modelling
the population impact of changes in air pollution on health, can thus
be used to quantify the health co-benefits of the transition to a low car-
bon economy, and provide valuable insight for understanding where,
and to whom, to target policy interventions in order to reduce air
pollution-related morbidity and mortality. The base case is assumed to
be exposure to 2014 concentrations of PM2.5; three theoretical counter-
factual cases have been simulated as described in Section 2.5.1. In appli-
cation to particular policy assessments, the counterfactual would
usually be determined by assessing the corresponding change in con-
centrations that are likely to result for a particular policy using
emission-dispersion modelling or similar, but here we simulate several
PM2.5 reduction scenarios to illustrate the principle.

Fig. 2 demonstrates the application of the model showing how IHD
prevalence evolves over time under the base case scenario and also
the impact of reducing particulate air pollution on the resulting change
in IHD prevalence over time (as calculated using Eq. (11)). The results
are shown for the working age population (15–64) and are grouped
by gender and resident index of multiple deprivation (IMD). A 5-year
running mean is used to remove statistical anomalies from particular
years. The model results indicate that the removal of all anthropogenic
PM2.5 air pollution has a beneficial impact on disease prevalence for in-
dividuals of working age. The NECD scenario where PM2.5 is reduced by
3.6 μg/m3 across the whole of Greater London leads to a greater health
benefit than meeting the WHO guidelines of 10 μg/m3 (which only im-
pacts on the more polluted areas of the city). Greater benefits are
achieved for males then for females, which is due to the fact that
males have higher underlying disease prevalence rates than women
and so gain more from reduced pollution levels. The gradual improve-
ment over time is in part due to the cessation lag programmed into
the model but also because of the age demographics of London.
London has a fairly young population with the population pyramid
peaking at around 30 years of age. Prevalence increases as this age
group ages with the maximum prevalence benefit due to reducing air
pollution observed at around 2040. Maximal benefit is slightly earlier
for males than females, since on average males tend to contract disease
earlier. The results for deprivation follow a similar trend with the prev-
alence reduction peaking earlier for those living in more deprived areas
than those in less deprived areas. This is again due to people in less de-
prived areas typically developing disease later in life. It is noted that
prevalence in the base case run is higher in the less deprived group.
This is because this demographic group is generally older at model
initialisation. In Fig. 3, we showmodel results for the impact of reducing
PM2.5 on all-cause mortality rates. Similar trends are observed as with
the prevalence results, however, the more deprived population sub-
group now gains most. A result of the deprivation relative risks applied
within the model.



Fig. 2. Simulation results for IHD prevalence per 100 kworking age (15–64) population by calendar year (5-year runningmean): A) by sex for the base case scenario (PM2.5 concentrations
at 2014 level), B) the alternative scenarios – base case by sex, C) by deprivation for the base case scenario, D) the counterfactual scenarios – base case by deprivation.
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Figs. 4 and 5 show illustrative maps of the microsimulation predic-
tions for IHD prevalence and all-cause mortality (per 100,000 popula-
tion) under the base case scenario and also the change in rates after
removing anthropogenic air pollution emissions (No Anth scenario).
Maps for the other pollution reduction scenarios are provided in supple-
mentary data Appendix D. Results are averaged over the period
2018–2050 for Greater London with LSOA results aggregated to Local
Authority/borough level. Reductions in prevalence appear to be greatest
in central (more polluted) and more affluent parts of London (south
west). In these areas the average age of the population is toward the
higher end of 15–65, which means base prevalence rates tend to be
higher. Improvements in mortality rates are mainly focused toward
more central boroughs where the reduction in pollution is greatest.
Model results enable the impact of air pollution policy on social inequal-
ities to be considered.

4. Discussion

This paper describes the mathematical and computational frame-
work of the MicroEnv model and demonstrates its application to
London to support the analysis of the population health impact of poli-
cies aimed at improving environmental exposures. The general frame-
work may be adapted to cities across both developed and developing
contexts, where underpinning data is available. Such models have par-
ticular value in helping to identify policies that provide the greatest po-
tential benefit to health and health inequalities and might be used for
quantification of the likely co-benefits from policy changes in areas
such as transport, clean energy, waste management, and urban plan-
ning. We are currently developing the model to incorporate exposures
in both the indoor and outdoor environment, as well as from physical
activity to attempt to give a more integrated picture of the impacts on
population health of combined actions relating to achievement of SDG
goals.

Microsimulation is only one of a range of methods that might be
used for such modelling and has a number of advantages over other
methods. First, because it models the fate of individuals in the popula-
tion, there is almost unlimited flexibility in how the results can be ag-
gregated by population group, area or year. This has particular
advantagewhen it comes to testing the effect of policies targeted at spe-
cific population groups, perhaps in specific geographical locations or on
the basis of age or other demographics. It also allows assessment of var-
iations in impact with respect to socio-demographic and geographical
parameters as we have illustrated in this paper.

A second advantage, of particular importance for assessing health
benefits of policy, is the potential to integrate evidence on a range of ex-
posures and impacts including, for example, the outdoor and indoor en-
vironment as well as lifestyle behaviours, such as in travel behaviour
and diet. Although our first implementation has so far been limited to
outdoor air quality and deprivation, we are developing the model to
cover other forms of exposure in order to better assess the impact of
policies that affect a range of exposures, such as sectoral changes that
arise in the transition to a low carbon economy. An important advantage



Fig. 3. Simulation results for all-cause mortality rates per 100 k working age (15–64) population by calendar year (5-year running mean): A) by sex for the base case scenario (PM2.5

concentrations at 2014 level), B) the alternative scenarios – base case by sex, C) by deprivation for the base case scenario, D) the alternative scenarios – base case by deprivation.
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of microsimulation is the possibility to incorporate agent based and be-
havioural modelling. This may, for example, be used to help model the
distribution of the changes in patterns of behaviour and exposure in re-
sponse to policies relating to transport infrastructure or pricing.

Another advantage of our particular model is that it provides a
framework in which morbidity and mortality effects can be modelled
in an integrated way. This is particularly important for some outcomes,
including, as we illustrated, ischaemic heart disease morbidity, where
impacts on disease survival may influence the size of the prevalent pop-
ulation with diagnosed disease, and thus have implications for
healthcare provision and quality of life.

Microsimulation models, however, suffer from a common set of dis-
advantages (Schofield et al., 2018). They are data driven and so the pre-
dictions that they make are only as good as the data and the
assumptions that feed into them. Difficulties may arise if trying to
apply these types of methodologies to other countries or cities where
health and population data are not so readily available. Developing
countries may lack much of the necessary underlying data to support
the microsimulation approach. This modelling approach is more com-
putationally demanding than most, which not only slows the imple-
mentation of individual model runs but also limits the possibility of
undertaking Monte Carlo analysis as a way of helping to characterize
uncertainties in its outputs. Other methods can however be used to
evaluate uncertainty in large scale models such as microsimulation.
These include Global Sensitivity Analysis (Jaccard et al., 2018), Gaussian
Process Emulation and Polynomial Chaos Expansion (Rajabi, 2019). In-
creases in HPC capacity in the future may allow sensitivity studies to
be performed more easily (Jaccard et al., 2018). Moreover, because
microsimulation relies on simulating stochastic processes, the outputs
also reflect an element of random variation. These can be minimized
by increasing the size of the simulated population, thoughwith the pen-
alty of increased computational time.

4.1. Comparison with other models

Table 2 summarizes other published microsimulation models of
non-communicable diseases, which use a range ofmethods and risk fac-
tors. They include single state transitionmodels that modelmortality or
morbidity independently. Our model is set up in a similar way to the
IMPACTNCD model (Kypridemos et al., 2016), although the IMPACTNCD
model was primarily investigating screeningmethods as opposed to en-
vironmental exposures. Other models have the ability to model co-
morbidities that accumulate over time using aggregate health statistics
(Kooiker and Boshuizen, 2018; Lymer et al., 2016; Walker et al., 2011).

MicroEnv, along with the joint UK Health Forum, Imperial College
and Public Health England (UKHF-IC-PHE) model (Pimpin et al., 2018)
are some of the first models to incorporate air pollution as a risk factor
within a microsimulation model. There are several key differences be-
tween these models. The first, is that we use the GBD Results Tool to
infer missing/unknown health transition probabilities, whilst the
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Fig. 4. Illustration of Local Authority-level outputs for Greater London: IHD prevalence rates per 100 kworking age (15–64) population. A) Under the base case scenario, and B) the change
in IHD prevalence resulting from the removal of PM2.5 of anthropogenic origin. The results shown are averaged over the 2018–2050 modelling period.
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Fig. 5. Illustration of Local Authority-level outputs for Greater London: all-cause mortality rates per 100 k working age (15–64) population. A) Under the base case scenario, and B) the
change in all-cause mortality rates resulting from the removal of PM2.5 of anthropogenic origin. The results shown are averaged over the 2018–2050 modelling period.
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UKHF-IC-PHE model derives these using an in-house regression algo-
rithm. The second, is that our model considers prevalence in an inte-
grated manor within a multi-state model, as opposed to being
modelled independently.

Given that air pollution varies widely between locations and also
changes over time, a high spatial and temporal resolution is required
to adequately assess health impacts locally. MicroEnv is able to output
results at LSOA level whichmeans that it has the potential to be further
developed as a useful tool for local authorities as well as national gov-
ernment. The majority of other microsimulation models for non-
communicable diseases report results at the national level (see
Table 2), which restricts their application to national policy. The multi-
tude of population, socio-economic and health data available for the
UK, makes a high resolution analysis possible allowing the results to
be mapped using GIS. Other countries, particularly in the developing
Table 2
Microsimulation models.

Model Country Years Heath outputs

MicroEnv London, England 2015–2065 Multiple. IHD morbidity/mortality
IMPACT NCD England to 2030 Cardiovascular disease and mortality

FORESIGHT 53 European
countries

to 2030 Coronary heart disease, stroke, cancers

UKHF-IC-PHE England (local
authorities)

2015–2035 Asthma, chronic obstructive pulmonary
stroke, type 2 diabetes, lung cancer

Basu China & India 10 years Disability adjusted life years
NCDMod Australia to 2025 Multiple chronic diseases

POHEM-CVD Canada 2001-2021 Cardiovascular disease prevalence
DYNAMO-HIA Netherlands 1989-2011 Lung and larynx cancer, stroke, diabetes

disease, COPD
world, do not have this luxury (Basu et al., 2016) and assumptions
need to be made where detailed data is not available. The HPC used to
run MicroEnv allows the handling of large amounts of data, as well as
simulation over a long time frame with annual health calculations.

A challenge when projecting the future burden of disease is to ac-
count for the ways in which the calculations, risk factors (e.g. air pollu-
tion) and subjects (people) change with time. In the current version of
MicroEnv, the calculations (i.e. the health transition matrix for a person
of a particular age) are static over time. It is possible to change the all-
cause mortality probability to the ONS projection (up until 2062), as is
done in IMPACTNCD (Kypridemos et al., 2016), however, projections
for case fatality and incidence are not available andwould need to be es-
timated. Projections are also likely to have larger uncertainties for pre-
dictions made further into the future. We must also consider how the
confounding risk factors evolve over time. Birth and migration are
Environmental risk factors Reference

Air pollution –
Screening methods Kypridemos et al.

(2016)
Obesity (Body Mass Index
(BMI))

Webber et al.
(2014)

disease, coronary heart disease, Air pollutants: PM2.5, NO2 Pimpin et al. (2018)

Blood pressure Basu et al. (2016)
BMI, cholesterol, blood
pressure and others

Lymer et al. (2016)

BMI, cholesterol, blood
pressure and others

Manuel et al.
(2014)

, heart failure, coronary heart Smoking Kooiker and
Boshuizen (2018)
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factors that microsimulation models are able to take into account.
Whilst the majority of the models in Table 2 include births, only the
POHEM-CVD (Manuel et al., 2014) includes immigration and emigra-
tion. These factors may significantly affect the results of models, partic-
ularly at local levels. London, for example, has high levels of
immigration of people aged 20–30, whilst those above the age of 30
tend to move out of the city or to another city altogether (ONS, 2014).
5. Conclusions

The SDGs call for urgent action to combat climate change, reduce
population exposure to environmental hazards such as air pollution,
and to improve population health in urban environments. There are op-
portunities to select policies and developmental paths that will provide
both environmental improvement and optimise health co-benefits.
Modelling tools such as microsimulation have an important role in de-
termining the most cost-effective and impactful methods of achieving
such environmental and public health targets, enabling a range of sce-
narios to be evaluated for both health and sustainability outcomes. As
such, modelling is capable of helping to support the achievement of
SDGs, as well as evaluating other environmental strategies that help to
facilitate the transition to a low carbon economy.

We have described a microsimulation model that simulates the ef-
fects of environmental exposures onmortality andmorbidity in an inte-
grated manor. The framework is capable of quantifying the health
impact of multiple environmental risks at high spatial resolution. It is
thereforewell suited to assessing health impacts, and how these are dis-
tributed across different population demographics such as by gender or
deprivation. Its disadvantage is that it is computationally demanding
and therefore not readily adapted to being a rapid response decision-
support tool. However, the outputs generated by the model can be
used to inform policy development and in supporting healthy and sus-
tainable urban development in line with the ambitions of the SDGs.
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