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Abstract

Diapause in response to seasonality is an important model for rapid evolutionary adaptation that is 

highly genetically variable, and experiences strong natural selection. Forward genetic methods 

using various genomic and transcriptomic approaches have begun to characterize the genetic 

architecture and candidate genes underlying diapause evolution. Largely in parallel, reverse 

genetic studies have identified functional roles for candidate genes that may or may not be 

genetically variable. We illustrate the disconnect between the evolutionary and physiological 

literature using a suite of studies of the role of the circadian clock in diapause regulation. These 

extensive studies in two different disciplines provide excellent opportunities for integration, which 

should facilitate rapid progress in understanding both the regulation and evolution of diapause.

Introduction

Diapause, a form of dormancy in insects and other arthropods, is an adaptive and plastic 

phenotype that allows insects to persist in seasonally variable environments. Insects enter 

diapause in advance of unfavorable conditions and in response to predictive environmental 

cues (Box 1). Because it allows insects to persist and adapt to new environments, diapause 

has been a powerful model for understanding evolution by natural selection [1]. Moreover, 

natural populations often harbor ample genetic variation affecting both the capacity for and 

the timing of diapause (Box 1; [2,3]). This combination of strong selection and segregating 

genetic variation allows diapause to rapidly evolve over contemporary timescales, including 

in response to changing climates [4], developing agricultural practices [5], and during 
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biological invasions and range expansions [6]. Thus, genetics, selection and evolution of 

diapause informs several basic and applied topics, including the genetic architecture of rapid 

adaptation, responses to climate change, evolutionary physiology, and ecological genetics, 

thereby offering opportunities to uncover novel targets for pest control (Fig. 1).

Studying diapause has provided many important insights into adaptation to variable climates 

and how physiological plasticity is regulated in animals. Recently, rapid advances in “-

omics” technologies have led to exciting progress in understanding the genetic and 

physiological mechanisms of diapause regulation and evolution. Previous reviews discuss 

the physiological stages of diapause progression [7], the hormonal regulation of diapause 

[8], epigenetic regulation of diapause [9], and diapause energetics [10]. Here, we focus on 

recent studies of genetic variation in diapause, emphasizing the progress achieved by “-

omics” approaches. We also point out a continuing disconnect between forward genetic 

methods and reverse, functional genetics, using the role of the circadian clock in regulating 

diapause as an example. Combining these tools provides a powerful approach to better 

understand how diapause evolves, and to better leverage genetic variation to elucidate how 

this complex phenotype is regulated.

Genetic variation for diapause phenotypes over space and time

A rich history of studying genetic differentiation across latitudinal gradients (i.e., “clines”) 

provides an expansive view of how insects adapt to spatial environmental heterogeneity 

[11,12]. Clines in diapause incidence and/or annual timing (Box 1) have been described in 

hundreds of species and are among the most robust biogeographic trends in animals [3,13]. 

These clines are formed as geographic populations adapt to local conditions along seasonal 

gradients. Geographic variation in diapause phenotypes (Box 1) has often been leveraged to 

infer genetic architecture by crossing laboratory strains derived from different geographic 

populations [14,15]. Early studies often identified simple, nearly Mendelian factors 

underlying diapause variation. The advent of DNA sequencing and genetic tools enabled 

finer, molecular genetic dissection, particularly for a few well-studied and experimentally 

tractable organisms (Table 1). For example, Williams et al. [16] crossed geographically-

derived lines of Drosophila melanogaster and identified a locus of major effect for diapause 

incidence. Deletion mapping further resolved the locus to variants in the insulin-regulated 

phosphatidylinositol 3-kinase (PI3-kinase) gene, Dp110, which also contributed to diapause 

differences among geographically disparate populations. Subsequent tests for associations 

between the variants and gene expression were equivocal, but the identification of Dp110 
was exciting because it supported years of comparative endocrinology suggesting a role for 

insulin signaling in diapause. Paaby et al. [17] found similar clines in alleles of the insulin-

like receptor (InR) among D. melanogaster populations from both North America and 

Australia, though alleles were only indirectly related to diapause.

Schmidt et al. [18] also leveraged naturally segregating geographic variation, performing 

Quantitative Trait Locus (QTL) analysis and fine-mapping by crossing lines of D. 
melanogaster derived from geographic populations that differed in diapause incidence. Their 

experiments identified a locus of major effect, couch potato (cpo), which encodes an RNA 

binding protein that is highly expressed in the ring gland, the primary endocrine tissue of D. 
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melanogaster. Polymorphisms at multiple SNPs were correlated with latitude, which also 

predicts diapause incidence in North American D. melanogaster. Furthermore, 

polymorphisms in cpo also change seasonally in synchrony with diapause expression [19]. 

Thus, the frequency of cpo polymorphisms is associated with diapause in both space (clinal 

variation) and time (seasonal variation). Higher levels of cpo expression are also associated 

with diapause maintenance in the Northern house mosquito, Culex pipiens, though this is the 

opposite relationship to that observed in D. melanogaster [20].

Associations between diapause and polymorphisms in genes involved in the circadian clock 

(Fig. 2) have also been uncovered using both targeted and untargeted approaches. Again 

studying different populations of D. melanogaster, Tauber et al. [21] identified genetic 

variants of timeless in isofemale lines varying in diapause incidence. They identified a 

recently derived allele (ls-tim) encoding an additional 23 N-terminal amino acids relative to 

the ancestral (s-tim) allele. The derived ls-tim allele has a weaker physical interaction with 

the circadian light receptor Cryptochrome1 (CRY1) than the ancestral timeless allele (s-tim). 

Thus, the ls-tim allele is predicted to attenuate photosensitivy and promote entry into 

diapause even under long photoperiods [22]. The allele exhibits a latitudinal cline across 

North America coincident with the cline in diapause incidence [23,24]. Surprisingly, in 

Europe, the ls-tim allele frequency decreases with increasing latitude, but this is likely due to 

the recent spread of the allele from Italy to Scandinavia [25]. Other taxa exhibit geographic 

variation in tim sequence polymorphism [26] and expression levels [27]. Furthermore, 

polymorphism in another core circadian clock gene, period, also varies with latitude and is 

associated with diapause variation in D. melanogaster [28], the European corn borer [29], 

the parasitic wasp Nasonia vitripennis [30], and the speckled wood butterfly, Pararge aegeria 
[26]. Thus, studies of geographic variation provide substantial evidence for a link between 

clock gene polymorphisms and diapause (see “The role of the circadian clock” section 

below).

Quantitative trait locus (QTL) analyses of crosses between seasonal populations of the 

European corn borer, Ostrinia nubilalis [31], geographic populations of the pitcher plant 

mosquito, Wyeomyia smithii [32], and members of the Culex pipiens complex [33] also 

identified loci of major effect on diapause termination and diapause incidence. These results 

suggest that major effect loci may often segregate in natural populations. However, QTL 

analyses are typically unable to detect and quantify variation accounted for by loci of small 

effect. Furthermore, crosses between isogenic lines explore only a subset of variation 

segregating in natural populations, and thus may fail to detect polygenic variation. Recent 

studies using genome-wide association techniques suggest that segregating, polygenic 

variation may indeed be abundant (see Table 1). For example, a whole genome resequening 

study in the speckled wood butterfly [26] used Genome Wide Association (GWA) analysis 

to show that many loci of small effect must contribute to population differences in diapause 

incidence alongside several loci of major effect. A study of temperature-sensitive diapause 

termination in the apple maggot fly, Rhagoletis pomonella, also used GWA with reduced 

representation genome resequencing [34]. Despite finding clear evidence for heritable 

genetic variation, there was no evidence for loci of major effect contributing to that 

variation, thus supporting a polygenic model. As diapause phenotypes are highly variable in 

natural populations [3], it seems likely that loci of minor effect play a critical role in the 
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evolution of diapause phenotypes, although the relative influence of loci of major effect may 

vary across different species.

Transcriptomic variation

Many studies in a broad range of insects and other invertebrates have compared the 

transcriptomes of diapausing and nondiapausing individuals, but typically in a single 

population of a single species (Table 1) [35,36]. Observations of similar patterns of gene 

expression during diapause across species, first through studies on single genes [37], then 

through transcriptomics, led to the proposal that particular genes [38] or signaling pathways 

[39] may represent a common “genetic toolkit” for diapause due to evolutionary 

convergence. A meta-analysis of single-species diapause transcriptomic studies indeed 

revealed that a common set of transcripts (including circadian clock genes) are differentially 

regulated during diapause, consistent with convergent evolution rather than shared 

evolutionary history [35]. Mechanisms that regulate gene expression (DNA methylation, 

histone modifications and/or individual miRNAs) have also been implicated in diapause 

regulation in various insects [9], but again, most of this work focuses on single populations 

of diapausing and nondiapausing species, and there is limited evidence that the same 

mechanisms are consistently used to regulate diapause across species.

In contrast to the large number of single population studies, only three studies have 

compared the diapause transcriptomes of genetically distinct populations of the same 

species. The first compared strains of the European corn borer (Ostrinia nubilalis) [40]; the 

second compared apple-infesting and hawthorn-infesting populations of R. pomonella [41]; 

and the third compared the diapause transcriptome of southern and northern populations of 

Wyeomyia smithii [42]. The goal of all three studies was to identify transcriptional changes 

contributing to population-level differences in diapause timing (specifically, diapause 

termination), and to link those changes to genetic variants.

An important advantage of comparative transcriptomic studies is the opportunity to 

simultaneously examine genetic variation in transcript expression and transcript sequence. 

Combining transcriptome comparisons with QTL studies is also particularly powerful. For 

example, all three comparative transcriptome studies identified polymorphisms or gene 

expression differences potentially related to differences in diapause termination. In the 

European corn borer, 48 transcripts with either fixed amino acid differences or differential 

expression during diapause termination among strains mapped to a chromosomal 

rearrangement previously identified as a major genetic factor influencing diapause 

termination [40]. Several of these genes are involved in insulin signaling and the circadian 

clock, which have previously been implicated in diapause regulation as discussed above. 

Meyers et al. [41] found between-population expression differences in insulin and Wnt 

signaling, suggesting that these pathways contribute to the early spring emergence of apple-

infesting flies relative to the hawthorn-infesting flies. Finally, Emerson et al. [42] identified a 

transcript designated WsPpdrg1 that was differentially expressed among geographic 

populations during diapause termination. WsPpdrg1 maps to a major QTL affecting critical 

photoperiod (CPP; Box 1) and is hypothesized to be involved in photoreception or signal 

transduction based on its similarity to D. melanogaster proteins. A cautionary note relevant 
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to all of these studies is that diapause transcriptomes may differ substantially between 

laboratory and ecologically realistic field conditions [36].

The intersection of evolutionary genetics and functional studies: the role of the circadian 
clock

Over eighty years ago the German botanist Erwin Bünning hypothesized that the same 

mechanism that organisms use to measure daily (circadian) time might also be used to 

measure seasonal time (photoperiodic) and thereby initiate responses such as diapause [43]. 

With the advent of modern molecular genetics, evidence supporting a role for circadian 

clock genes in the evolution of photoperiodism comes from: 1) screens of geographic or 

population-level genetic variation, 2) gene expression assays, and 3) genetic knockdown to 

evaluate functional consequences. In insects, the circadian clock is composed of multiple 

feedback loops controlled by cycling levels of key signaling proteins and transcription 

factors (Fig. 2). Studies of genetic variation, including those detailed above, suggest that 

diapause is associated with variants of the core clock genes period and timeless [21,26]. 

Variation in clock gene expression has been linked to natural variation in diapause [27,40]. 

Furthermore, knocking down clock gene transcripts with RNA interference (dsRNAi) also 

suggests a functional link between the clock and photoperiodic diapause. For example, 

suppressing period causes multiple species of insects to either delay or avert diapause [44–

47].

Nevertheless, the mechanistic link between the clock and the photoperiodic timer remains 

unresolved. Clock genes have been linked to a range of physiological processes including 

metabolism and hormonal signaling (Juvenile hormone in adult insects; [45,47,48]). 

However, techniques such as transcriptome-wide screens have not identified pathways from 

photoperiod perception to the generation of the diapause phenotype. Additionally, unbiased, 

genome-wide methods often identify variants with no experimentally determined 

connections to the circadian clock e.g., [18,26,42]. Emerson et al. [49] noted that it is 

difficult to determine whether core circadian genes influence seasonal responses via their 

role in the circadian clock and perception of daylength or whether they pleiotropically 

regulate genes outside of the clock to generate diapause phenotypes. However, in the 

intervening decade since that review, we have yet to determine how clock gene variants 

mechanistically influence diapause (but see [50], though the photoperiodic phenotype is not 

diapause).

Opportunities for future progress

We suggest that greater integration among what have previously been largely parallel efforts 

in functional genetics, transcriptomics, and evolutionary genomics would enable more rapid 

progress towards identifying the molecular regulators of diapause and the genetic basis of 

diapause evolution. Table 1 illustrates that with a few exceptions, most ‘-omics’ studies of 

diapause have been carried out in separate species. Transcriptomics of single populations of 

a single species are by far the most common. These single population transcriptomic 

comparisons (diapause to nondiapause) have uncovered similar molecular regulators across 

species. However, comparative transcriptomic approaches leveraging well-characterized 
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intra-specific variation in diapause phenotypes (e.g., [40–42]) provide a stronger connection 

between candidate genes and diapause phenotypes.

Likewise, forward genetic methods such as GWAS or QTL analysis followed by reverse 

genetics (e.g., generation of null mutants or RNAi) provide more robust evidence for the 

roles of candidate genes in diapause regulation. The studies employing genetic screens 

followed by deletion mapping described above illustrate the power of these combined 

approaches in D. melanogaster [16,18]. In principle, reverse genetics (e.g., creating loss of 

function variants) followed by transcriptomics could also identify novel mechanisms. 

Genome sequencing and de novo assembly are increasingly accessible (e.g., [26]), RNAi has 

now been implemented in many species, and transgenic approaches show great promise in 

non-model systems (e.g., [51]) and are now becoming the preferred approach in some well-

established study species [52]. We anticipate that these advances will enable powerful 

integrative approaches to rapidly advance our understanding of how diapause is regulated 

and evolves in species with genetically variable diapause responses. These advances will 

contribute significantly to broader issues such as determining the genetic architecture of 

rapid adaptation, evolutionary responses to climate change, and the identification of novel 

targets for pest control (Fig. 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Insect diapause is an important model for evolution by natural selection.

• Genomics-enabled methods are now elucidating genetic architecture and 

candidate genes.

• Forward and reverse genetic studies of diapause are typically applied in 

parallel.

• Combining these approaches will facilitate both evolutionary and 

physiological studies.

• Parallel and integrative efforts are illustrated using studies of the circadian 

clock.
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Box 1.

Diapause concepts and terms

Diapause:

A physiologically-dynamic and hormonally-controlled state of decelerated or arrested 

morphological development that allows insects to survive unfavorable conditions. 

Diapause is typically induced/terminated by environmental stimuli (e.g., photoperiod or 

temperature), though some diapause responses may appear functionally obligate in the 

field.

Phases of diapause:

Different eco-physiological states through which diapausing organisms progress (Fig. 

B1). They are typically described as:

1. Initiation/Induction:

The period before an insect enters diapause, characterized by some combination (but not 

always all) of:

a. assessing environmental conditions which may be mediated through 

measuring daylength via the circadian clock

b. regulating energetic resources (increased feeding, decreased insulin signaling/

PI3K and upregulating fatty acid synthesis)

c. upregulating stress responses (e.g., HSPs [pictured], FOXO activity, 

cryoprotectants, immune responses)

d. regulating hormone levels, e.g., prothoracicotropic hormone (PTTH; larval 

and pupal diapause), Ecdysone (20HE; pupal diapause) or Juvenile Hormone 

(JH; adult diapause)

e. seeking out protected overwintering sites

2. Maintenance:

The period during which the organism is unresponsive to changes in the environment. 

This usually characterized by cell cycle arrest and decreases in transcription, cellular 

respiration and metabolism, allowing organisms to conserve energy reserves.

3. Termination:

The period during which the organism becomes competent to resume normal growth, 

development and activity in response to favorable environmental conditions. This is 

generally characterized by increases in transcription, cellular respiration, metabolism, and 

hormonal signaling.

Population-level diapause metrics:

Genetic, physiological and ecological studies generally focus on the photoperiodic 

initiation (more common) or termination (less common) of diapause because it is closely-

tied to seasonal timing and phenology. Two common metrics include:
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1. Diapause incidence:

The proportion of individuals that enter diapause under unambiguous, diapause-inducing 

conditions (e.g., short days and/or low temperatures).

2. Diapause timing:

The seasonal timing of diapause initiation or termination.

a. Timing is also inferred by measuring Critical photoperiod (CPP) in insects 

with photoperiodic diapause: The number of hours of light in a 24 hour Light/

Dark cycle that will cause 50% of the population to enter or terminate 

diapause (may be inadequate in some cases, see [1])

Both diapause incidence and timing vary across latitudinal and altitudinal clines, e.g., 

CPP and diapause incidence are typically positively correlated with latitude and altitude.

1. Saunders DS: Insect clocks: Elsevier; 2002.
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Figure 1. 
Overview of experimental approaches investigating diapause genetics and evolution (A), 

potential future directions (B), and relevance of diapause genetics and evolution to broader 

ecological and evolutionary questions (C). Panel A highlights many ways in which genetic 

variation and plasticity are evaluated. Studies analyze genetic variation in diapause by first 

documenting geographic variation in diapause phenotypes. Crossing populations with 

divergent phenotypes can then allow researchers to identify the genetic variants that underlie 

the observed phenotypic variation. Additionally, population genetics & genomics can be 

used to identify alleles that show coincident patterns of geographic variation. Alternatively, 

many studies explore the genetic regulation of canalized plasticity in the diapause response 

by exposing experimental cohorts of a single population to diapause-inducing and diapause-

averting cues, and measuring differences in gene expression (RNAseq/microarrays) or 

determining how manipulating the level of a transcript of interest (RNAi) or the genetic 

background (complementation) influences the diapause response. Panel B highlights 

potential methods that are or can be used to identify genetic factors affecting diapause 

among and within populations, with the suggestion that combining approaches provides a 

particularly strong basis for identifying causal genetic factors. Panel C highlights the 

potential of understanding the regulation and evolution of diapause to inform research 

relating to several critical biological topics.
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Figure 2. 
The structure of the insect circadian clock in mosquitoes and other insects. The positive 

transcription factors CLOCK (CLK) and CYCLE (CYC) regulate the expression of the core 

clock genes, period (per), timeless (tim) and cryptochrome2 (cry2), whose respective 

proteins inhibit the action of CLK and CYC, thereby repressing their own transcription. The 

TIM protein is degraded by CRY1 in the presence of light (Adapted from [53]).
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Figure B1. 
Phases of diapause development. In temperate environments diapause initiation, 

maintenance, and termination typically take place in the fall, winter, and spring, respectively.
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Table 1.

List of studies by species that apply various approaches that fall under the umbrellas of forward genetic 

approaches (unbiased screens for genetic variation) and reverse genetic or targeted approaches (focusing on a 

candidate gene or genes). Organisms studied using four or more approaches are listed in bold. With the 

exception of D. melanogaster and C. pipiens, most species have been studied using only one or two 

approaches. Moreover, single-species transcriptomics has been the most liberally applied approach. 

*Reference numbers refer to references listed in supplemental table S1, not to references in the main text.

Class of 
Approach

Forward 
(untargeted)

Genetic Reverse Genetic or targeted

Approach GENETIC 
MAPPING 
(line 
crossing)

GENETIC 
ASSOCIATION 
(outbred)

SINGLE 
POPULATION 
TRANSCRIPTOMICS

COMPARATIVE 
TRANSCRIPTOMICS

REGULATION 
GENOMICS

MANIPULATIVE 
FUNCTIONAL 
GENETICS

TARGET 
GENE 
VARIATION

Questions/
Goals

candidate 
genes; 
genetic 
architecture

candidate genes; 
genetic 
architecture

Transcriptional basis Genetic variation in 
transcription

regulatory 
regions or 
molecules

target gene 
functional roles

targeted 
associations 
with 
phenotype or 
geography

Study 
organism

D. 
Melanogaster

D. melanogaster D. melanogaster R. pomonella C. pipiens D. melanogaster D. 
melanogaster

C. pipiens R. pomone11a C. pipiens O. nubilalis S. crassipalpis C. pipiens O. nubilalis

O. nubilalis P. aegeria R. pomonella W. smithii C. costata N. vitripennis

W. smithii Ae. albopictus S. crassipalpis

B. minax R. pedestris

D. antiqua M. siamensis

S. crassipalis

D. montana

C. costata

M. rotunda

A. gifuensis

D. antiqua

B. mori

T. diversipes

H. cunea

References* 1 – 4 5 – 7 8 – 22 23 – 25 26 – 27 28 – 32 33 – 35
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