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Abstract

Myocardial interstitial fibrosis (MIF) is a histological hallmark of several cardiac diseases that 

alter myocardial architecture and function and are associated with progression to heart failure. 

MIF is a diffuse and patchy process, appearing as a combination of interstitial microscars, 

perivascular collagen fiber deposition, and increased thickness of mysial collagen strands. 

Although MIF arises mainly because of alterations in fibrillar collagen turnover leading to 

collagen fiber accumulation, there are also alterations in other nonfibrillar extracellular matrix 

components, such as fibronectin and matricellular proteins. Furthermore, in addition to an excess 

of collagen, qualitative changes in collagen fibers also contribute to the detrimental impact of MIF. 

In this part 3 of a 4-part review series, we review the evidence on the complex mechanisms leading 

to MIF, as well as its contribution to systolic and diastolic cardiac dysfunction and impaired 

clinical outcomes in patients with nonischemic heart disease.
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As we have described previously in this JACC review series, the myocardial interstitium is 

the cardiac tissue compartment that contains stromal cells and is supported by a complex 

extracellular matrix (ECM) composed of a wide array of molecules that include structural 

proteins (e.g., collagens and elastins) and nonstructural protein-sugar composites 

(glycoproteins and proteoglycans) and glycosaminoglycans (e.g., hyaluronan), as well as a 

large reservoir of bioactive signaling molecules (1,2). The ECM is not a passive entity but, 

rather, a complex and dynamic microenvironment that functions in a highly orchestrated 

way, providing structural integrity, assisting in force transmission throughout the cardiac 

cycle, acting as a signaling medium for communication between cells, and executing the 

repair response after cardiac injury (1–3). However, biomechanical stress imposed on the 

heart by ischemic and nonischemic injuries can lead to alterations of the cardiac ECM, 

which, in conjunction with other changes, lead to remodeling of the myocardial structure 

and subsequent alterations in cardiac function that are important in the progression to heart 

failure (HF) (4).

From a general point of view, the major alterations in the ECM seen in HF are due to 

disturbances in collagen turnover (i.e., the balance between the generation and deposition of 

collagen type I and III fibers and the degradation and removal of these fibers) that, in turn, 

result in changes in the quantity, quality, and organization of the collagen network (4,5). For 

instance, when the generation and deposition of collagen fibers predominate over their 

degradation and removal, the result is excessive collagen fiber deposition leading to either 

focal (e.g., post-infarct scar) or diffuse (e.g., interstitial) myocardial fibrosis. On the 

contrary, when collagen fiber degradation and removal predominate over generation and 

deposition, the disruption and loss of the physiologic collagen scaffold of the perimysium 

and the endomysium ensue. It is likely that alterations of the collagen network in the failing 

human heart are dynamic and, thus, may coexist in a single cardiac disease (4–6) (Table 1). 

This review article will focus on nonischemic cardiac diseases, particularly hypertensive 

heart disease, aortic stenosis, diabetic cardiomyopathy, and hypertrophic cardiomyopathy, in 

which myocardial interstitial fibrosis (MIF) arises as the major alteration in the ventricular 

ECM. The role of fibrosis and the ECM in ischemic heart disease is reviewed in detail in the 

fourth article in this JACC review series.

HISTOLOGICAL BASIS OF MIF

MIF can be defined as excessive collagen deposition that distorts the myocardial interstitial 

architecture and is quantitatively characterized by an increase of the percentage of total 

myocardial tissue occupied by collagen fibers (or collagen volume fraction), as determined 

in myocardial samples with collagen-specific staining (7). Therefore, MIF is a common 

finding in patients with HF with nonischemic cardiac diseases such as hypertensive heart 

disease or diabetic cardiomyopathy (8), aortic stenosis (9), hypertrophic cardiomyopathy 

(10), and nonischemic dilated cardiomyopathy (11). Of note, diabetes is associated with 
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increased MIF in patients with other cardiac conditions such as hypertensive heart disease 

(8) and aortic stenosis (12).

HISTOLOGICAL TYPES OF MIF

An excess of collagen deposition may appear as microscars that are typical of reparative 

MIF. Alternatively, MIF may appear as thick fibrotic sheaths located in the perivascular 

space around intramural coronary arteries and arterioles or as thick bands surrounding the 

cardiac muscle bundles (i.e., perimysium) and individual cardiomyocytes (i.e., endomysium) 

that are typical of reactive MIF (13) (Figure 1). It is currently unclear if these 2 histological 

types of MIF represent different entities (because they coexist in most patients) or if they 

represent different evolutionary stages of the disease. For instance, recent data obtained in 

patients with hypertrophic cardiomyopathy suggest that in the initial stages, there is a 

predominance of perivascular, perimysial, and endomysial deposits and that, with disease 

progression, fibrosis appears predominantly as replacement scars (14). Although MIF is 

patchy, the extent of fibrous deposits increases from the outer to the inner third of the 

ventricular free wall in patients with hypertensive heart disease, aortic stenosis, and 

hypertrophic cardiomyopathy (15,16). This is probably related to the transmural pressure 

gradient, wall stress, and coronary micro-circulation alterations causing relative endocardial 

ischemia.

COMPOSITION AND ORGANIZATION OF MIF

The available evidence suggests that beyond the extent of fibrous deposits, the collagen 

composition of the fibers and their physicochemical properties are also relevant in MIF. For 

instance, in HF due to hypertensive heart disease (17) or aortic stenosis (18), the ratio of 

collagen type I to type III is abnormally increased due to an excess of collagen type I fibers, 

whereas in diabetic cardiomyopathy, there is an excess of collagen type III over type I (9), 

with no differences between the 2 types of collagen in hypertrophic cardiomyopathy (19).

The insolubility, resistance to degradation, and stiffness of collagen fibers depend on the 

degree of intermolecular covalent linkage (i.e., cross-linking) among their constitutive fibrils 

(20). The oxidation of specific collagen lysines by enzymes of the lysyl oxidase (LOX) 

family, acting in concert with members of the lysyl hydroxylase and transglutaminase 

families, is a major mechanism of collagen cross-linking (21). A second type of collagen 

cross-linking implies glycation of lysine residues by advanced glycation end products 

(AGEs) (21). Whereas increased myocardial expression of LOX has been reported in 

patients with HF with hypertensive heart disease (22) and aortic stenosis (23), accumulation 

of AGEs has been found in the myocardium of patients with HF with diabetic 

cardiomyopathy (24). Of note, increased collagen cross-linking (assessed as an increased 

ratio of insoluble to soluble collagen), in association with increased LOX, has been reported 

in the myocardium of patients with HF due to hypertensive heart disease (25), namely, in 

those with HF with preserved ejection fraction (HFpEF) (22,26) and aortic stenosis (23).
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HISTOMOLECULAR HETEROGENEITY OF MIF

Our appreciation of the histomolecular heterogeneity of MIF has been advanced by findings 

from a recent study (27) showing that both the extent of collagen deposition and the degree 

of collagen cross-linking of deposited collagen allow the identification of diverse MIF 

phenotypes in patients with HF attributable to hypertensive heart disease. Using this 

approach, 4 subgroups of patients were identified: those with moderate deposition and 

normal cross-linking, severe deposition and normal cross-linking, moderate deposition and 

increased cross-linking, and severe deposition and increased cross-linking. Of clinical 

relevance, the pulmonary capillary wedge pressure, levels of the amino-terminal pro-peptide 

of brain natriuretic peptide, and risk of first hospitalization for HF after enrollment or 

cardiovascular death all showed a progressive and statistically significant increase (i.e., 

worsening) from the first to the last subgroup, with the greatest risk seen in patients with 

severe deposition of highly cross-linked fibers (27). Further studies are required to ascertain 

whether this heterogeneity is also present in patients with other nonischemic cardiac 

conditions where MIF can arise.

CELLULAR AND MOLECULAR MECHANISMS OF MYOCARDIAL 

INTERSTITIAL FIBROSIS

The mechanisms and pathways underlying the disturbances in turnover of cardiac fibrillar 

collagen leading to organ and tissue fibrosis in general (28) and MIF in particular (29,30) 

were recently reviewed in detail; therefore, a brief overview of the key steps of the fibrotic 

process is provided here (Central Illustration).

INITIATION OF THE FIBROTIC PROCESS

Cardiomyocyte death is often the triggering event responsible for the initiation of reparative 

MIF (31). The resulting tissue damage is associated with an inflammatory response, in 

which local immune cells (mainly macrophages) become activated, and diverse sets of blood 

cells enter the affected sites of injury. The local and invading immune cells produce a large 

variety of biologically active soluble mediators (i.e., cytokines and chemokines) that lead to 

a local activation of mesenchymal cells (namely, fibroblasts), which have the capacity to 

produce fibrillar collagen and other ECM molecules and to further increase the production 

of proinflammatory cytokines, chemokines, and growth factors. In reactive MIF, varied 

stimuli may trigger fibrosis in the absence of cell death through the activation of a diversity 

of fibrotic signaling pathways in mesenchymal cells, including mechanical stress associated 

with pressure overload in hypertensive heart disease and aortic stenosis (32,33), defects 

imparted by the various causal mutations on sarcomere structure and functions in 

hypertrophic cardiomyopathy (34), metabolic injury associated with hyperglycemia in 

diabetic cardiomyopathy (35), or coronary microvascular endothelial inflammation in 

HFpEF (36).

Cardiac fibroblasts express a range of innate immunity pattern-recognition receptors that are 

stimulated by a host of different damage-associated molecular patterns (DAMPs) that are 

up-regulated with injury (37). Damage-associated molecular patterns include intracellular 
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molecules released by dying cells (i.e., heat shock proteins), prionflammatory cytokines 

(i.e., interleukin 1α), ECM molecules up-regulated in response to injury (i.e., fibronectin), or 

molecules modified by a pathological environment (i.e., AGEs). When activated, fibroblasts 

proliferate and differentiate into a secretory phenotype, the myofibroblast, with combined 

ultrastructural and phenotypic characteristics of smooth muscle cells acquired through 

formation of contractile stress fibers and the de novo expression of α-smooth muscle actin, 

as well as with an extensive endoplasmic reticulum, a feature of synthetically active 

fibroblasts (38). In addition, cardiac fibroblasts present membrane receptors for a number of 

neurohumoral factors, cytokines, and growth factors that regulate signaling pathways. They 

also express a wide range of ion channels that govern differing ion transport pathways and 

whose function may be modified by pro-fibrotic factors; for example, angiotensin II-

mediated calcium entry facilitates fibroblast extracellular signal-related kinase (ERK) 

phosphorylation and activation, which enhances fibroblast proliferation (39). Moreover, 

cardiac fibroblasts have 2 classes of cell surface receptors— integrins and discoidin domain 

receptors—which mediate mechanosensing and fibroblast interactions with the ECM, 

resulting in stimulation of multiple cellular responses, including differentiation into 

myofibroblasts, migration, and proliferation (40).

EXECUTION OF THE FIBROTIC PROCESS

The myofibroblast’s profibrotic secretome consists of molecules required to alter 

extracellular fibrillar collagen turnover and facilitate MIF (41), as well as autocrine and 

paracrine factors that further simulate their proliferation and metabolic activity, perpetuating 

fibro- genesis in the injured myocardium (42). Among the best-known proteins secreted by 

the myofibroblast are procollagen types I and III precursors and enzymes that directly 

intervene in the extracellular synthesis, deposition, and degradation of collagen type I and III 

fibers (43). For instance, the enzymes procollagen type I amino-terminal proteinase (also 

known as A disintegrin and metalloproteinase with thrombospondin motifs 2 [ADAMTS2]) 

and procollagen type I carboxy-terminal proteinase, or PCP (also termed bone 

morphogenetic protein-1) cleave the terminal pro-peptides of the procollagen precursor 

secreted by the myofibroblast, converting it into a mature fibril-forming collagen molecule. 

Subsequently, the enzymes of the LOX family catalyze the formation of covalent bonds 

between polypeptide chains of adjacent fibrils (i.e., cross-links), forming the final collagen-

type fiber, which is deposited in the myocardium. On the other hand, the enzyme matrix 

metalloproteinase (MMP) 1 initiates the degradation of collagen molecules within fibers, 

which results in 2 peptides: a small carboxy-terminal telopeptide that is released into the 

blood stream and a large telopeptide that is further degraded by MMP-2 and MMP-9 to final 

fragmented peptides termed matrikines. In conditions of MIF, the fibrogenic PCP/LOX axis 

predominates over the fibrolytic MMP-mediated axis.

Myofibroblasts also contribute to the pro-fibrotic effects of the local angiotensin system. In 

particular, the fibrogenic axis, comprising the angiotensin-converting enzyme (ACE)/

angiotensin II/angiotensin type 1 receptor, represents the most upstream signal that 

stimulates procollagen type I and III synthesis and secretion by myofibroblasts (42). This 

axis is mediated through the downstream transforming growth factor (TGF)-β/Smad 

pathways, and in conditions of MIF, it predominates over a counter-regulatory, fibrolytic 
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ACE2/angiotensin-(1–7)/Mas receptor axis, where ACE2-based hydrolysis of angiotensin II 

leads to Ang-(1–7) formation. Ang-(1–7)/Mas receptor signaling induces myofibroblast 

apoptosis through inhibition of antiapoptotic proteins (42). Finally, the myofibroblast also 

secretes other ECM macromolecules, such as the nonstructural matricellular protein 

osteopontin and the structural glycoprotein fibronectin, which play an important role in the 

regulation of MIF (44). For instance, it has been reported that an excess of myocardial 

osteopontin is associated with increased LOX, insoluble collagen, collagen type I deposition, 

and left ventricular (LV) stiffness and filling pressures in patients with HF attributable to 

hypertensive heart disease (45). Because osteopontin up-regulates LOX expression and 

activity in human cardiac fibroblasts (45), the possibility emerges that this matricellular 

protein is involved in MIF through the control of LOX-mediated cross-linking of collagen 

type I, thus leading to degradation-resistant collagen and LV stiffening. On the other hand, it 

has been shown that the inhibition of fibronectin polymerization or fibronectin gene 

expression attenuates pathological properties of myofibroblasts in vitro, as well as fibrillar 

collagen gene expression and collagen fiber deposition in in vivo models of pressure 

overload (46).

MODULATION OF THE FIBROTIC PROCESS

Although there is experimental evidence supporting myofibroblasts as the major effectors of 

detrimental MIF in pressure overload-induced fibrosis (47), recent experimental data suggest 

that they may also play a protective role by suppressing cardiomyocyte injury and 

macrophage-driven inflammation in the pressure-overloaded heart through Smad3-mediated 

pathways (48). This functional diversity of myofibroblasts may reflect the phenotypic 

heterogeneity of cardiac interstitial fibroblasts, which is relevant in ever-changing 

microenvironments, such as those leading to MIF (2). On the other hand, other cell types 

beyond fibroblasts and myofibroblasts are also implicated in MIF (e.g., M2 macrophages, 

mast cells, lymphocytes, cardiomyocytes, and vascular cells). For example, it has been 

shown that monocyte-derived C-C chemokine receptor 2 (CCR2+) macrophages infiltrate the 

heart early during pressure overload in mice and that blocking this response, either 

pharmacologically or with antibody-mediated CCR2+ monocyte depletion, attenuates MIF 

and LV remodeling and dysfunction (49).

As demonstrated in animal models and human biopsy studies, with aging, not only does the 

production of fibrillar collagen increase, but collagen degradation also becomes less 

effective (50). Fibrillar collagen processing and maturation are also altered, and cross-

linking appears to increase (50). The triggers for fibrosis in the aging heart are manifold 

(51,52). In response to cardiomyocyte injury and cell loss, replacement fibrosis may be seen. 

At the same time, with ongoing inflammation and age-dependent increases in oxidative 

stress, reactive fibrosis may occur. Therefore, age-dependent MIF will usually develop 

alongside MIF in response to cardiac injury, which complicates the understanding of what 

causes and then perpetuates sustained fibrotic processes.

Finally, sex-dependent differences have been found in MIF under conditions of pressure 

overload due to aortic stenosis (53,54), with male patients having higher expression of 

collagen types I and III than female patients (54). In this context, recent experimental studies 
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show that the mechanism underlying the sex-specific regulation of collagen I and III in the 

heart appears to involve 17β-estradiol- mediated differential estrogen receptor (ERa and 

ERb) signaling in cardiac fibroblasts (55). On the other hand, androgen deficiency can also 

contribute to excessive MIF after cardiac injury (56).

CLINICAL CONSEQUENCES OF MIF

MIF makes an important contribution to LV dysfunction and a number of other cardiac 

complications in patients with HF, thus contributing to poor outcomes as reviewed in the 

following sections (57) (Central Illustration).

LV DYSFUNCTION AND HF

MIF, assessed either histologically or by cardiac magnetic resonance (CMR) imaging, is 

associated with LV stiffness and diastolic dysfunction in patients with hypertensive heart 

disease (58), aortic stenosis (18), hypertrophic cardiomyopathy (59), and HFpEF (22,60).

Interestingly, the effect of excess collagen on LV function is modulated by changes in 

collagen quality. For instance, it has been shown that increased collagen cross-linking results 

in stiffer fibrous tissue (61) and is associated with LV stiffness and diastolic dysfunction in 

patients with HF with hypertensive heart disease (22,25,26,45) or aortic stenosis (23). In 

addition, collagen type I fibers exhibit greater stiffness than type III fibers (62), and an 

association exists between a predominance of collagen type I over type III fibers and 

increased LV stiffness with diastolic dysfunction in patients with aortic stenosis and HF 

(18). Similarly, an increase in the collagen type I:III ratio was found in patients with 

idiopathic dilated cardiomyopathy (63). However, in dilated cardiomyopathy, newly formed 

collagen is deficient in forming stable cross-links, which may contribute to ventricular 

dilatation (64).

On the other hand, collagen reorganization (alignment of fibers relative to cardiomyocytes 

that occurs in conditions of excess collagen) impairs the transmission of force generated by 

cardiomyocytes to the ventricular chamber, to the detriment of contractility (4). Of note, an 

association between the realignment of collagen and muscle fibers with LV systolic 

dysfunction has been described in patients with aortic stenosis and HF (65). Finally, 

although advanced loss of the perimysial and endomysial collagen scaffold resulting in 

slippage of cardiomyocytes is characteristic of nonischemic dilated cardiomyopathies and 

ischemic heart disease (Table 1), more modest disruptions in the normal collagen fibrillary 

network can accompany MIF in other cardiomyopathies, contributing to decreased systolic 

performance (66). For instance, decreased perimysial and endomysial collagen deposition 

has been described in patients with HF attributable to hypertensive heart disease exhibiting 

impaired LV systolic function, but not in patients with normal LV systolic function (67).

The relations between MIF and the type of HF (with either HFpEF or reduced ejection 

fraction [HFrEF]) have not been systematically investigated. In 2 studies performed in 

patients with hypertensive heart disease (67) or aortic stenosis (68) and absence of coronary 

disease, it was reported that MIF was quantitatively more severe in patients with HFrEF than 

in patients with HFpEF. In 1 study examining biopsy specimens from patients with HF with 
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diabetic cardiomyopathy and absence of coronary disease, the excess of fibrous tissue was 

associated with HFrEF but not with HFpEF (24). A similar result was reported in another 

study examining autopsies of patients with hypertrophic cardiomyopathy and HF (69). 

Collectively, these findings suggest that variable structure-function relationships may exist 

between MIF and LV function in patients with HF depending on the etiology and nature of 

the cardiac disease process (Figure 2). Furthermore, whereas MIF may contribute to LV 

diastolic dysfunction in HFpEF by directly increasing LV stiffness, in HFrEF the loss of 

cardiomyocytes and contractile mass may trigger MIF as a form of reparative response 

(Figure 2).

VENTRICULAR AND ATRIAL ARRHYTHMIAS

There is abundant evidence that MIF impairs myocardial electrophysiology by slowing 

action potential propagation, initiating re-entry, promoting after-depolarizations, and 

increasing ectopic automaticity, collectively resulting in increased risk of ventricular 

arrhythmias (70). For example, the association of MIF with electrophysiological changes 

mediating ventricular arrhythmias has been described in patients with hypertrophic 

cardiomyopathy (71). Furthermore, an association of MIF with ventricular arrhythmias 

independent of LV function has been reported in patients with hypertensive heart disease 

(72). Indeed, MIF has been proposed as a risk factor for sudden arrhythmic death in patients 

with hypertrophic cardiomyopathy (73), hypertensive heart disease (74), and nonischemic 

dilated cardiomyopathy (75).

Although an association between atrial fibrillation and ventricular MIF is less established 

than for atrial MIF, it is unlikely that the profibrotic cardiac microenvironment (such as in 

the examples reviewed here) is limited to the ventricles. Rather, in most of the disease states 

we discuss, the atrial myocardium is also likely to be affected (76). In addition, it is known 

that in conditions of severe chronic pressure overload, advanced diabetes, or chronic HF, the 

deposition of atrial collagen may occur, resulting in EHRAS (for EHRA/HRS/APHRS/

SOLAECE) class II or III atrial cardiomyopathy with increased risk of atrial fibrillation (77). 

In this regard, in patients with severe aortic stenosis, a positive graded association of the 

prevalence of atrial fibrillation with the quantitative severity of LV MIF was reported 

(78,79).

MYOCARDIAL HYPOXIA

MIF is associated with significant impairment of oxygen delivery to cardiomyocytes. 

Perivascular fibrosis impairs and is inversely correlated with coronary flow reserve in 

patients with HF due to hypertensive heart disease or hypertrophic cardiomyopathy (80). 

Deposition of fibrotic tissue increases oxygen diffusion distance, leading to hypoxia (81). 

Also, the severity of MIF is associated with the severity of coronary microvascular disease—

that is, anatomic abnormalities of the vascular wall and capillary rarefaction—in patients 

with HF due to hypertrophic cardiomyopathy (14), hypertensive heart disease, or diabetic 

cardiomyopathy (82). Thus, MIF facilitates ischemia/hypoxia and leads to compromise of 

the coronary microcirculation, which, in turn, can further aggravate MIF.
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MIF IS ASSOCIATED WITH A WORSENED CLINICAL COURSE

The available clinical evidence suggests that the quantity and quality of MIF may influence 

both the prognosis and response to treatment in patients with HF. The extent of fibrosis 

(assessed either histologically or by CMR) is associated with all-cause death and adverse 

cardiovascular events in patients with HF attributable to cardiomyopathies such as 

hypertensive heart disease, diabetic cardiomyopathy, or hypertrophic cardiomyopathy (83–

85) and also with HF hospitalization or mortality in patients with HFpEF (86,87). The 

chemical nature of deposited fibers also influences outcome. In patients with HF due to 

hypertensive heart disease, increased collagen type I cross-linking is associated with risk of 

hospitalization for HF (88). In addition, the combination of increased collagen deposition 

and increased collagen cross-linking is associated with both hospitalization for HF and 

cardiovascular mortality in patients with HF with hypertensive heart disease (27). Similarly, 

the previous extent of fibrotic deposition is associated with mortality, and inversely 

associated with the degree of LV functional improvement, in patients with severe aortic 

stenosis who undergo aortic valve replacement (79,89).

DIAGNOSIS OF MIF

Because MIF is fundamental in the development and progression of HF and is related to 

clinical outcomes, the integration of its assessment into the clinical treatment of these 

patients may be warranted (90). Although endomyocardial biopsy is relatively safe (91) and 

MIF on biopsy correlates with MIF in the whole heart (67,92), alternate noninvasive imaging 

and/or biochemical methods are desirable for routine practice.

TISSUE-IMAGING BIOMARKERS

CMR imaging-derived parameters, particularly late-gadolinium enhancement (LGE) and T1 

mapping (including native T1, post-contrast T1, and extracellular volume fraction [ECV]), 

are currently used as biomarkers for the assessment of fibrotic myocardium. Whereas LGE 

can be used for identification of focal collagen deposition as seen in large focal post-infarct 

scars, T1 mapping is useful for identifying diffuse collagen deposition as seen in MIF. 

Several small clinical studies have been performed, validating ECV against the extent of 

diffuse collagen deposition (assessed by the collagen volume fraction) (93,94) and 

demonstrating superiority over LGE (94). However, in a recent large study performed on 

intraoperative endomyocardial LV biopsy specimens from 133 patients with aortic stenosis, 

no association was found between ECV and histologically assessed MIF (16). In addition, 

neither LGE nor ECV can identify qualitative aspects related to the composition and 

molecular organization of collagen fibers in MIF (95). Therefore, due to these limitations of 

CMR-derived biomarkers, another biomarker-based approach may be required to capture not 

only the quantitative but also the qualitative aspects of MIF and, thus, define its 

histomolecular and phenotypic heterogeneity in patients with HF.
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CIRCULATING MOLECULAR BIOMARKERS

A number of molecules, detectable in serum or plasma, were recently proposed as 

biomarkers of MIF (96–98). However, in most cases, demonstration of an association 

between the biomarker and histologically assessed MIF is lacking or remains inconclusive 

(Table 2). Among the many proposed circulating molecules, only a limited number have 

been shown to be associated with histological MIF in humans. The level of carboxy-terminal 

pro-peptide of procollagen type I (PICP)—formed during the extracellular conversion of 

procollagen type I into mature fibril-forming collagen type I by the enzyme PCP—was 

found to be highly correlated with the extent of collagen type I deposition in the 

myocardium of patients with HF due to hypertensive heart disease (25). The levels of amino-

terminal pro-peptide of procollagen type III (PIIINP)—formed during the extracellular 

conversion of procollagen type III into mature fibril-forming collagen type III by the enzyme 

procollagen type III amino-terminal proteinase—were also found to be highly correlated 

with the extent of myocardial collagen type III deposition in patients with HF with ischemic 

heart disease or idiopathic dilated cardiomyopathy (99). Circulating transcript levels may 

also hold promise, and an inverse relationship has been shown between levels of circulating 

microRNA 19b with myocardial collagen cross-linking and LV stiffness in patients with 

severe aortic stenosis (23).

Recently, Ravassa et al. (27) reported that levels of PICP and the ratio of serum carboxy-

terminal telopeptide of collagen type I (CITP) to MMP-1, corresponding to severe collagen 

deposition and increased collagen cross-linking, respectively, allow the stratification of 

patients with HF attributable to hypertensive heart disease. There were 4 proposed 

biomarker-based bio-profiles: moderate PICP and normal CITP:MMP-1 ratio, high PICP 

and normal CITP:MMP-1 ratio, moderate PICP and low CITP:MMP- 1 ratio, and high PCIP 

and low CITP:MMP-1 ratio. The primary outcome for this study was a composite of first HF 

hospitalization after enrollment or death from cardiovascular causes. During a median 

follow-up period of 5.31 years, there was a significant and progressive increase in the 

incidence of the primary outcome from the first to the last groups. In addition, a secondary 

composite outcome of first hospitalization for HF or all-cause death also increased 

significantly from the first to the last groups. Moreover, this classification improved the 

prognostic performance of important risk factors. Using the same biomarker- based 

approach, it was recently reported that the fourth bio-profile was associated with higher 

atrial fibrillation prevalence and incidence in patients with HF attributable to hypertensive 

heart disease (100), improving the predictive value of relevant atrial fibrillation risk factors. 

Therefore, the combination of PICP and the CITP:MMP-1 ratio appears to reflect the 

clinical impact of the histomolecular phenotypes of MIF in patients with HF due to 

hypertensive heart disease. Furthermore, the bio-profile defined by the coincidence of high 

serum PICP and low CITP:MMP-1 ratio identifies patients with a high-risk phenotype 

characterized by increased risk of atrial fibrillation, HF hospitalization, and mortality. 

Nevertheless, it is important to remark that these biomarkers are not cardiac specific, and 

changes in their blood levels may represent integrated abnormalities of cardiovascular 

collagen and/or the influence of comorbidities affecting collagen metabolism in HF. 

Díez et al. Page 10

J Am Coll Cardiol. Author manuscript; available in PMC 2021 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BECAUSE the extent and nature of MIF depend on the etiologic context, their potential 

clinical value may vary according to the specific underlying cardiac disease process.

TREATMENT OF MYOCARDIAL INTERSTITIAL FIBROSIS

Although the development of fibrosis has long been viewed as a unidirectional process 

consisting of nonreversible sequelae from chronic injury to fibrosis, and ultimately on to 

tissue architecture remodeling and destruction, there is evidence that fibrogenesis is likely 

reversible, even at later stages (101). In this regard, one mechanistic principle of fibrosis 

regression involves the resolution of chronic tissue injury (102,103). However, not all 

clinical evidence supports this notion regarding MIF. For instance, the extent of collagen 

deposition remains unchanged in patients with aortic stenosis after long-term aortic valve 

replacement and successful avoidance of pressure overload (104), as well as in hypertensive 

patients with normalization of blood pressure after midterm treatment with the calcium 

channel blocker amlodipine (105). Thus, the effective treatment of MIF is challenging and 

requires a broader approach.

USE OF AGENTS WITH PROVEN ANTI-MIF EFFICACY AND SAFETY

The available clinical evidence indicates that MIF is a target of drugs interfering with the 

renin-angiotensin-aldosterone axis. In fact, treatment of patients with hypertensive heart 

disease using the angiotensin-converting enzyme inhibitor lisinopril (106) or the angiotensin 

receptor blocker losartan (58) was associated with reduction in the extent of fibrotic 

deposits, with corresponding improvement of LV diastolic dysfunction and reduction of LV 

stiffness, respectively. Similarly, the mineralocorticoid receptor antagonist spironolactone 

reduced the extent of collagen deposition and LV stiffness and ameliorated diastolic 

dysfunction in patients with HF (107). Although these drugs directly target MIF and are 

convenient because of their current widespread clinical use and safety, a residual fibrotic 

burden remains, thus requiring novel therapeutic approaches for more effective antifibrotic 

treatment. In this regard, it has been reported that the administration of the loop diuretic 

torsemide to patients with hypertensive heart disease, in addition to standard HF therapy, is 

associated with reductions in the extent of collagen deposition, as well as in the degree of 

cross-linking of the deposited fibers and the expression of LOX in fibrotic areas (108–110). 

These effects were accompanied by normalization of LV stiffness and improved functional 

class in most patients. Interestingly, the antifibrotic effect of torsemide was not observed in 

patients with HF treated with furosemide, suggesting that torsemide may directly target MIF 

(beyond its renal actions). Although these findings appear promising, they were obtained in 

studies with a relatively small number of patients who were treated for short periods. Large, 

long-term clinical trials are required to verify whether torsemide targets MIF in a clinically 

effective manner.

DEVELOPMENT OF NOVEL ANTI-MIF CLINICAL APPROACHES

By taking into account the fundamentals of precision medicine, it can be anticipated that by 

defining MIF at a deeper biological level, patients can be treated based on an understanding 

of the molecular underpinnings of their presentation, rather than grouping them into a single 
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broad category with one-size-fits-all treatment (111). This is illustrated by the recent 

observation that biomarker-based phenotyping of the histomolecular characteristics of MIF 

(e.g., serum CITP:MMP-1 ratio-based phenotyping of the degree of collagen cross-linking) 

identifies a subgroup of patients with HFpEF with high collagen type I cross-linking in 

whom spironolactone fails to improve LV function (112) (Figure 3). These findings support 

the notion that a precise biomarker-based phenotyping of MIF will be critical to advance the 

field of HFpEF therapy.

Data from experimental studies suggest that pharmacological agents already used in clinical 

practice with proven safety may be of interest to treat MIF through novel mechanisms (111). 

For instance, the neprilysin inhibitor and angiotensin receptor blocker combination of 

sacubitril/valsartan reduced MIF with improvement of LV function in HF mice with diabetes 

(113) and cardiac pressure overload (114). Additional data suggest that the anti- fibrotic 

effect of sacubitril/valsartan may be due to the specific inhibition of neprilysin, beyond the 

angiotensin receptor blocker effect. However, in a recent phase 3 clinical study of sacubitril/

valsartan in 4,822 patients with HF with relatively preserved LV function (LV ejection 

fraction: >45%), as compared with valsartan monotherapy, there was only a borderline 

beneficial effect seen in terms of a reduction of the primary composite endpoint of total 

hospitalizations for HF and death from cardiovascular causes (p = 0.06) (115).

On the other hand, it has been shown that the sodium-glucose cotransporter 2 (SGLT2) 

inhibitor empagliflozin reduces MIF and is linked to improved diastolic dysfunction in 

diabetic mice (116). Because the antifibrotic effect was not linked to metabolic and/or 

hemodynamic changes and SGLT2 is not expressed in the heart, it has been suggested that it 

likely reflects direct pleiotropic effects of the drug on the myocardium (117). At the present 

time, it remains to be tested whether SGLT2 inhibitors are also effective in reducing MIF in 

humans and if this effect is merely related to their proven safety and effectiveness to prevent 

and ameliorate HF. Nevertheless, in a recent large phase 3 clinical study among patients with 

HF and reduced ejection fraction, the risk of worsening heart failure or death from 

cardiovascular causes was lower among those who received the SGLT2 inhibitor 

dapagliflozin than among those who received placebo, regardless of the presence or absence 

of diabetes (118). Although it must be noted that the majority of these participants 

(approximately 55%) had ischemic heart disease and only approximately 35% had a 

nonischemic etiology for their HF, subgroup analyses appear to indicate that the primary 

composite endpoint remained significantly different between dapagliflozin and placebo 

treatment when the analysis was restricted to either the ischemic or the nonischemic 

subgroups (118).

Finally, several experimental studies have documented the cardiac antifibrotic effects of 

pirfenidone and tranilast, both clinically approved drugs that inhibit TGF-β signaling, in 

several models of MIF (119). Because prolonged dosages of either of these drugs can have 

hepatic toxicity and may lead to liver failure (120), more research is warranted to explore 

alternative methods that can safely, but efficaciously, target TGF-p signaling for reduction of 

MIF.
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SEARCH FOR NEW ANTI-MIF STRATEGIES

Ongoing preclinical research for reversing nonischemic MIF is based on the prevention of 

excessive fibrous tissue deposition. As specific examples, this may be via the deactivation of 

inflammatory pathways and establishment of an anti-inflammatory microenvironment, 

and/or the deactivation and elimination of myofibroblasts, and/or fibrolysis of excess 

collagen. In this conceptual framework, novel druggable molecular targets (e.g., noncoding 

RNAs and epigenetic modifiers) are potential new anti-MIF strategies (121). However, 

although many new therapies targeting MIF appear to be promising in the pre-clinical 

setting, the translation to the clinical arena remains challenging for several reasons. First, the 

injured heart is a volatile microenvironment with cardiomyocyte death, infiltration of 

immune and inflammatory cells, and activation of mesenchymal cells that may hinder the 

efficacy of delivering antifibrosis therapies (29,30). Second, it is important to rationalize 

drug discovery by using a meaningful step-by-step process to efficiently discard irrelevant 

and inefficacious molecules or those with unfavorable pharmacokinetic and toxicological 

profiles (122). Finally, it is important to rationalize anti-MIF strategy testing in clinical 

studies by pursuing those therapies with a high degree of correspondence between the 

properties of the new therapy under investigation and the specific patient population and 

their cardiac disease process (120).

SUMMARY AND CONCLUSIONS

MIF is a critical component of myocardial remodeling in patients with HF that occurs 

secondary to a number of nonischemic cardiac diseases. The cell biology underlying MIF is 

complex, and significant difficulty has arisen in translating results from animal studies to 

humans. Furthermore, the triggers, dynamics, and characteristics of the fibrotic process vary 

among the differing etiologies of MIF and depend also on the contribution of aging. 

Correspondingly, at the present time, the diagnosis and treatment of MIF suffer from a lack 

of precision, and strategies that allow for the differentiation of MIF subtypes in a disease-

specific way are needed, ideally combining noninvasive imaging and molecular biomarkers. 

These biomarkers must be useful not only for establishing and phenotyping MIF, but also for 

the predicting and monitoring its response to intervention. Finally, it is likely that a 

combination of various therapies will be necessary to address the complexity of MIF. 

Despite these challenges, the rapid progress in our understanding of MIF and the concurrent 

heightened clinical awareness of the importance of HFpEF serve as a solid platform for 

ongoing and future research that tackles these issues and that drives toward novel clinical 

biomarkers and therapies to treat MIF.
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ABBREVIATIONS AND ACRONYMS

ACE angiotensin-converting enzyme
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AGE advanced glycation end product

CCR2 C-C chemokine receptor 2

CITP carboxy-terminal telopeptide of collagen type I

CMR cardiac magnetic resonance

ECM extracellular matrix

ECV extracellular volume fraction

HF heart failure

HFpEF heart failure with preserved ejection fraction

HFrEF heart failure with reduced ejection fraction

LGE late-gadolinium enhancement

LOX lysyl oxidase

LV left ventricular

MIF myocardial interstitial fibrosis

MMP matrix metalloprotease

PCP procollagen type I carboxy-terminal proteinase (also termed bone 

morphogenetic protein-1)

PICP carboxy-terminal pro-peptide of procollagen type I

SGLT2 sodium-glucose cotransporter 2

TGF-β transforming growth factor-β
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HIGHLIGHTS

• Myocardial interstitial fibrosis (MIF) is a histological hallmark of several 

cardiac diseases that alter myocardial architecture and function.

• MIF is a diffuse and patchy process, appearing as a combination of interstitial 

microscars, perivascular collagen fiber deposition, and increased thickness of 

mysial collagen strands.

• MIF plays an important role in systolic and diastolic cardiac dysfunction, as 

well as impaired clinical outcomes in patients with nonischemic heart disease.

• Ongoing pre-clinical research for reversing nonischemic MIF is aiming to 

prevent excessive fibrous tissue deposition; however, although many new 

therapies targeting MIF appear promising in the pre-clinical setting, their 

translation to the clinical arena remains challenging.
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FIGURE 1. Types of Fibrous Deposits in Myocardial Interstitial Fibrosis
Endomyocardial biopsy of (A-C) a patient with hypertensive heart disease and heart failure 

and (D-F) a patient with aortic valve stenosis showing myocardial interstitial fibrosis. 

Sections were stained with picrosirius red, and collagen deposits were identified in red as 

(A,D) microscars, (B,E) perivascular thick sheaths, and (C,F) thick bands deposited in the 

perimysium and the endomysium. Scale bars correspond to 200 μm.
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FIGURE 2. Time Course of Changes in Severity of Myocardial Interstitial Fibrosis
Functional and clinical impact of myocardial interstitial fibrosis according to its histological 

type and clinical scenario. AS = aortic stenosis; DCM = diabetic cardiomyopathy; MIF = 

myocardial interstitial fibrosis; HCM = hypertrophic cardiomyopathy; HHD = hypertensive 

heart disease; LV = left ventricular.
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FIGURE 3. Effect of Spironolactone on Patients With Heart Failure With Preserved Ejection 
Fraction
Peak early transmitral ventricular filling velocity to early diastolic tissue Doppler velocity 

ratio (E:e′) according to study treatment in tertiles of patients with low, intermediate, and 

high serum carboxy-terminal telopeptide of collagen type I to matrix metalloproteinase-1 

ratio (CITP:MMP-1), which are equivalent to high, moderate, and low myocardial collagen 

cross-linking, respectively. Data are expressed as mean values and 95% confidence intervals 

at baseline and at 12 months in patients with heart failure with preserved ejection fraction 

treated with placebo or spironolactone. *p < 0.05 versus baseline. **p < 0.01 versus 

baseline. Reprinted with permission from Ravassa et al. (112).
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CENTRAL ILLUSTRATION. The Process of Myocardial Interstitial Fibrosis in Nonischemic 
Heart Disease
Steps in the process of myocardial interstitial fibrosis, including associated clinical 

conditions, major mechanisms, and consequences. LV = left ventricular.
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