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Abstract

We develop a general class of thermodynamically consistent, continuum models based on mixture 

theory with phase effects that describe the behavior of a mass of multiple interacting constituents. 

The constituents consist of solid species undergoing large elastic deformations and compressible 

viscous fluids. The fundamental building blocks framing the mixture theories consist of the mass 

balance law of diffusing species and microscopic (cellular scale) and macroscopic (tissue scale) 

force balances, as well as energy balance and the entropy production inequality derived from the 

first and second laws of thermodynamics. A general phase-field framework is developed by 
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closing the system through postulating constitutive equations (i.e., specific forms of free energy 

and rate of dissipation potentials) to depict the growth of tumors in a microenvironment. A notable 

feature of this theory is that it contains a unified continuum mechanics framework for addressing 

the interactions of multiple species evolving in both space and time and involved in biological 

growth of soft tissues (e.g., tumor cells and nutrients). The formulation also accounts for the 

regulating roles of the mechanical deformation on the growth of tumors, through a physically and 

mathematically consistent coupled diffusion and deformation framework. A new algorithm for 

numerical approximation of the proposed model using mixed finite elements is presented. The 

results of numerical experiments indicate that the proposed theory captures critical features of 

avascular tumor growth in the various microenvironment of living tissue, in agreement with the 

experimental studies in the literature.
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Mixture theory; Phase-field; Hyperelastic solid; Biochemomechanical coupling; Tumor growth

1 Introduction

There is a vast and growing literature on mathematical and computational models of the 

physical and biological processes involved in the initiation, development, and growth of 

cancer [2, 12, 61, 80, 121, 131, 137, 149, 167]. Most tumor models can be categorized as 

either a discrete cell-based model, or a continuum model. The continuum approach 

considers the average of the global cell population behavior [35, 96, 120, 160, 164], while 

discrete approaches track and update individual cell dynamics using a prescribed set of 

biophysical rules [19, 82, 135, 154]. Due to the rapid increase in the computational cost of 

discrete methods with the number of cells modeled, continuum methods are often favored 

for providing predictions in in vivo systems for events at experimentally observable spatial 

and temporal scales.

Fundamental theoretical challenges in the continuum modeling of tumor growth arise in 

describing the associations between gain and loss of mass and stresses induced by cancer 

cell proliferation and apoptosis, as well as the effect of a nonuniform microenvironment. 

Extensive efforts over the last two decades have resulted in various theoretical approaches 

[4, 46, 76, 106, 121, 165, 166]. Although these previous efforts address several open issues 

in understanding, simulating, and predicting tumor growth, the development of a unified 

mathematical framework for modeling the growth process is still a central challenge in 

biomechanics [4].

Several continuum theories are based on the abstraction of a homogenized, single-

constituent tumor [137, 165]. These purely mechanical models implicitly assume sources of 

mass supply to drive the growth of the tumor. Although these methods can yield self-

consistent frameworks, they are incapable of accounting for important biophysical 

phenomena encountered in tumor progression including, for example, nutrient delivery by 

the surrounding tissues and consumption by tumor cells. A more realistic representation of a 

tumor growing in a microenvironment can be achieved through a framework based on 

Faghihi et al. Page 2

J Mech Phys Solids. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



continuum theories of mixtures [24, 38, 120, 132] which naturally incorporate various solid 

and fluid constituents involved in the underlying biophysical phenomena. Mixture theory has 

been the focus of much research in mechanics for many years [23] as a basis for treating the 

behavior of porous media involving two or more interacting bodies. In mixture models of 

tumor growth, the governing equations consist of mass and momentum balance equations for 

each species, interphase mass, and momentum exchange, along with appropriate constitutive 

equations. Recently, multiphase mixture models have been developed to address 

heterogeneities in cell-phenotypes and the mechanical response of tumor phases (see, e.g., 

[8, 25, 28, 48, 49, 57, 111, 116, 139]). Phase-field models provide a general approach to 

modeling multiphase materials [22, 100], in which the interface between phases is handled 

automatically as a feature of the solution and represents boundary layers between phases. In 

general, such models are obtained by incorporating gradients of the order parameters, such 

as the concentrations of various constituents, in the free energy functionals of a multiphase 

material to approximate surface energies at interfaces. The most common model of this type 

is the Cahn-Hilliard model of binary phase separation [29] in which the free energy contains 

gradients in concentrations multiplied by parameters which characterize the thickness of the 

smoothed interfaces between the phases. Phase field models have provided important 

frameworks for characterizing microstructural evolution at the mesoscale [155], 

solidification [22], grain growth [112], dislocation dynamics [169], and self-assembly of 

block copolymers [32] among others. Recently, phase-field models have been applied to 

simulate tumor growth and decline [35, 96, 120, 164]. A multi-species framework allows for 

characterizing the interaction between (for example) the necrotic, apoptotic, quiescent, and 

proliferative cells present in solid, avascular tumors.

In addition to the underlying mathematical framework, another challenge in developing 

tumor growth models is simulating the mechanical cues to tumor cells alongside the 

biological and chemical factors. Experimental studies indicate that the mechanical stresses 

of the solid phase of a tumor play a vital role in the expansion, invasion, and metastasis of 

tumors [26, 78, 79, 91, 109, 147, 157]. These macroscopic stresses arise due to 

heterogeneous tumor growth as well as the effect of surrounding tissue confinement. While 

the generation of residual stresses from heterogeneous growth is significant in normal tissues 

such as arteries and mucosa [92, 93, 144, 150], the external stresses on tumors produced by 

the surrounding tissues can be more prominent than those incurred by the heterogeneous 

growth [4, 7]. The mechanical stresses moderate the development of solid tumors by 

compressing both the tumor and the associated vasculature. These effects result in lowering 

the proliferation rate and stimulating apoptosis of the cancer cells, as well as enhancing the 

invasiveness and metastatic potential of a tumor [72, 79, 113]. However, these mechano-

chemo-biological mechanisms, which are determined by cell-cell and cell-microenvironment 

interactions, have not been adequately addressed by current theoretical continuum models 

[4, 46]. The majority of the previous investigations on modeling growth-induced stresses 

rely on phenomenological evolution equations of the growth-associated strains. Such 

assumptions result in models that fail to address the effect of microscale evolutions on the 

macroscopic stress and strain, and they are inadequate to characterize the mechanical aspects 

of the biological growth [4].
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To overcome the above-mentioned modeling challenges, we develop a general class of 

thermodynamically consistent continuum models, based on mixture theory with diffuse 

interface effects, that describes the biomechanical behavior of a mass of N interacting 

constituents. M of these N constituents are solid species undergoing finite strain elastic 

deformation and growth, and NM can be compressible, Newtonian viscous fluids. A general 

phase-field framework is developed by considering the free energy and rate of dissipation 

potential as primary potentials and thermodynamic forces are derived considering the 

processes leading to energy storage and dissipation. The constitutive relations are deduced 

from specific forms of the Helmholtz free energy and rate of dissipation to simulate major 

features of avascular tumor growth in a microenvironment. Special attention is given to the 

mechanical cues detected by tumor cells and their effects on tumor progression. In this 

regard, a fully coupled deformation and mass transfer model is developed through physically 

and mathematically consistent construction. The proposed mathematical model is 

numerically solved using mixed finite elements, and several numerical experiments are 

conducted considering a system consists of four interacting constituents: tumor cells, healthy 

cells, nutrient-rich and nutrient-poor extracellular water. The numerical experiments indicate 

that the general diffusion-deformation framework proposed in this work enables simulating 

the significant mechano-chemo-biological features of avascular tumor growth in the various 

microenvironment of living tissue, in agreement with the experimental studies in the 

literature. In particular, the proposed model accounts for the growth of the proliferating 

tumor cells due to nutrient consumption, the directional movement of tumor cells towards 

the nutrient supply, and the surface tension stress due to cell-cell adhesion at the interface of 

tumor and healthy cells constituents. More importantly, this work enables simulating the 

significant inhibitory effect of the confinement induced by the surrounding tissues on the 

avascular tumor growth, using a new evolution equation of the growth deformation gradient 

derived from the mass transfer relations.

The rest of this contribution is organized as follows. Section 2 presents the theoretical 

development of the phase-field mixture theory, providing a framework for the proposed four-

constituent tumor growth model, which is described in section 3. The results of numerical 

experiments designed to demonstrate the qualitative model prediction are described in 

section 4. The Discussion and Conclusions are given in section 5.

2 Theoretical Framework: Coupled Mass Transport and Deformation of 

Multi-species Mixtures

Our theoretical framework of tumor growth model is founded in the continuum theory of 

mixtures, advanced by Truesdell [151], Truesdell and Toupin [153], Bowen [23, 24], and 

Eringen and Ingram [42, 77]. Parallel developments of theories of porous media share many 

aspects of mixture theory for two- or three-phase materials, as can be seen in works such as 

those by de Boer [37, 38] among many others. The development of diffuse-interface models 

based on mixture theory involves an additional level of complexity due to the dynamical 

effects associated with changes in the volume fractions of the constituents [120, 132]. We 

follow the basic hypotheses of Truesdell and Noll [152] in developing a physically 

meaningful continuum theory. In this regard, the general theory governing a continuum 
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mixture of N constituents is developed based on the balance laws for mass, momentum, and 

energy as well as the inequality for entropy production. These laws are the fundamental 

building blocks on which to frame theories of material behavior. Then a general phase-field 

version is developed by closing the system with constitutive equations. In this regard, the 

free energy and rate of dissipation potential are considered as primary potentials, and 

thermodynamic forces are derived considering the processes leading to energy storage and 

dissipation.

2.1 A Continuum Theory of Mixture

In continuum mechanics, a body ℬ is viewed as a set of material points that occupy subsets 

of Euclidean space as the motion of the body carries it through various configurations. It is a 

convention to choose one such region as a reference and refer to it as the reference 

configuration of ℬ. The material points of the body are identified with their positions X. The 

underlying assumption of mixture theory is that a material body ℬ consists of N constituent 

species that occupy a common part of physical space at the same time. The body undergoes 

a motion which maps the reference configuration ℬ onto a current configuration ℬt, with 

the spatial position of material points at time t, given by x = X(X, t). In an N-species mixture 

the motion is defined by

x = Xα(Xα, t), (1)

where α = 1, 2, ⋯ , N and Xα is the position of the material points of the α-th constituent in 

its reference configuration. The deformation gradient is defined by

Fα ≔ ∂Xα
∂Xα

. (2)

Each spatial position x is occupied by N different constituents, and each constituent has a 

mass density, ρα(x, t), representing the mass of the α-th constituent per unit volume of the 

mixture at time t. The mass density of the mixture at a point (x, t) is defined as1,

ρ(x, t) = ∑
α

ρα(x, t), (3)

and the (partial) density, ρα, is

ρα(x, t) = ρα(x, t)ϕα(x, t), (4)

representing the mass of α-th constituent per unit volume of the constituent. The mass 

concentration and volume fraction of the α-th constituent are defined respectively by,

1Throughout the formulation the subscript α is an index taking on values, 1 ≤ α ≤ N, unless otherwise specified, and we shall use the 

abbreviated notation ∑α = ∑α = 1
N

.
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cα(x, t) = ρα(x, t)
ρ(x, t) , ϕα(x, t) = dvα

dv , (5)

where dv is a differential volume containing the point x, and dvα is the proportion of volume 

occupied by constituent α. From (5) clearly,

∑
α

cα = 1 , ∑
α

ϕα = 1 . (6)

In addition, the velocity of each constituent and the mixture velocity are defined as,

vα(x, t) = ∂Xα(Xα, t)
∂t , v = 1

ρ ∑
α

ραϕαvα . (7)

The diffusion velocity for the α-th constituent is also defined by

pα = vα − v, with ∑
α

ραϕαpα = 0 . (8)

The velocity gradient of each constituent, Lα = ∇ · vα, can be split into symmetric, Dα, and 

skew-symmetric, Wα, parts in which,

Dα = 1
2(∇vα + ∇vαT) , Wα = 1

2(∇vα − ∇vαT) . (9)

Finally, the link between Lagrangian and Eulerian descriptions in time derivatives can be 

made according to

dαϕ
dt = ∂ϕ

∂t + vα ⋅ ∇ϕ, (10)

where dαϕ/dt is the material time-derivative related to the motion of each constituent and ϕ 
is any differentiable function of x and t.

Each of the N species must satisfy its own balance laws consistent with the presence of 

interaction among constituents. The balance laws govern the behavior of a general mixture 

that must hold for all α, 1 ≤ α ≤ N, are presented in the next sections.

2.2 Macroscopic and Microscopic Force Balances

Let ℛt denote an arbitrary spatial region convecting within the body ℬ at time t. The basic 

balance laws for linear and angular momentum assert that the net force and momentum on 

ℛt are balanced by temporal changes in the linear and angular momentum of ℛt. In this 

regard, the balance of linear momentum for α-constituent in the mixture requires,
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dα

dt∫ℛt
ραϕαvαdV = ∫∂ℛt

Tα . n dA + ∫ℛt
(ραϕαbα)dV , (11)

where Tα is the partial Cauchy stress tensor, bα is the body force per unit mass, n(x, t) 
denotes the outward unit normal field on the boundary ∂ℛt, and dA and dV are differential 

surface and volume elements of ∂ℛt. Using the divergence theorem, and taking into account 

that (11) must hold for all spatial regions, leads to the macroforce balance,

dαραϕαvα
dt = ∇ ⋅ Tα + ραϕαbα . (12)

In the case of nonpolar materials (neglecting, e.g., electromagnetic effects and micro-

moments), the balance of angular momentum results in the relation,

Tα = Tα
T (13)

so the partial Cauchy stress is symmetric.

To describe the phase dynamics in the mixture (following the arguments of [62]), in addition 

to local force balances, we postulate the existence of a set of microscopic forces that 

accompany the evolution of each order parameter (i.e., the volume fraction in the present 

formulation). These thermodynamical forces are termed “microscopic” because they are 

involved with phenomena that occur at a scale (e.g., cell level) smaller than macroscopic 

interactions (e.g., tissue level). The notion of microscopic forces has been successfully 

applied to to develop generalized frameworks such as strain gradient-plasticity theories [64, 

158], generalized heat transfer [44], micromorphic approaches [16, 45], and mixture theories 

of porous media [59, 126].

The (micro-)kinematics of phase, ϕα, such as the phase separation and mixing of different 

components, is associated with three microforces per unit volume, including the internal 

microforce πα and the external microforce τα that are associated with volume fraction2 and 

the thermodynamic stress conjugate to the gradient of species volume fractions ξα that 

represents a flux through the boundary ∂ℛt. These nonlocal forces are balanced through the 

following relation,

∫∂ℛt
ξα . n dA + ∫ℛt

παdV + ∫ℛt
παdV = 0 . (14)

Making use of the divergence theorem and the fact that ℛt is arbitrary leads to the following 

species microforce balance,

2To simplify the notation, πα and τα are defined as forces per unit volume. If these quantities are defined as forces per unit mass, they 
need to appear in (14) as ραϕαπα and ραϕατα similar to the body force in (11).
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∇ ⋅ ξα + πα + τα = 0 . (15)

The additional balance law (15) arises due to considering the volume fraction of each 

constituent as an independent kinematical quantity in the mixture theory. This force balance 

is essential in the theory of phase-field mixtures to account for the dynamical effects 

associated with changes in the volume fractions of the constituents, although it does not 

ordinarily arise in mixture theories. The general formulation described in this section leads 

to biological interpretations of microforces in tumor growth phenomena described in section 

2.63 (See Appendix A for an alternative approach to determine the associated balance of 

macroscopic and microscopic forces using the principle of virtual power.)

2.3 Diffusing Species Mass Balance

The net mass of the diffusing species in the spatial region ℛt is represented by ∫ℛtραϕαdV . 

The species transport to ℛt can be characterized by the rate at which the species is 

transported to ℛt by diffusion across ∂ℛt as well as the rate of transport to ℛt by 

constituents external to the body. In this regard, species mass balance requires that,

dα

dt∫ℛt
ραϕαdV = − ∫∂ℛt

Jα . n dA + ∫ℛt
SαdV , (16)

where Jα is the mass flux and Sα is external species mass supplied (a source term). Thus, 

(16) suggests that the mass-rate-of-change of the α-th component must balance with the net 

rate of generation of the α-th component in ℛt. Using the Reynolds’ transport relation along 

with the divergence theorem, the local species mass balance is [43]

∂ραϕα
∂t + ∇ ⋅ (ραϕαvα) = Sα − ∇ ⋅ Jα . (17)

The right-hand side of (17) is called the mass growth rate of the αth component [23].

2.4 Force and Mass Balance for the Mixture

The balance equations for the mixture, governing the motion of a single body, should follow 

the individual species balance equation summing over all constituents. Thus the continuum 

balance laws of the full mixture can be written as,

ρdv
dt = ∇ ⋅ T + b, (18)

3In theories of granular materials (e.g., Goodman and Cowin [59] and Passman, Nunziato, Walsh [118, 126]), the relation (15) is noted 
as the balance of equilibrated force. In the case of granular materials, the generalized microforces are physically interpreted as πα 
being related to the pressure in the matrix acting on the voids and the material properties of the matrix, τα being related to an 
externally controlled pore pressure, and ξα as being a stress-type quantity and associated with the inter-granular contact forces which 
influence the packing or fabric of the mixture [81, 86, 118, 126]. Additionally, in [118] the internal force πα is decomposed into a 
force supply associated with the species α and a force interaction associated with the interaction of α-th species with all other 
constituents. For simplicity of notation, we avoid such decompositions.
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∇ ⋅ ξ + π + τ = 0, (19)

∂ρ
∂t + ∇ ⋅ (ρv) = 0, (20)

subject to the following constraints,

b = 1
ρ ∑

α
ραϕαbα,

∑
α

Sα = ∑
α

∇ ⋅ Jα,

ξ = ∑
α

ξα,

π = ∑
α

πα,

τ = ∑
α

τα

T = ∑
α

Tα − ραϕαpα ⊗ pα .

(21)

In the above relations, ρ, T, b, and v are the mass density, Cauchy stress, body force per unit 

mass, and velocity of the mixture, respectively.

2.5 Thermodynamics Derivation

2.5.1 The First Law: Balance of Energy—The first law of thermodynamics 

represents a balance between the internal energy of ℛt, the rate at which power is expended 

on ℛt, and the energy carried into ℛt by species transport. In the present formulation, we 

consider isothermal processes (i.e., the heating dQ ∕ dt ≈ 0) and assume that the kinetic 

energy is negligible. Defining the net internal energy of mixture as ℰ = ∫ℛtρεdV , with ε 

being the specific internal energy, the first law of thermodynamics is written as

d
dtℰ = Pext + ℳ, (22)

where Pext is the external power. In addition to the classical terms of macroscopic forces, 

we consider non-classical terms contributing to the energy balance. This includes power 

expenditures of the microforces in Pext along with energy flux due to the species diffusion 

(i.e., fluxes and sources). In (22), ℳ is the (free-)energy carried into ℛt by mass (species) 

transport (see, e.g., [62, 66, 98]). As Jα and Sα carry with them a flux and supply of energy, 

respectively, characterized by the chemical potential μα, we write

ℳ = ∑
α

−∫∂ℛt
μαJα ⋅ n dA + ∫ℛt

μαSα dV . (23)
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The chemical potential μα of species α is a quantity defined as the rate of change of free 

energy with respect to the change in the particle number of the species that are added or 

removed from the thermodynamic system. The magnitude of the chemical potential is 

independent of the size of the system, but it does include phenomena affecting diffusion; 

e.g., the strain energy gradient, electric field, and temperature gradient. Thus, in (23), μα 
characterizes the flux and supply of energy to the system and needs to be considered in the 

energy balance relation.

From the mass balance relation (16), along with the divergence theorem,

∫∂ℛt
μαJα . n dA = ∫ℛt

(μα∇ ⋅ Jα ⋅ ∇μα) dV

= − μα
dαραϕα

dt − Jα ⋅ ∇μα − μαSα dV ,

one can write,

ℳ = ∑
α

∫ℛt
μα

dαραϕα
dt − Jα ⋅ ∇μα dV .

Consequently, (22) can be written as,

d
dt∫ℛt

ρεdV ≔ ∑
α
∫ℛt

Tα :Lα + τα
dαϕα

dt dV + ∑
α
∫∂ℛt

(ξα ⋅ n)dαϕα
dt dA

+ ∑
α
∫ℛt

μα
dαραϕα

dt − Jα ⋅ ∇μα dV .
(24)

From the symmetry of the Cauchy stress in (13), the term Tα : Lα can be replaced by Tα : 

Dα. Moreover, applying the divergence theorem again yields,

∫∂ℛt
(ξα ⋅ n)

dαϕα
dt dA = ∫ℛt

ξα∇
dαϕα

dt dV + ∫ℛt
(∇ ⋅ ξα)

dαϕα
dt dV ,

along with

∇ ⋅ ξα
dαϕα

dt + τα
dαϕα

dt = − τα
dαϕα

dt .

Following (15), the relation for the local energy balance is derived as,
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ρdε
dt = ∑

α
Tα :Dα − πα

dαϕα
dt + ξα ⋅ ∇ dαϕα

dt

+ ∑
α

μα
dαραϕα

dt − Jα ⋅ ∇μα .
(25)

It is worth mentioning that both bα and πα are internal forces in ℛt at the macroscopic and 

microscopic length scales respectively. While bα and πα exist in the force balances (12) and 

(15), they are not present in the working terms of the energy equation(24). Moreover, the 

balance equation (22) for the mixture is transferred into individual constituents, in which the 

local and global balances are related according to

ρdε
dt = ∑

α
ραϕα

dαεα
dt . (26)

2.5.2 The Second Law: Entropy Production Inequality—The second law of 

thermodynamics (entropy principle) is used here for imposing restrictions on constitutive 

equations. In mixture theory, while the implementation of such constraints for every 

individual species is possible and restrictive, its satisfaction for all constituents is a necessary 

and sufficient condition for the presence of dissipative processes within the mixture [37, 38]. 

It should also be noted that the entropy inequality has to be manipulated to include 

fundamental and special physical properties of the system under study. Depending on the 

behavior of the body, the supplementary constraints might be taken into consideration at the 

local (constituent) level and/or applied globally to the full mixture4. Moreover, this 

inequality is a necessary constraint on constitutive equations. There is not a unique way to 

fulfill this inequality, and many choices that satisfy the inequality may lead to simulations 

that do not accurately reflect the physical phenomena.

The entropy production inequality requires that the free energy increases at a rate not greater 

than the rate at which work is performed. The net entropy production per unit time, is given 

by

N = d
dt∫ℛt

ηdV ≥ 0, (27)

where η is the specific entropy of the mixture and (27) is often referred to as the Clausius-

Duhem inequality [69, 70]. The entropy density of the mixture can be written as a sum of the 

specific entropy of individual constituents as

4In the continuum theory of mixtures, one might need to impose additional conditions (e.g., incompressibility or rigidity of any of the 
species or a saturation condition), to treat the mixture as smeared continua. These conditions can be provided by Lagrange multipliers 
in postulating the entropy production inequality, according to the thermodynamic theory of constraint developed by Gurtin and 
Guidugli [67]. Alternatively, these condition can be considered as an additional energy term in the equation for energy balance and 
corresponding force balance [20, 126].
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ρη = ∑
α

ραϕαηα . (28)

We continue with the derivation of the Clausius-Duhem inequality by defining the 

Helmholtz (specific) free-energy of the mixture as,

ψ(x, t) = ε(x, t) − θ(x, t) η(x, t) . (29)

The free-energy per unit volume is,

Ψ(x, t) = ρψ(x, t), (30)

with the free energy for every individual species (e.g., [120]) given as,

Ψα = ραϕαψα .

Taking the time derivative of free-energy and substituting (25) into (29) along with (30), 

yields the local free-energy imbalance for fixed temperature θ = θ0
5,

− dΨ
dt + ∑

α
Tα :Dα − τα

dϕϕα
dt + ξα ⋅ ∇ dαϕα

dt

+ ∑
α

μα
dαραϕα

dt − Jα ⋅ ∇μα ≥ 0 .
(31)

The invariance properties discussed in [43] lead to all quantities in (31) being invariant under 

a change in frame.

The force balance equations (12) and (15), mass balance (17), along with first and second 

laws of thermodynamics (25) and (31) describe balance laws for a constituent α in a mixture 

of N constituents. The requirements that these balance laws must be consistent with those 

for the mixture as a whole imposes constraints depicted in (21). This system is closed by 

adding suitable constitutive equations and describing the physical and biological processes 

that might take place in the mixture.

2.6 Coleman-Noll Procedure

The balance laws for mass and momentum as well as the first and second laws of 

thermodynamics are presumed to hold for all bodies. It is necessary to prescribe constitutive 

equations for a particular material, and the processes that bodies comprised of the given 

material may undergo. Within rational continuum mechanics, the Coleman-Noll procedure 

[34] is established to derive requirements for constitutive equations. According to Ziegler 

5It should be noted that throughout this formulation we work with the free energy per unit volume of the mixture Ψ. Alternative 
derivations can be conducted using Helmholtz free-energy per unit mass ψ or considering the free energy for every individual species; 
see, e.g., [120].
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[172], continuum mechanics allows one to establish constitutive relations, deduced from free 

energy and dissipation functions characterizing reversible and irreversible processes, 

respectively. This leads to the decomposition of the thermodynamic conjugate forces into 

energetic and dissipative counterparts. The energetic forces are entirely determined by the 

specific free energy while the dissipative forces are determined from the dissipative function 

[170, 171]. Guided by the inequality in (31), it is assumed that the Cauchy stress tensor for 

each species admits the decomposition into energetic and dissipative components,

Tα = Tα
en + Tα

dis, (32)

while other thermodynamical conjugate forces are identified as completely energetic or 

dissipative in nature. This choice is made based upon our current knowledge about the 

physical and biological events that contribute to the tumor growth process. In general, other 

conjugate forces can be decomposed as in (32) where additional phenomena are identified 

that contribute to energy storage and dissipation6.

To derive the relation between thermodynamic forces. The Helmholtz free energy, Ψ, and 

dissipative potentials, D, we initially consider a general form of free energy considering the 

contribution of μ and ∇μ, and assuming a system far from equilibrium (μ is not given).7,

Ψ = Ψ (F1, ⋯, FN, ρ1, ⋯, ρN, ϕ1, ⋯, ϕN,
∇ϕ1, ⋯, ∇ϕN, μ1, ⋯, μN, ∇μ1, ⋯, ∇μN) . (33)

The time derivation of Ψ (using the chain rule) results in,

dΨ
dt = ∑

α

∂Ψ
∂(Cα, Fα) :Dα + ∂Ψ

∂ρα

dαρα
dt + ∂Ψ

∂ϕα

dαϕα
dt + ∂Ψ

∂(∇ϕα)
dα(∇ϕα)

dt

+ ∂Ψ
∂μα

dαμα
dt + ∂Ψ

∂(∇μα)
dα(∇μα)

dt ,
(34)

Where

∂Ψ
∂(Cα, Fα) :Dα =

2Fα
T ∂Ψ

∂Cα
Fα :Dα, 1 < α ≤ M,

∂Ψ
∂Fα

Fα
T :Dα, M < α ≤ N .

(35)

Making use of the gradient of material time derivatives,

6An example can be found in the generalized Cahn-Hilliard equation derived by Gurtin [62] in which both the microstress ξ and 
microforce π are decomposed into energetic and dissipative counterparts.
7For a multiphase system, a condition for equilibrium is that the chemical potential of each component must be the same in all phases. 
This follows from the total change in free energy being zero at equilibrium; see, e.g., [145].
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∇
dαϕα

dt = dα
dt (∇ϕα) + ∇ ⋅ vα ⋅ ∇ϕα,

along with substituting (34) into the free energy imbalance (31) and grouping terms together, 

we find the following inequality

∑
α

Tα
en − ∂Ψ

∂(Cα, Fα) + ξα ⊗ ∇ϕα :Dα + −πα + ραμα − ∂Ψ
∂ϕα

dαϕα
dt

+ ξα − ∂Ψ
∂(∇ϕα)

dα(∇ϕα)
dt − ∂Ψ

∂μα

∂μα
dt − ∂Ψ

∂(∇μα)
dα(∇μα)

dt + μαρα
∂Ψ
∂ρα

dαρα
dt

+ Tα
dis :Dα − ∇μα ⋅ Jα ≥ 0 .

(36)

The classical Coleman-Noll argument asserts that, in order that the inequality (36) hold, the 

coefficient of quantities such as Dα, dαϕα/dt, etc. must vanish as these terms can assume 

arbitrary large negative values. Thus, the fact that the time derivatives of the variables are 

arbitrary, results in the following choices being sufficient to ensure the free energy 

inequality,

ξα = ∂Ψ
∂(∇ϕα) , (37)

Tα
en = ∂Ψ

∂(Cα, Fα) − ξα ⊗ ∇ϕα, (38)

πα = ραμα − ∂Ψ
∂ϕα

. (39)

The above relations defines the energetic part of the thermodynamic forces. Using the 

microforce balance (15), one can derive a relation for the chemical potential such as

ραμα = ∂Ψ
∂ϕα

− ∇ ⋅ ξα − τα (40)

which can be simplified further by replacing ξα from (37).

By a similar Coleman-Noll argument we have,

∂Ψ
∂ρα

= 0, ∂Ψ
∂μα

= 0, ∂Ψ
∂(∇μα) = 0, (41)

suggesting that the thermodynamic process is admissible if and only if the Helmholtz free 

energy density is independent of ρα, μα and ∇μα. Thus, the free energy takes a simpler 

form8,
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Ψ = Ψ (F1, ⋯, FN, ϕ1, ⋯, ϕN, ∇ϕ1, ⋯, ∇ϕN) . (42)

Not all power expended on a spatial region can be transformed into changes in the free 

energy, and part of the power goes into dissipation. Thus, the remaining terms in the 

inequality (36), after considering (37)-(39), are the rate of dissipation potential,

D = ∑
α

Tαdis :Dα − ∇μα ⋅ Jα ≥ 0 .

The definition of the dissipative thermodynamic forces can then be obtained from the 

complementary part of dissipation potential as,

Tα
dis = ∂D

∂Dα
, (43)

Jα = ∂D
∂ ∇μα

, (44)

Where

D = D (D1, ⋯, DN, ϕ1, ⋯, ϕN, ∇ϕ1, ⋯, ∇ϕN, ∇μ1, ⋯, ∇μN) . (45)

2.7 Constitutive Relations for the Admissible Potentials

The continuum theory presented here attempts to provide a general framework for 

addressing many of the complex biological phenomena that take place in cancer. This 

consists of multiple interactions among various constituents. In this regard, it is considered 

that the N-species mixture consists of M solid constituents undergoing both hyper-elastic 

deformation and biological growth and N − M viscous compressible fluid constituents. The 

constitutive relations are defined by proposing two primary potentials, Helmholtz free 

energy, and the rate of dissipation.

2.7.1 Helmholtz Free Energy—We postulate the following general definition of the 

free energy of the mixture,

Ψ = Ψels + Ψchm + Ψint + Ψtaxis, (46)

where Ψels denotes elastic energy for solid species and Ψchm and Ψint represents 

(bio-)chemical energy and interface counterparts, respectively, normally employed in phase-

field models. The free energy functional also includes the energy due to taxis-inducing 

chemical and molecular species, Ψtaxis; see, e.g., [1, 35, 96].

8One can initially assume more general forms of free energy considering contributions of other quantities; e.g., time derivative of the 
volume fraction [98-100]. The Coleman-Noll procedure then results in a corresponding reduction in the forms of the Helmholtz free 
energy.
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Hereafter, we assume the fluid constituents of the mixture are compressible, thus

∂Ψels
∂Fα

FαT = − pαI, M < α ≤ N,

where pα is the classical equilibrium pressure,

−pα = ρα
2 ∂ψα

∂ρα
, M < α ≤ N, (47)

where ρt is the mass density of constituent (4), and the thermodynamic pressure is 

represented as the derivative of free energy per unit mass for each fluid constituent. 

Moreover, the solid species are considered to be isotropic hyperelastic. In a hyperelastic 

body, the Piola-Kirchhoff stress is the derivative of a scalar function W called strain energy 

density. Therefore, the second Piola-Kirchhoff stress is given by,

Sα = det FαFα
−1TαFα

−T = ∂W α
∂Cα

, 1 < α ≤ M, (48)

where Cα = Fα
TFα is the right Cauchy-Green deformation tensor and Wα = Wα(Cα, ϕα) 

represents the strain energy function for the α-th solid constituent9. The strain energy 

density and elastic free energy are related through the mass density of a constituent in the 

reference configuration, W α = ρα0ϕα
0ψαels.

An important class of diffuse-interface or phase-field models of Cahn-Hilliard type are 

characterized by a Helmholtz free energy that consists of a double-well potential function 

for Ψchm = Ψchm (ϕ1, ⋯ , ϕN) called a “coarse-grain” free energy, and an interfacial energy 

of the form,

Ψint = Ψint (∇ϕ1, ⋯, ∇ϕN) = ∑
α

ϵα
2 ∣ ∇ϕα ∣2 , (49)

where ϵα (sometime referred to as the Landau-Ginzburg constants) characterizes the 

interface thickness. The interfacial energy (49) models longer-range interactions among the 

components by representing the effects of large gradients in concentrations that occur at 

interface regions between different constituents.

Following [35, 164], the effect of energy due to taxis-inducing chemical and molecular 

species is included in the free energy by,

Ψtaxis = (ϕ1, ⋯, ϕN) = ∑
α

ϕα ∑
β = 1

L
ηαβcβ, (50)

9The kinematic of biological growth of the solid species along with the constitutive laws are discussed in the following section.
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where cβ, 1 ≤ β ≤ L, are the concentrations of chemical factors that may induce taxis (e.g., 

various sources of nutrient) and ηαβ is the taxis coefficient. In particular, (50) accounts for 

the reaction between concentrations of various vital nutrients in the mixture (such as oxygen 

or glucose) and the constituent α. This relation enables describing complex invasive 

behavior of a tumor observed in in vivo. Here, taxis refers to directional migration toward 

particular chemical or molecular species (i.e., chemotaxis) gradients or toward adhesion site 

gradients (i.e., haptotaxis). In a chemotaxis scenario, cells migrate in the direction of 

increased nutrient concentration [71]. The movement of the nutrient towards the tumor can 

be seen as active transport of the nutrient [54]. Garcke et al [54] studied the effects of 

chemotaxis and active transport on the tumor growth. Through numerical experiments, they 

verified the jump on the nutrient concentration at the tumor interface due to active transport. 

In vascular models of tumor growth (e.g., [9, 96]), the chemotactic term accounts for the 

endothelial cells moving up the concentration gradient of vascular endothelial growth factor 

(VEGF). VEGF is a pro-angiogenic factor released by tumor cells in an effort to recruit new 

vasculature to support further tumor growth [128].

2.7.2 Rate of Dissipation Potential—As discussed in section 2.6, energetic-

dissipative decomposition of the thermodynamic conjugate forces results in the development 

of an energy dissipation rate. Here the dissipation energy potential can be considered as the 

summation of dissipations due to viscosity Dvis and diffusion Ddiff,

D = Dvis + Ddiff ≥ 0 .

For hyperelastic solid constituents,

Dvis (D1, ⋯, DM, ϕ1, ⋯, ϕM) = 0,

where Dα is defined in (9) and we assume the internal viscosity of fluid species can be 

described by a dissipation potential as a general isotropic, second-order tensor function of 

deformation rate,

Dvis (DM + 1, ⋯, DN, ϕM + 1, ⋯, ϕN) = ∑
α

1
2Aα ∣ Dα ∣2 , M < α ≤ N, (51)

where Aα(ϕα) is the shear viscosity of fluid species. The above relation results in a 

dissipative counterpart of the Cauchy stress,

Tα
dis = AαDα, M < α ≤ N . (52)

Cahn-Hilliard type equations are considered in this formulation for characterizing the energy 

dissipation due to diffusion,

Ddiff (D1, ⋯, DN, ϕ1, ⋯, ϕN, μ1, ⋯, μN) = ∑
α

∇μα ⋅ Mα ⋅ ∇μα (53)
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where μα is the chemical potential and Mα = Mα(Cα, ϕα) is the positive semi-definite 

mobility tensor. Using the frame-indifference principle discussed in [43], it can be shown 

that Mα is symmetric and invariant under a change in frame.

2.7.3 Energetic and Dissipative Forces—From the functional forms of Ψ and D, 

one can derive relations for the thermodynamic forces. From (37), the energetic micro-stress 

ξα has the form

ξα = ϵα ∇ϕα . (54)

Using (38) and (43), the Cauchy stress for solid and fluid constituents can be derived as

Tα = Tα
en + Tα

dis =
2

detFα
FαSαFα

T − ϵα ∇ϕα ⊗ ∇ϕα , 1 < α ≤ M

pαI + AαDα − ϵα ∇ϕα ⊗ ∇ϕα , M < α ≤ N
(55)

The ξα enters in species microforce balance (recall (14) and (15)) as a flux and divergence 

term. This suggests that ξα is an stress-type quantity and associated with the interaction 

forces at the interface of the constituents. From (54), one can argue that the microstress ξα 
accounts for cell adhesion due to volume fraction changes at the interface of each 

constituent. In contrary to (for example) the chemotaxis phenomenon which can be 

addressed with a local model, cell adhesion is intrinsically a non-local process [141]. The 

nonlocality arises because the cellular adhesion forms a biological interaction between cells 

and their surroundings such that cells contribute adhesion molecules at its position as well as 

its neighboring region [27]. Following a phase-field approach and acknowledging the 

existence of microscopic force balances, results in automatic incorporation of cell adhesion 

in the current model, a phenomenon that is challenging to address using local continuum 

models [15, 141]. The term ϵα is the interaction parameter and represents the thickness of 

the interface (i.e., how sharp is the interface between the phases). In biological processes 

involved in tumor growth, this term is directly related to the cell-cell adhesion [36, 104]. 

Sharp interfaces (i.e., ϵα close to zero with α indicating tumor constituent) can model cells 

with high adhesion such as epithelial tumors [156] and increasing the value of interface 

thickness enables mimicking the behavior of cells with low adhesion and higher motility as 

glioblastoma and stromal cells [84, 104, 133]. This relation suggests that stronger cell-cell 

adhesion results in sharper interfaces and more compact morphology. The first term in the 

Cauchy stress of solid constituents in (55) reflects the hyperelastic deformation with growth. 

However, the microforce balance of (15) results in another term in the Cauchy stress; i.e., 

ϵα∇ϕα ⊗ ∇ϕα. In biological processes, this term mimics surface tension-like cell-adhesion 

forces in the Cauchy stress and exists in the absence of elastic deformation (see [43] for the 

evolution of this counterpart of the Cauchy stress).

Another dissipative thermodynamic force is the mass flux that can be derived from (44) and 

(53) as,

Faghihi et al. Page 18

J Mech Phys Solids. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jα = − Mα ⋅ ∇μα . (56)

Assuming (56) holds, the equation describing the evolution of species content (recall (17)) 

becomes,

∂ραϕα
∂t + ∇ ⋅ (ραϕαvα) = Sα − ∇ ⋅ (Mα ⋅ ∇μα) . (57)

Making use of (39), the chemical potential can be derived as,

ραμα = ∂Ψels

∂ϕα
+ ∂Ψchm

∂ϕα
+ ∑

β = 1

L
ηαβcβ − ϵαΔϕα − τα, (58)

where Δ denotes the spatial Laplacian operator (i.e., Δ = ∇ · ∇). Relation (58) indicates the 

dependency of μα on volume fractions10.

Equation (57) represents a system of N fourth-order, parabolic partial differential equations 

of the Cahn-Hilliard type. These equations along with the macro-force balance (12), together 

with the appropriate boundary and initial conditions, characterize a general coupled phase-

field and elastic deformation, continuum mixture model of a complex media consisting of 

multiple solid and fluid species. The constituents can be compressible, the fluid species are 

Newtonian, the solid constituents are isotropic hyperelastic, and the effects of diffusion of 

chemical or biological constituents due to chemo- or bio-taxis as well as surface effects due 

to gradients in concentrations are included.

To apply such general models in a meaningful manner to simulate tumor growth, several 

specific details are needed. These include specific forms of the constitutive equations for 

each constituent along with the inclusion of growth effects due to mass exchange and 

deformation. These are discussed in detail in the next section.

3 A Four-Constituent Phase-Field Model of Tumor Growth

In this section, the general multi-species theory described in section 2 is adapted to simulate 

the significant features of the growth of tumors in a microenvironment. We derive a coupled 

formulation for diffusion and large elastic deformation of avascular tumor based on a hybrid 

10-constituent phase-field model proposed by Lima et al. [94, 96]. The tumor volume 

fraction ϕT accounts for proliferative, hypoxic, and necrotic cells and ϕσ indicates the 

nutrient volume fraction so-called nutrient-rich extracellular water according to [35]. In 

particular, we consider a mixture consists of four constituents by considering two 

complementary species, ϕC, and ϕσ0. ϕC represents the normal (healthy) cells, and it is 

complimentary to tumor volume fraction ϕT, while ϕσ0 is the complimentary constituent to 

10While most of the phase transformation theories of the type considered here are consistent with the dependency of the chemical 
potential on volume fractions, in some special situations the chemical potential cannot be expressed as a function of volume fraction 
[50, 51].
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the nutrient volume fraction, hereon called nutrient-poor extracellular water. Then the 

saturation condition of the mixture ϕT + ϕC + ϕσ + ϕσ0, is enforced by rescaling the volume 

fractions. The solid, s = ϕT + ϕC, and fluid, w = ϕσ + ϕσ0 are assumed to vary from 0 to 1 

depending on a constant C by defining s = C and w = 1 − C. This rescaling normalizes the 

values of ϕT and ϕσ to take on values between 0 and 1 and the volume fraction of the healthy 

computed as ϕC = 1 − ϕT.

The tumor cells (proliferative, hypoxic, and necrotic) have similar adhesive properties and 

they prefer to adhere to one another [35, 97], causing a segregation from healthy cells. This 

behavior of separation among phases, typical of binary Cahn-Hilliard systems, is modeled 

by a double-well potential and a capillary interfacial energy. The presence of a nutrient-rich 

volume fraction in the mixture contributes to an increase of the system energy through a 

quadratic term and interacts chemotactically with tumor cells, yielding a directional 

movement towards the nutrient supply [96, 164]. These assumptions yield the following 

chemical and interface components of the Helmholtz free energy of the system:

Ψchm(ϕT , ϕσ) = κϕT
2(1 − ϕT)2 + 1

2δσ
ϕσ2, (59)

Ψint(∇ϕT , ∇ϕσ) =
ϵT

2

2 ∣ ∇ϕT ∣2 , (60)

where the coefficient κ > 0 in the quadratic double-well function is an energy scale giving 

rise to a well-delineated phase separation of the tumor and the host tissues. In (59), δσ is a 

coefficient that controls the increase of energy due to nutrient volume fraction. The 

interfacial surface energy due to spatial gradient of the tumor volume fraction is defined 

through an interaction length parameter ϵT. In particular, ϵT controls the interface among 

tumor cells and other constituents. The effect of energy due to taxis-inducing chemical and 

molecular species is addressed through,

Ψtaxis(ϕT , ϕσ) = − χ0ϕTϕσ, (61)

where χ0 > 0 is a constant governing the relative strength of the interaction between tumor 

cells and nutrient.

We take into account a Cahn-Hilliard type energy dissipation due to diffusion, such as

Ddiff = ∇μT ⋅ MT ⋅ ∇μT + ∇μσ ⋅ Mσ ⋅ ∇μσ . (62)

The coupling effect of deformation on the tumor mass transfer results in the dependency of 

tumor mobility and mass exchange to a measure of deformation. Modeling this dependency 

is discussed in the following section. Finally, the energy dissipation due to viscosity is 

considered to be,

Faghihi et al. Page 20

J Mech Phys Solids. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dvis = 1
2Aσ ∣ Dσ ∣2 , (63)

where Aσ is extracellular water viscosity coefficient [132].

3.1 Kinematics of Hyperelastic, Growing Solid Tumor

The mechanical stresses of a solid tumor have fundamental implications for both its growth 

[72] and response to treatment [160]. For example, it has been shown that compression of 

cancer cells reduces their proliferation rate, induces apoptosis, and enhances their invasive 

and metastatic potential. Thus, tumors that manifest higher stress levels may have lower 

growth rates and a higher tendency to metastasize [26, 30, 40, 78, 79, 85, 91, 157]. 

Moreover, the force applied by the surrounding tissue during the growth of a tumor can alter 

both tumor expansion and shape [72, 74, 159, 160, 162]. Here we consider two mechanisms 

participating in the mechanical behavior of a tumor: the externally applied stress due to 

mechanical interactions among the solid components of the growing tumor and the 

surrounding tissue, and the growth-induced stress due to proliferating cancer cells

We consider the kinematics of growth such that the total deformation gradient result from a 

geometrically necessary elastic deformation associated with mass growth, along with a 

deformation due to an externally applied stress. Consequently, the deformation gradient of 

the tumor, FT, accepts the following decomposition (see, e.g., [57]),

FT = FT
SFT
G, (64)

where FT
G is the growth deformation gradient tensor, that acting alone leads to incompatible 

deformation [144] leading to residual stresses developments. FT
S is the elastic component of 

the deformation gradient tensor that accounts for the elastic deformation required to ensure 

compatibility (resulting in the internal growth-induced stress) as well as the deformation due 

to external stress such as surrounding tissue confinements [57]. The multiplicative 

decomposition (64) is based on introducing an intermediate unstressed configuration by 

elastic distressing of the current configuration ℬt to zero stress. Assuming the elasticity 

parameters are independent of tumor volume fraction, one can write

∂Ψels

∂FT
= ∂Ψels

∂FT
S : ∂FT

S

∂FT
, (65)

where

∂FT
S

∂FT
= ∂FT(FG)−1

∂FT
= I ⊗ (FG)−1 . (66)

We consider a compressible Neo-Hookean material for the tumor material11 that is a 

commonly used constitutive model for the elastic response of soft tissue [53, 105, 157]. The 

strain energy function is,
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W = GT
2 (JT

S)− 2
3IC1

S − 3 + KT
2 (JT

S − 1)2, (67)

where GT and KT are shear and bulk modulus, respectively, and IC1
S  is the first invariant of 

the right Cauchy-Green deformation tensor defined as,

IC1
S = tr(CT

S), (68)

where CT
S = (FT

S)TFT
S. In (67), JT

S is a volume change measure,

JT
S = det(CT

S) = det(FT
S) . (69)

From (55) and the specific form of strain energy (67), a relation for the Cauchy stress is 

obtained as,

TT = GT

JT
S5 ∕ 3 BT

S − 1
3tr(BT

S)I + KT(JT
S − 1)I (FT

G)−T − ϵT ∇ϕT ⊗ ∇ϕT , (70)

where BT
S = FT

S(FT
S)T  is the left Cauchy-Green deformation tensor. The following relations 

can be also derived for the components of (70),

JT
S = 1

det(FT
G)
JT , (71)

BT
S = BT(FT

G)−1(FT
G)−T , (72)

det(BT
S) = det(BT) ⋅ det (FT

G)−1(FT
G)−T . (73)

The remaining derivation related to Ψels is to evaluate the effect of deformation on the 

chemical potential (58). Taking into account that FG can be a function of volume fraction, 

one can write,

∂Ψels

∂ϕ = ∂Ψels

∂FT
: ∂FT

∂FT
G : ∂FT

G

∂ϕ (74)

11Experimental studies indicate that the elastic response of the soft biological tissues resembles that of rubberlike materials and 
polymers [39, 47, 107] and is often modeled as hyperelastic. To derive a general tumor model framework, without loss of generality, 
we consider a Neo-Hookean model while other hyperelastic models can be substituted, including classical models of Ogden [122, 123] 
and Mooney-Rivlin [115, 134] or the extended models [21, 33, 75, 130]. Another common assumption is that soft biological tissues 
are incompressible exhibiting viscoelastic behavior [31]. We assumed that the tumor tissue is compressible, since the porous nature of 
the tumor may cause significant compressibility when fluid locally migrates into or out of the tissue. It is also assumed that the tumor 
growth is an extremely slow phenomenon, and it is sufficient to consider a time-independent model.
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where

∂FT
∂FT
G = FT

S ⊗ I . (75)

Skalak et al [142, 143] cast the kinematics of growth into the mathematical theory of finite 

strain continuum mechanics through the notion of “volumetric growth”. However, 

considering the kinematic effect of growth alone, where material is added to or lost from the 

body, might lead to incompatible adjacent neighborhoods of the body in Euclidean space 

and FG cannot then be expressed as the gradient of a vector field12. In (64) both FG and FS 

are incompatible, but their multiplicative decomposition is compatible by construction. This 

multiplicative framework has been widely employed to model certain features of biological 

growth (e.g., [5, 6, 60, 102, 150, 166]). Nevertheless, some investigators, (e.g., [18, 76]), 

argued against such a decomposition based on the mass gain or loss during growth. They 

pointed out that if the mapping between configurations is defined only by the deformation, 

in the case of biological growth, the notion of a fixed reference configuration vanishes. Such 

a fundamental deficiency is valid for the theories of growth that consider tissue as a single-

constituent solid continuum. However, the growth models based on mixture theory, where 

different species can possess different natural configurations, removes the challenge 

encountered in identifying reference configurations for the growing tissue [4].

3.2 Constitutive Relations for Deformation Feedback on Diffusion

Prior to presenting an evolution relation for the growth tensor, we first postulate the way 

deformation is coupled to the diffusion equation. To account for the restriction of tumor 

expansion produced by the surrounding tissues, one might consider the dependency of 

diffusion on deformation [55]. Such hypothesis testing using in vivo data is shown to 

significantly improve the predictability of computational models [74, 97, 160, 161] in 

addressing the experimental observations. Most of the previous models considered the 

dependency of the mobility tensor (i.e., the diffusion coefficient in reaction-diffusion 

models) to a stress quantity. However, the principle of material frame-indifference [43] 

shows that the mass flux can be a function of the right Cauchy-Green deformation tensor or 

its invariants, volume fraction, and gradient of chemical potential, such as

JT = JT(CT , ϕT , ∇μT) . (76)

Thus, from (56) along with considering the dependency of the tumor mobility tensor on the 

volume fraction [94, 96], we postulate the following form describing tumor mobility, MT = 

MTI13,

12The decomposition of the deformation gradient into elastic and growth parts in (64) was first introduced in biomechanics by 
Rodrigez et al [136] to address the effects of incompatible growth.
13It should be noted that the relation ∇μα · Jα ≤ 0 obtained from the rate of dissipation potential of each constituent ensures no matter 
how large the deformation, it cannot induce a flow of mass in the absence of a volume fraction gradient.
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MT = λT
mobϕT

2(1 − ϕT)2 . (77)

The double-well functional form of the dependency to the volume fraction in (77) assumes 

that the pure phases (i.e., just tumor (ϕT = 1) or healthy cells (ϕT = 0)) do not diffuse. This 

functional ensures the mobility is always positive and avoids possible inconsistency in the 

phase field model [41, 71]14. Moreover, the inhibitory effect of the surrounding tissue on 

tumor growth is mimicked by an exponential decay, such as

λT
mob = αT

mob exp( − γTmobJT), (78)

where αT
mob and γTmob are constants and JT = det(CT ) is a measure of volume change.

We postulate that the following source terms govern the tumor mass exchange term

ST = λT
paϕT(1 − ϕT)ϕσ . (79)

The relation for the tumor source term addresses the biophysical processes including (i) 

continuous growth of the proliferating tumor cells when consuming nutrient and (ii) the 

tumor volume fraction levels off when reaching the volume fraction of 1. The constant rate 

of the cellular mitosis minus apoptosis is indicated by λT
pa, characterizing the growth in the 

solid phase. We thus assume that growth evolution in the mass balance, as the process of 

mass addition and loss, is directly related to both the tumor and nutrient-rich extracellular 

water volume fractions. Moreover, a relation for λT
pa is proposed to account for the 

mechanical effects of decreasing the rate of tumor cell proliferation with increasing the 

surrounding tissue stress, such as

λT
pa = αT

pa exp( − γT
paJT), (80)

where αT
pa and γT

pa are constants controlling decay of the growth stretch with increasing 

tumor volume. The further dependency of λT
pa addresses the increase in proliferation rate in 

the area with high tumor cell density. The relation between proliferation rate and cell density 

is shown in a recent investigation using in vitro measurements [95].

The mobility tensor for nutrient rich water is assumed uniform throughout the domain, given 

as

Mσ = MσI, (81)

14Lee et al [89, 90] showed that the long-time behavior of Cahn-Hilliard equation with a quadratic degenerate mobility, i.e., 

MT = 1 − ϕT
2  does not reduce to surface diffusion as its long-time, sharp interface limit.
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where Mσ is a constant describing the nutrient mobility. The nutrient concentration 

decreases, as it is consumed by the tumor cells, at a rate λσ. Here, we neglect the natural 

decay and healthy cell consumption of nutrient, as we consider that the healthy cells are in 

homeostasis. With these assumptions, the nutrient source term is given as

Sσ = − λσϕTϕσ, (82)

where λσ is a constant.

In the current formulation, the feedback of deformation on the tumor mobility and source 

term is considered through a function of volume change. Even in the absence of other 

biological and chemical effects, there is no general agreement in the literature on whether 

growth processes relate best to stress or strain [4]. Here we argue that the stress is an 

unobservable quantity and does not directly appear in observational data to support or 

contradict any particular hypothesis with respect to an explicit form of the stress tensor. 

Thus, in the relations of tumor mobility (78), tumor mass exchange (80), and (consequently) 

the evolution equation of the growth stretch ratio (85), we consider a representative measure 

of the tumor deformation JT, which correlates an increase or decrease in the tumor volume 

with the increase or decrease of the surrounding tissue induced stress to the solid tumor. 

While the mathematical arguments for the proposed mechanical feedback on the tumor 

mobility and source term are intuitive, more physics-based constitutive relation is needed 

based on the underlying mechanisms of such complex bio-physical phenomena from cellular 

and sub-cellular investigations.

3.3 Constitutive Relation for Growth Tensor

The continuum mechanics treatment of growth introduces FT
G as a new unknown that is 

neither governed by a new balance law nor can be found based on thermodynamic 

arguments. Thus, a constitutive relation must be postulated for the evolution law of growth 

in relation to physical, biological, and chemical effects. Proposing an evolution relation for 

growth can follow two general approaches. Motivated from engineering materials modeling, 

micromechanically-based evolution equations might be considered for growing tissue. 

However, this approach encounters additional challenges in describing biological growth due 

to the requirement of in vivo characterization of living tissue and strong dependency of the 

growth law on the type of tissue under consideration. Additionally, micro-mechanical based 

models might lead to a large number of model parameters and challenges the predictive 

capability of the model due to the lack of experimental observations to calibrate and validate 

the model. Another approach consists of hypothesizing phenomenological laws based on 

experimental observations. Such models result in the development of theories that can be 

effectively informed by specific experiments from which model parameters can be 

evaluated15. Since a primary goal of the current formulation is to develop a tumor model 

that can ultimately be informed by experimental data of tumor evolution, we follow the latter 

approach.

15For instance, in many physiological systems one can consider the notion of homeostatic, indication that growth occurs in a way that 
minimizes the difference between the actual stress and a preferred stress, to propose a differential law for the evolution of the growth 
[4].
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Tumor growth is taken to be anisotropic and the growth component of the deformation 

gradient (growth tensor) is given by

FT
G = ΛT

GΩ, (83)

where ΛT
G is the growth stretch ratio (ΛT

G > 1 indicates growth and ΛT
G < 1 represents 

resorption) and

Ω =
ω1
ω2
ω3

, ω1
2 + ω2

2 + ω3
2 = 1 (84)

is the anisotropy tensor, with ω1, ω2, and ω3 being anisotropic growth multipliers [10, 11, 

13, 14] and isotropic growth (see, e.g., [147, 166]) corresponds to Ω = I. Such anisotropic 

growth allows preferential expansion of tumors in the direction of low stress and enables 

stress-relaxation even in the absence of viscose dissipation, a phenomenon that is observed 

experimentally (see, e.g., [72]).

If the mass balance equation is not included in the formulation, the evolution of the growth 

stretch ratio 16 can be related to the induced pressure expressed in terms of the trace of the 

second Piola-Kirchhoff stress [102, 150], von Mises stress [146, 147], or the Mandel stress 

[73]. However, a more realistic representation of the biophysical process of a growing tumor 

in a heterogeneous microenvironment must account for both diffusion and deformation. In a 

coupled diffusion and deformation setting, the growth stretch ratio ΛT
G and creation or 

degradation rate of the solid tumor constituent through mass transfer must be explicitly 

related to one another. We have derived a relation among the growth tensor evolution and the 

mass exchange terms in Appendix B. According to (108), and considering a domain 

Ω ∈ ℝd(d = 1, 2, 3), an evolution equation for the growth stretch ratio can be written as,

1
ΛT
G

∂ΛT
G

∂t = 1
d (ST − ∇ ⋅ (MT ⋅ ∇μT)) . (85)

As opposed to the phenomenological evolution equations of growth stretch (e.g., [125, 146, 

147, 157]), the relation (85) is derived based on physically and mathematically consistent 

framework (inline with [7, 116]) without the requirement of introducing additional model 

parameters.

3.4 Summary of Governing Equations

Using the macro-force balance (12) and neglecting the body forces, the governing equation 

for deformation of tumor and nutrient rich water reduces to,

16In the absence of mass transport, the biological growth is modeled solely based on the evolution of the growth stretch ratio, see, e.g., 
[73, 125, 157].
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∂ρTϕTvT
∂t + ∇ ⋅ (ρTϕTvT ⊗ vT) = ∇ ⋅ TT , (86)

∂ρσϕσvσ
∂t + ∇ ⋅ (ρσϕσvσ ⊗ vσ) = ∇ ⋅ Tσ, (87)

where

TT = 1
ΛT
G

GT

JT
S5 ∕ 3 BT

S − 1
3tr(BT

S)I + KT(JT
S − )I Ω−1

− ϵT ∇ϕT ⊗ ∇ϕT ,
(88)

Tσ = − pσϕσI + 1
2Aσ(∇vσ + ∇vσT) . (89)

The species mass balance relations (17) for two constituents are,

∂ρTϕT
∂t + ∇ ⋅ (ρTϕTvT) = ST − ∇ ⋅ (MT ⋅ ∇μT), (90)

∂ρσϕσ
∂t + ∇ ⋅ (ρσϕσvσ) = Sσ − ∇ ⋅ (Mσ ⋅ ∇μσ), (91)

where ST and Sσ are defined in (79) and (82), Mσ is defined in (81), the form of MT is 

presented in (77). Neglecting the external microforce, the chemical potentials are defined as:

ρTμT = 2κϕT(2ϕT
2 − 3ϕT + 1) − χ0ϕσ − ϵT

2ΔϕT

+ JT
ΛT
G

∂ΛT
G

∂ϕT
(TT + ϵT ∇ϕT ⊗ ∇ϕT) : I, (92)

ρσμσ = 2 1
δσ

ϕσ − χ0ϕT . (93)

Differential equations (86), (87), (90), and (91), characterize the coupled diffusion and 

hyperelastic deformation of tumor growth. Additionally, Ambrosi and Mollica [6] argue that 

in the case of biological tissues, the characteristic velocities are so small that the process can 

be conveniently modeled as quasi-static. Assuming the velocities of tumor and nutrient rich 

extra cellular water are negligible (vT ≈ 0 and vσ ≈ 0) and considering isotropic growth 

(FT
G = ΛT

GI), the following (simplified) system of partial differential equation for mass 

balance and deformation equations is obtained,
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∂ϕT
∂t = ST − ∇ ⋅ (MT ∇μT),

μT = 2κϕT(2ϕT
2 − 3ϕT + 1) − χ0ϕσ − ϵT

2ΔϕT

+ JT
ΛT
G

∂ΛT
G

∂ϕT
TT : I,

∂ϕσ
∂t = Sσ − ∇ ⋅ (Mσ∇μσ),

μσ = 2 1
δσ

ϕσ − χ0ϕT ,

∇ ⋅ TT = 0 .

(94)

In the above relations, it is also assumed that the mass density of the tumor and nutrient are 

constant, thus ρT and ρσ do not appear in mass balances. For the numerical experiments, the 

governing equations of the four-species mixture models in (94) are numerically 

approximated using finite elements formulation by developing a new solution algorithm (see 

Appendix C).

4 Numerical Results

In this section, the results of numerical experiments are discussed to investigate the main 

features of the proposed model. The numerical analyses are conducted on a tumor growing 

on the domain Ω = [−1, 1]2 with an ellipsoidal shaped initial tumor subdomain in the center 

of Ω,

(x, y) : x
2

0.8 + y2

1.1 ≤ 0.22 . (95)

In all numerical experiments, a regular triangular mesh with 6400 elements and Δt = 0.05 

selected to ensure spatial and temporal accuracy. The parameter values used in the numerical 

experiments are shown in Table 1. We present the simulation results of four different cases. 

In one set of numerical experiments, the initial nutrient volume fraction is taken to be 

uniform, while in the other set a nutrient gradient is initially prescribed. For each initial 

nutrient scenario, the effect of mechanical stress feedback on tumor growth is investigated 

by considering two cases: unconfined growth representing freely growing tumor without the 

effects of the surrounding tissue characterized by γT
pa = γTm = 0, and confined growth 

indicating the inhibitory effect of the externally applied stress on the growing tumor by 

assigning γT
pa = γTm = 1. The motivation for choosing these cases is in vitro data obtained 

from multicellular tumor spheroid experiments [3, 30, 72, 127, 163], in which the tumor 

cells are cultured in a matrix (polymeric gel). Such in vitro models mimic the confinement 

induced by the tumor environment (surrounding tissues) and enable systematic investigation 

of the externally applied stresses on tumor growth. These studies show that the mechanical 

properties of the surrounding matrix have a significant influence on the proliferation and 
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migration of tumor cells [3, 30, 127, 163]. We aim to investigate the capability of the 

developed mixture model by simulating the underlying phenomena observed in these 

experiments through the mechanical stress feedback on the development of the tumor.

4.1 Uniform Initial Nutrient Volume Fraction

The first set of the numerical experiments are conducted by assigning a spatially uniform 

nutrient distribution (ϕσ=0.5) as the initial condition and imposing no flux boundary 

conditions of Neumann type on ϕT, μT, and μσ and Dirichlet conditions on ϕσ and 

displacement uT:

∇ϕT ⋅ n = 0 , ∇μT ⋅ n = 0
ϕσ = 0.5 , uT = 0 on Γ

where Γ is the Lipschitz boundary of Ω and n is a unit exterior normal vector on Γ. The 

snapshots of the tumor and nutrient volume fractions for the confined (panels A-F) and 

unconfined (panels G-L) tumor growth are shown in Figure 1. In both cases, the tumor 

volume fraction uniformly increases over time while the nutrient is consumed in the center 

of the tumor. However, including the effect of mechanical feedback of the surrounding tissue 

on tumor development in the confined case, results in reducing the growth rate leading to 

70.82% smaller tumor area17 at the final simulation time t=12.5. These results are in 

agreement with the in vitro models of tumor cells growth within a polymer gel, in which 

increasing the gel stiffness inhibits tumor growth by reducing tumor cell proliferation and 

inducing apoptosis [30, 72, 87].

It is important to note that the proposed theory couples two mechanisms of tumor growth 

governed by the source term ST in the diffusion equation of tumor (79), and the growth 

stretch ratio ΛT
G that evolves according to (85). In a finite element simulation, the former 

mechanism corresponds to occupying more elements with the tumor volume fractions, while 

the latter growth mechanism results in the tumor elements stretch. Both mechanisms affect 

the rate of increase in tumor area and are controlled by the term λT
pa according to (80). Thus, 

the postulated exponential decay with the model parameters γT
pa and αT

pa represents the 

property of the tumors surrounding environment that regulates the externally applied stress. 

For instance, higher values of the model parameter γT
pa lowers the rate of tumor area 

expansion with time by simulating stronger confinement induced by the surrounding tumor 

environment.

Figure 2 presents the spatial distributions of the growth stretch ratio ΛT
G (panels A and D), 

the normal component of the Cauchy stress along x-axis Txx (panels B and E), and the 

magnitude of the Cauchy stress tensor ∣T∣ in the tumor and surrounding host tissue (panels C 

and F) for unconfined (top row) and confined scenarios (bottom row), respectively. The 

spatial profiles of the tumor growth stretch ratio18 in these figures show a higher growth rate 

17The numerical values provided in this section correspond to the numerical experiments conducted using the model parameters in 
Table 1.
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in the periphery of the tumor (a ring close to the interface of tumor and surrounding tissues) 

with 10.97% higher ΛT
G in periphery compared to tumor interior at t=12.5. This response can 

be explained by the spatial distribution of nutrients and its evolution throughout tumor 

development. As observed in experiments [30, 147], during the avascular stage of tumor 

growth, the supply of nutrients from the environment is transported to the tumor interior via 
diffusion. This process leads to a gradient of nutrient concentration, and an associated 

gradient in growth rate, from the periphery to the interior of the tumor. The simulation 

results of nutrient volume fraction (Figure 1) and the growth stretch ratio (Figure 2) indicate 

that the proposed model is able to capture this physical process. Aligned with simulations 

from multiscale agent-based models [103, 121, 135], the formation of a ring in the ΛT
G

profile that varies radially in space suggests that the periphery contains the proliferative 

tumor cells while the quiescent and necrotic cells are in the tumor interior, depending on the 

nutrient availability. Figure 3 shows the time evolution of tumor area normalized by the 

domain area. For these plot, a larger domain size Ω = [−2.5, 2.5]2 is employed to allow larger 

tumor size. The results of unconfined growth indicate that after the initial period of 

monotonic growth the rate of increase in tumor area reduces with time. Such responses 

suggest that the avascular tumor may not always grow indefinitely even in the absence of 

external confinement [6, 7, 165, 166]. Such a decrease in the growth rate can occur when the 

rate of tumor growth overcomes the nutrient transport characterized by Mσ, known as 

diffusion-limitation in avascular tumor growth [109, 111, 117]. This phenomenon leads to an 

avascular tumor reaching a steady-state size, which corresponds to a balance between 

proliferation and apoptosis and agrees with both in vivo and in vitro experiments [3, 72, 88, 

108, 110, 148]. In principle, the non-uniform distribution of nutrients leads to heterogeneous 

growth, and hence, the generation of residual stress retained inside the tumor that inhibits 

tumor cell proliferation [4, 17, 46, 147]. However, it is shown that the stress field generated 

in unconfined growth does not considerably impact the size of the tumor, compared to the 

surrounding tissue confinement [7, 78].

The Cauchy stress profiles in Figure 2 (panels C and F) indicate that, in both confined and 

unconfined scenarios, the stress magnitude is higher in the tumor periphery compared to the 

interior of the tumor. The ratios of the average ∣T∣ in the periphery to interior regions are 

approximately 9.1 for the unconfined and 15.5 for the confined cases at the final time t=12.5. 

The simulation results of Txx show that in the radial direction (along y-axis) the stress within 

tumor interior area is compressive (negative sign) and they diminish radially in space at the 

interface of the tumor with the surrounding tissue. However, the stress in the circumferential 

direction (Txx along the x-axis) is compressive and spatially uniform within the tumor 

interior, and it turns to tensile (positive sign) at the periphery. Such stress developments are 

also important in the vascular stage of tumor growth in which the compressive stress in the 

tumor interior can collapse blood vessels. Additionally, competition among compressive and 

tensile stresses at the interface of the tumor and normal tissue may result in deformation of 

peritumoral vessels [124, 147].

18We note that ΛT
G = 1 in the surrounding tissue.
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Comparing the growth stretch ratio and the Cauchy stress developments in confined and 

unconfined growth scenarios (Figure 2, panels A and D) shows the remarkable regulatory 

effect of the externally applied stress. Such stress induced by the surrounding tissue on 

tumor cell proliferation suppresses the growth rate and reduces the stress development in the 

solid tumor. The formation of a highly proliferative ring in the ΛT
G profile and the effect of 

surrounding tissue confining stress applied on tumor shown in Figure 2 are in agreement 

with experimental observations [3, 30, 113, 114] and analytical studies under fully 

symmetric spherical growth assumption [7, 46, 78, 138, 140, 165]. The physical phenomena 

captured by the proposed model, naturally arise from the phase development of the tumor 

and mathematical consistency among the growth tensor and mass exchange, without any ad 

hoc introduction of these processes. Additionally, the current phase-field mixture model 

accounts for the surface tension-like force (due to cell-cell adhesion) at the interface of the 

tumor and healthy constituents. Such microscopic force is controlled by the interface 

thickness parameter ϵT, and promotes the higher compressive stress in the tumor periphery 

(see [43] for numerical results of the evolution of adhesion force). In this regard, the 

proposed theory accounts for the nonlocal cell adhesion effect on the solid tumor stress and 

enables capturing the responses of high adhesion (e.g., epithelial tumors [156]) and low 

adhesion and higher motility cells (e.g., glioblastoma and stromal tumors [84, 104, 133]).

4.2 Spatially Varying Initial Nutrient Volume Fraction

In the second set of the numerical experiments, we investigate the role of the chemotactic 

term on the evolution of the tumor growth. In this case, we considered the following 

boundary condition at the top and bottom boundaries of the domain, Γtb,

∇ϕT ⋅ n = 0 , ∇μT ⋅ n = 0
∇ϕσ ⋅ n = 0 , uT = 0 on Γtb .

However, on the left and right boundaries Γlr, Dirichlet boundary conditions are imposed on 

ϕσ to create a nutrient gradient along x direction,

∇ϕT ⋅ n = 0 , ∇μT ⋅ n = 0
ϕσ = 0.1 and 0.9 , uT = 0 on Γlr,

with nutrient volume fraction of ϕσ=0.1 at the left boundary, and ϕσ=0.9 at the right 

boundary. With these boundary conditions, the scenario mimics the effects of a nutrient 

source (for example a blood vessel) on the right side of the tumor.

Figure 4 shows snapshots of tumor and nutrient volume fractions, at t = 0.5, 5.0, 12.5. 

According to (61), the nutrient acts as a chemoattractant in the proposed model; that is, the 

diffusion of the tumor volume fraction is strengthened by nutrient gradients. As a result of 

this effect, in both the confined and unconfined cases, the tumor grows towards the direction 

of higher nutrient concertation (right boundary) [49, 54, 96]. Over time, the chemotactic 

effect results in a non-symmetric shape of the tumor in which the right interface between the 

tumor and healthy cells has approximately 60% higher thickness. Higher thickness of the 

tumor interface captures the increase of the tumor proliferation at the higher nutrient 
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environment. These figures indicate that the proposed mixture theory can characterize the 

development of heterogeneous morphology and invasive patterns as observed in both in vivo 
and in vitro experiments [52, 129, 162, 168]. Similar to the uniform initial nutrient scenario, 

the inhibitory effect of the surrounding tissue stress on tumor development in the confined 

case (Figure 4, bottom two rows) reduces the growth rate leading to 71.04% reduction in 

tumor area at the final time t=12.5. Additional numerical experiments show that the intensity 

of tumor cells migration towards nutrient sources is proportional to the value of the 

chemotactic parameter χ0.

The spatial distributions of the ΛT
G, Txx, and ∣T∣, for the spatially varying nutrient scenario, is 

shown in Figure 5. As expected, the proliferative tumor cells tend to concentrate on the 

higher nutrient area, leading to approximately 45% thicker proliferation ring with 2.75% 

higher value of growth stretch ratio on the right side compared to the left side of the 

simulated tumor periphery at t=12.5. In these figures, the compressive Cauchy stress in the 

tumor interior remains the same compared to the uniform nutrient scenario. However, 41.3% 

higher tensile circumferential stress in the tumor periphery region is observed in the right 

side of the tumor. Additionally, in the confined case (Figure 5, panels D, E, and F), the 

tumor cell proliferation is suppressed in the direction of higher mechanical stress, in 

agreement with experimental observations [30].

5 Discussion

We have developed a general mixture theory for mass transfer of multiple constituents to 

address the key mechano-chemo-biological mechanisms involved in avascular tumor growth 

at the tissue scale, while accounting for certain phenomena at the cellular scale. The local 

species mass balance relations result in a system of fourth-order parabolic partial differential 

equations of the Cahn-Hilliard type to be solved together with the deformation differential 

equations incurred by the macro-force balances. These equations, along with appropriate 

boundary and initial conditions, characterize a general, coupled phase-field and hyper-elastic 

deformation, continuum mixture model of a complex media consisting of multiple solid and 

fluid species. The constituents can be compressible, the fluid species are Newtonian, the 

solid constituents are isotropic hyperelastic, and the effects of diffusion of chemical or 

biological constituents due to chemo- or bio-taxis, as well as surface effects due to cell 

adhesions, are considered. We then specialized the general framework to describe the 

response of a mixture consisting of four constituent volume fractions: tumor cells, nutrient-

rich extracellular water, nutrient-poor extracellular water, and healthy cells. We were 

particularly interested in modeling biological and chemical factors, as well as the 

mechanical cues to tumor cells and their link with tissue level tumor progression. In addition 

to mass transfer, the growth effects and its interaction with the deformation are included in 

this model through the decomposition of the tumor deformation gradient into elastic and 

growth components. To fully characterize the biological growth in relation to mechanical, 

biological, and chemical effects, constitutive relations were postulated for the tumor growth 

while accounting for the deformation feedback on the mass transfer processes. In particular, 

we proposed phenomenological constitutive models accounting for the mechanical effect of 

decreasing the rate of tumor cell proliferation with increasing tumor volume. In this regard, 
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the mobility tensor and mass exchange source term in the diffusion equations of the tumor 

species is considered as a decay function of the tumor of volume change indicating the 

increase/decrease of induced pressure from surrounding tissues. Both the diffusion source 

term and the growth deformation gradient tensors characterize the cancer cell proliferation 

and apoptosis. As a result of this physical feature, an evolution equation is derived for the 

growth part of the deformation gradient as a function of mass exchange terms. The 

differential equation relating the growth stretch ratio and the mass growth rate ensure the 

mathematical consistency of the tumor growth model.

Numerical experiments are conducted by means of the finite element solution of the model. 

The computational results on the spatio-temporal evolution of simulated tumors reveal a 

number of important capabilities of the proposed theory in capturing key features of 

avascular tumor growth. In particular, it is demonstrated that the directional movement of 

tumor cells towards the nutrient supply, due to the chemotactic effect, results in asymmetric 

morphology of the tumors from the initially symmetric shape. It is also shown that stress in 

the tumor interior is compressive while the stress is tensile at the interface of the tumor and 

surrounding tissue. Additionally, the evolution of the growth deformation gradient indicates 

a higher growth rate in the periphery region of the tumor compared to the tumor interior. The 

evolutions of the stress and growth stretch ratio denote the inhibitory effect of the externally 

applied stress induced by the surrounding tissue on tumor cell proliferation. Accordingly, the 

proposed model is capable of describing the critical mechano-chemo-biological features of 

avascular tumor growth in the various microenvironment of living tissue, in agreement with 

the experimental studies in the literature [3, 30, 72, 87, 88, 148].

The proposed theoretical framework of tumor growth is built on the previous diffusion-based 

models of tumor growth in the microenvironment, e.g., [6, 35, 57, 76, 102, 120, 160], as well 

as purely mechanical models simulating the effect of macroscopic mechanical stress on the 

tumor cell proliferation, e.g., [10, 46, 92, 125, 143, 147, 165, 166], in the literature. The 

current contribution advances the previous efforts by developing a fully coupled deformation 

and mass transfer model, based on phase-field mixture theory, to address the fundamental 

governing equations of biological growth. In this regard, the proposed model provides a 

unified mathematical framework for simulating major biophysical phenomena encountered 

in tumor progression, in a thermodynamically consistent fashion. Several important physical 

processes captured by the proposed model naturally arise from the mathematical derivations, 

without any ad hoc introduction of these processes. For example, following a phase-field 

approach and recognizing the existence of microscopic force balances in the current theory, 

results in the incorporation of the stress developments due to tumor cell adhesion at the 

interface of tumor and surrounding phases. Additionally, the formation of the proliferative 

ring in the periphery region of a tumor inherently arises from the consistency of the 

evolution equation of the growth deformation gradient with the nutrient driven biological 

growth characterized by the mass transfer.

Although the proposed model addresses critical mechanisms in tumor development 

including the coupling of stress and growth, future investigations are required to overcome 

the limitations of the constitutive models. While the mathematical arguments for the 

mechanical feedback on tumor development are intuitive, the proposed constitutive relation 
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is a starting point for describing complex biological events involved in biological growth. 

Perhaps, identification of appropriate evolution equations for the growing mass is one of the 

most challenging problems in biomechanics and mechanobiology. The postulated 

constitutive relations for the inhibitory effect of mechanical stress on tumor cell 

proliferation, as a function of a deformation measure, needs to be examined and enhanced 

with clear biomechanical interpretations as underlying mechanisms of this phenomena that 

are merging from cellular and sub-cellular investigations. Furthermore, considering that the 

tumor growth is both organ and patient-specific, future insights from both theory and 

experiment are needed to validate and refine the constitutive models proposed in this 

contribution. Further areas to be explored are assessing the predictive capabilities of the 

proposed model concerning the in vivo measurements of cancer development as well as 

investigating the influence of organ confinement on tumor growth [101]. Additionally, 

extending the computational implementation to isolate mechanical interactions among 

cancer cells and the environment enables studying a range of phenomena observed in in 
vitro tumor spheroids under stress [72, 108, 110]. Important avascular tumor responses to be 

investigated using this model include the non-sphericity of tumor morphology growing in 

stiffer mechanical environment [109], as well as stress-driven cell migration, proliferation, 

and death [30, 46].

6 Conclusions

We have developed a general thermodynamically consistent theory, based on multispecies 

phase-field methods to address the multiphysics and multiscale mechanisms involved in 

tumor growth in a heterogeneous microenvironment. The proposed theory provides a unified 

mathematical framework for developing high-fidelity tumor growth models by considering, 

for example, the interactions among various tumor constituents, angiogenesis phenomena, 

and the effect of different therapeutic strategies.
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Appendices

A Deriving Force Balances From The Principles of Virtual Power

An alternative approach to determine the associated balance of macroscopic and microscopic 

forces is to use the principle of virtual power; see, e.g., [58, 63]. The main feature of this 

classical principle is a physical structure involving thermodynamic conjugate forces through 

the manner in which they expend power. This allows one to use the virtual-power principle 

to determine local and nonlocal force balances when the forms of the balances are not 

known a priori and provide a foundation to build more general theories; see, e.g., [44, 64, 65, 

158].
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The form of the power expenditure is determined by the terms contributing to the energy 

sources and postulated in the first and second laws of thermodynamics. In this regard, the 

internal virtual power is expressed in terms of the energy contribution in ℛt such as

Pint = ∑
α
∫ℛt

Tα :Dα − πα
dαϕα

dt + ξα ⋅ ∇ dαϕα
dt dV . (96)

The internal power is balanced by the power expended by traction tα on the surface ∂ℛt and 

body force bα acting within the body to account for the inertia,

Pext = ∑
α

∫∂ℛt
tα ⋅ vαdA + ∫ℛt

(ραϕαbα ⋅ vα − τα
dαϕα

dt )dV + ∫∂ℛt
mα

dαϕα
dt dA

.
(97)

To account for the microscopic boundary conditions that arise from the volume fraction 

gradients, it is further assumed here that the external power is affected by the micro traction 

mα that is a force conjugate to the time change of volume fractions on constituent interfaces 

[68, 120]. If we define virtual velocity to be (vα, dαϕα ∕ dt) and write (96) and (97) for the 

corresponding internal and external expenditures of virtual power, then the principle of 

virtual power is the requirement that the virtual power balance Pint = Pext be satisfied for 

any subregion ℛt of the deformed body and any virtual velocity V. Using the divergence 

theorem,

∫ℛt
Tα :LαdV = ∫∂ℛt

(Tαn)vαdA − ∫ℛt
(∇ ⋅ Tα)vαdV ,

∫ℛt
ξα ⋅ ∇

dαϕα
dt dV = ∫∂ℛt

(ξα ⋅ n)
dαϕα

dt dA − ∫ℛt
(∇ ⋅ ξα)

dαϕα
dt dV ,

and substituting into (96), along with equating the external power to the internal power 

(Pint = Pext), results in,

∑
α

∫∂ℛt
(Tα n − tα)vαdA + ∫ℛt

( − ∇ ⋅ Tα − ραϕαbα)vαdV +

∫ℛt
( − πα − τα − ∇ ⋅ ξα)dαϕα

dt dV + ∫∂ℛt
(ξα ⋅ n − mα)dαϕα

dt dA = 0 .
(98)

Since ℛt and virtual velocities are arbitrary, the microscopic and macroscopic force balances 

and traction conditions follow form (98),

macroforce balance : ∇ ⋅ Tα + ραϕαbα = 0, (99)
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microforce balance : πα + τα + ∇ ⋅ ξα = 0, (100)

macrotraction condition : tα = Tαn, (101)

microtraction condition : mα = ξα ⋅ n . (102)

As indicated previously, the microforces πα, τα, and ξα are generalized forces that arise due 

to nonlocality encountered in the evolution of phase boundaries [68, 83]19. In the context of 

biological events responsible for the growth of a tumor, these terms represent the power 

expended by the interaction and adhesion between cell concentrations due to rates of change 

of each volume fraction on the surface of the full mixture [35, 164].

The relations (99) - (102) demonstrate the consequence of the principle of virtual power. 

This shows that after postulating the proper form of energy balance law, the virtual power 

balance encapsulates the local force balance (12) as well as additional balance laws 

representing the events in smaller scales (15). In particular, without assuming a priori that 

the force and momentum balance laws are satisfied, they are derivable from another 

hypothesis; i.e., the principle of virtual power. Requiring the internal power Pint to be 

frame-indifferent, eliminates the need to impose a balance of angular moments.

B Growth Tensor and Mass Exchange Rate

The fundamental governing equation of biological growth, as the process of mass addition 

and loss, is the mass balance written in terms of the order parameter, i.e., volume fraction in 

the current formulation. This diffusion equation is necessary to address the physical 

phenomena involved in macroscopic growth. In the case of coupled diffusion-deformation 

formulation, an evolution equation of the growth tensor must be consistent with the growth 

characterization through the mass transfer equation (i.e., mass supply and flux). Here we 

derive a relation between growth tensor FT
G and mass exchange rate under the isotropic 

growth assumption20,

FT
G = ΛT

GI . (103)

Considering a two phase mixture with volume v in which a solid phase (tumor) undergoes 

pure growth process FT
S = 0. In this case, the volume occupied by tumor constituent 

increases from initial value vT
0 = vT(t0) to a volume vT(t) in time t. The volume change due 

to this growth process is,

19Using the principle of frame-indifference and the requirement that the internal power be invariant to changes in frame, it can be 
shown (see [43]) that the ξα are frame-indifferent and the Cauchy stress Tα is both frame-indifferent and symmetric. The symmetry 
of the Cauchy stress is also concluded from the balance of the angular momenta in (13).
20The assumption of isotropic/homogeneous growth is only valid for small avascular tumors. For vascular tumors, that display 
heterogeneous anisotropic growth, the growth tensor must be anisotropic.
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JT
G = dvT

dvT
0 . (104)

Following (103), the change in the tumor volume can be also represent as,

JT
G = det(FT

G) = (ΛT
G)3 . (105)

Equating above relations along with the definition of tumor volume fraction (5), results in 

following relation consistent with the formulation developed by Garikipati et al [56, 57, 

116],

ΛT
G = ρTϕT

ρT
0ϕT

0

1 ∕ 3
, (106)

where ϕT
0 = ϕT(t0) and ρT

0 = ρT(t0).

Additionally, the tumor mass balance under quasi-static assumption is

∂ρTϕT
∂t = ST − ∇ ⋅ (MT ⋅ ∇μT) . (107)

Substituting ρTϕT from (106) into above relation, one can find an evolution equation for 

growth stretch ratio as,

ρT
0ϕT

0 ∂(ΛT
G)3

∂t = ρTϕT (ST − ∇ ⋅ (MT ⋅ ∇μT)) . (108)

The above equation provides a consistent framework to determine the growth tensor 

evolution equation from functional forms of ST and MT postulated based upon biophysical 

phenomena. A similar relation is presented by Ambrosi and Mollica using a consistent 

mathematical derivations based on the natural configuration argument and Lagrangian form 

of the mass balance(for more details see [6, 7]).

C Finite Element Formulation

C.1 Semi-implicit Time-discretization Scheme

Because of both the bilaplacian operator and the nonlinearity of the Cahn-Hilliard-type 

tumor diffusion equations the development of stable time-discretization scheme is a non 

trivial challenge. For the proposed model, we make use of a first-order accurate 

unconditional energy-stable scheme for gradient-flow systems based on the splitting of the 

non-mechanical part of the Helmholtz free energy,
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Ψ =
ϵT

2

2 ∣ ∇ϕT ∣2 + κϕT
2(1 − ϕT)2 + 1

2δσ
ϕσ2 − χ0ϕTϕσ (109)

into a convex (contractive) and concave (expansive) part,

Ψ = Ψc + Ψe . (110)

The idea of the energy splitting scheme is to treat the contracting, more stable, part 

implicitly and the expanding part explicitly. Following [71, 96], one can write the following 

split of the free energy,

Ψc = 3
2κϕT

2 +
ϵT

2

2 ∣ ∇ϕT ∣2 − χ0ϕTϕσ, (111)

−Ψe = κ(ϕT
4 − 2ϕT

3 − 1
2ϕT

2) . (112)

Thus, dividing the time domain into n time step of size Δt = tn+1 − tn, the time stepping 

scheme in the tumor chemical potential can be represented as,

μTn + 1 =
∂Ψc(ϕTn + 1)

∂ϕT
−

∂Ψe(ϕTn)
∂ϕT

,

= 3κϕTn + 1 − χ0ϕσn + 1 − ϵT
2ΔϕTn + 1 − κ(4ϕTn

3 − 6ϕTn
2 − ϕTn)

(113)

C.2 Finite Element Solution of the Nonlinear System

The finite element solution for the coupled nonlinear system of equations (94) is obtained by 

uncoupling the equation according to Algorithm 1. Newton’s method is employed to solve 

each set of equations. To define the finite element space relevant to (94), we consider 

homogeneous Neumann boundary conditions for all variables. Let V being a Hilbert space 

consisting of functions of time with values in H1(Ω). We define the finite-dimensional spaces 

Vℎ by,

Vℎ = {vℎ ∈ H1(Ω) :vℎ ∣τ = v ∘ Fτ, v ∈ Q1, τ ∈ Tℎ}, (114)

where Tℎ is a quasi-uniform family of triangulations of Ω, Fτ is an affine map from the 

master element τ  to τ, and Q1 is the tensor product of polynomials of degree 1. Let (·, ·) 

denote the L2(Ω)-inner product with (u, v) = ∫Ωuvdx (see [119] for details).

The weak formulation for the nutrient diffusion considering vσ as test function is given by
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Find ϕσn + 1 ∈ Vℎ, ∀vσ ∈ Vℎ:
(ϕσn + 1 − ϕσn, vσ) − Δt(Sσ(ϕTn, ϕσn + 1), vσ)
− Δt(Mσ∇μσ(ϕTn, ϕσn + 1), ∇vσ) = 0 .

(115)

We consider a mixed variational formulation of Cahn-Hilliard equation of tumor diffusion 

involving both ϕT and μT as separate unknowns. Applying the semi-implicit time-stepping 

scheme, the weak formulation for the tumor diffusion, considering vT and qT as test 

functions, is defined as

Find (ϕTn + 1, μn + 1) ∈ Vℎ ×Vℎ, ∀vT , wT ∈ Vℎ:
(ϕTn + 1 − ϕTn, vT) − Δt (ST(ϕTn + 1, ϕσn + 1, JTn), vT)
− Δt (MT(ϕTn + 1, JTn)∇μTn + 1, ∇vT) = 0,

(116)

(μTn + 1, wT) + Δt (3κϕTn + 1 − χ0ϕσn + 1 − ϵT
2ΔϕTn + 1, wT)

− Δt (κ(4ϕTn
3 − 6ϕTn

2 − ϕTn), wT)

+
JTn

S

d (ΛT
G)n

3Δt(TTn, wT) = 0 .

(117)

Having ϕTn+1, the growth stretch ratio can be updated using the discretized evolution 

equation (85), as

Find (ΛT
G)n + 1 ∈ Vℎ:

(ΛT
G)n + 1 = (ΛT

G)n + 1
d(ΛT

G)n[ϕTn + 1 − ϕTn] . (118)

Finally, the weak formulation for the tumor deformation considering vu as test function is 

given by

Find un + 1 ∈ (Vℎ)d, ∀vu ∈ (Vℎ)d:
(TT(uTn + 1, ϕTn + 1), ∇vu) = 0 . (119)

Algorithm 1 summarizes the solution procedure using Newton iteration to solve the weak 

formulations.
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Algorithm 1: Algorithm to solve the decoupled system of equations governing the four species tumor model.

Input: ϕT, μT , ϕσ0, (ΛT
G)0, u0

Output: ϕTn, μTn, ϕσn, (ΛT
G)n, un

1 begin

2
3
4
5
6
7
8
9

n 0
repeat
Solve ϕσn + 1 from (115) given ϕTn, ϕσn

Solve ϕTn + 1 and μTn + 1 from (116) given ϕTn, ϕσn + 1, un, (ΛT
G)n

Update (ΛT
G)n + 1 form (118) given ϕTn, ϕTn + 1, (ΛT

G)n

Solve un + 1 from (119) given (ΛT
G)n + 1, un

n n + 1
until nΔt > Tmax
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Figure 1: 

Simulation results for unconfined (A-F, γT
pa = γTm = 0.0) and confined (G-L, γT

pa = γTm = 1.0) 

tumor growth with a uniform nutrient initial condition. The time evolution of tumor volume 

fraction, ϕT, and nutrient volume fraction, ϕσ, are shown at t=0.5, 5.0 and 12.5. In both 

scenarios, as the tumor grows, the nutrient is consumed. However, the mechanical feedback 

in the confined scenario results in a 70.82% smaller tumor size at t=12.5. The white line 

marks the tumor boundary.
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Figure 2: 

Simulation results for unconfined (A-C, γT
pa = γTm = 0.0) and confined (D-F, γT

pa = γTm = 1.0) 

tumor growth with a uniform nutrient initial condition. The spatial distributions at t=12.5 are 

shown for: A and D) growth stretch ratio ΛT
G, B and E) a component of Cauchy stress Txx, 

and C and F) magnitude of Cauchy stress ∣T∣. In both scenarios, the growth rate is higher at 

the periphery of the tumor compared to tumor interior (with the ratios of 1.12 for unconfined 

and 1.045 for the confined scenarios), indicating the presence of proliferative tumor cells. 

The white line marks the tumor boundary.
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Figure 3: 
The time evolution of normalized tumor area by the domain area for unconfined 

(γT
pa = γTm = 0.0) and confined (γT

pa = γTm = 1.0) tumor growth with a uniform nutrient initial 

condition. The mechanical feedback on cell migrations and proliferation in the confined 

scenario results in a lower tumor growth rate. The unconfined scenario shows an eventual 

reduction in tumor growth rate due to diffusion-limited supply of nutrients. For these results, 

a larger simulation domain Ω = [−2.5, 2.5]2 is used.
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Figure 4: 

Simulation results for unconfined (A-F, γT
pa = γTm = 0.0) and confined (G-I, γT

pa = γTm = 1.0) 

tumor growth with a spatially varying nutrient initial condition. The time evolution of the 

tumor and nutrient volume fractions, ϕT and ϕσ, respectively, are show at t=0.5, 5.0 and 12.5. 

In both scenarios, the tumor grows toward the higher nutrient concentration. However, the 

mechanical feedback in the confined scenario, results in 71.04% smaller tumor size at 

t=12.5. The white line marks the tumor boundary.
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Figure 5: 

Simulation results for unconfined (A-C, γT
pa = γTm = 0.0) and confined (D-F, γT

pa = γTm = 1.0) 

tumor growth with spatially varying nutrient initial condition. The spatial distributions at t = 

12.5 are show for: A and D) growth stretch ratio ΛT
G, B and E) a component of Cauchy stress 

Txx, and C and F) magnitude of Cauchy stress ∣T∣. In both scenarios, the growth rate is 

higher (2.75% in unconfined and 1.05% in the confined cases) on the right side of the tumor, 

which is closer to the higher concentration of nutrients. The white line marks the tumor 

boundary.
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Table 1:

Set of parameters used in the numerical experiments.

Parameter Value Meaning

χ0 0.15 chemotactic parameter

ϵT 0.01 interfacial strength among tumor cells and other species

κ 0.025 energy scale of the chemical free energy of tumor cells

δσ 0.01 energy scale of the chemical free energy of nutrient

λσ 10 coefficient of nutrient consumption by tumor cells

KT 5.83 Bulk modulus of tumor

GT 1.25 Shear modulus of tumor

Mσ 1 nutrient mobility

Aσ 0 viscosity coefficient of nutrient

αT
pa 1.0 constant rate of the tumor cell mitosis minus the apoptosis

αT
m 2.5 tumor cell mobility

γT
pa 0 or 1 coefficient that controls the stress feedback on tumor mass change

γTm 0 or 1 coefficient that controls the stress feedback on tumor mobility
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