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SUMMARY

Genetic mosaicism can manifest as spatially variable phenotypes that vary from site-to-site within 

an organism. Here, we use imaging-based phenomics to quantitate phenotypes at many sites within 

the axial skeleton of CRISPR-edited G0 zebrafish. Through characterization of loss-of-function 

cell clusters in the developing skeleton, we identify a distinctive size distribution shown to arise 

from clonal fragmentation and merger events. We quantitate the phenotypic mosaicism produced 

by somatic mutations of two genes, plod2 and bmpla, implicated in human Osteogenesis 

Imperfecta. Comparison of somatic, CRISPR-generated G0 mutants to homozygous germline 

mutants reveal phenotypic convergence, suggesting that CRISPR screens of G0 animals can 

faithfully recapitulate the biology of inbred disease models. We describe statistical frameworks for 

phenomic analysis of spatial phenotypic variation present in somatic G0 mutants. In total, this 

study defines an approach for decoding spatially variable phenotypes generated during CRISPR-

based screens.

Graphical Abstract

7Corresponding author and lead contact: cwalk1@uw.edu.
AUTHOR CONTRIBUTIONS
Conceptualization, C.J.W., Y-H.H. and R.Y.K.; Methodology, C.J.W. and R.Y.K.; Software, R.Y.K.; Validation, C.J.W. and R.Y.K.; 
Formal Analysis, C.J.W., A.T.M., R.M.B. and R.Y.K.; Investigation, C.J.W., A.T.M. and R.M.B.; Resources, R.Y.K.; Writing - 
Original Draft, C.J.W. and R.Y.K.; Writing - Review & Editing, C.J.W., C.G., A.W. and R.Y.K.; Visualization, C.J.W. and R.Y.K.; 
Supervision, P.C., Y-H.H. and R.Y.K.; Funding Acquisition, R.Y.K.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Syst. Author manuscript; available in PMC 2021 March 25.

Published in final edited form as:
Cell Syst. 2020 March 25; 10(3): 275–286.e5. doi:10.1016/j.cels.2020.02.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eTOC Blurb:

Genetic mosaicism manifests as spatially variable phenotypes, whose detection and interpretation 

remains challenging. Watson et al. identify biological factors influencing phenotypic patterns in 

the skeletons of CRISPR-edited mosaic zebrafish, and establish methods for their detection using 

large-scale phenotyping.
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INTRODUCTION

Phenomics is the utilization of large-scale phenotyping to systematically infer genotype to 

phenotype relationships (Houle et al., 2010). As such, phenotypic profiling at a large number 

of anatomical sites can advance our understanding of biology that involves relationships 

between phenotypes across the whole organism (Hur et al., 2017). One example of such 

biology is genetic mosaicism: the presence of cells with multiple distinct genotypes 

constituting the organism on the whole. Mosaicism can arise naturally through errors in 

DNA replication, or intentionally through genetic manipulation. This genetic heterogeneity 

results in a hallmark of mosaicism—site-to-site phenotypic variability—which makes 

identifying gene-to-phenotype relationships challenging. In animal models, somatic 
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mutations form the basis for rapid-throughput G0 screens, prototypes for which are rapidly 

increasing following the advent of CRISPR (Clustered- Regularly Interspaced Short 

Palindromic Repeats)-based gene editing (Cong et al., 2013; Jinek et al., 2012). In humans, 

chromosomal mosaicism in embryos is quite common (McCoy, 2017; Vanneste et al., 2009), 

its role in disease may be prevalent and underappreciated (Gottlieb et al., 2010; Iourov et al., 

2010), and at the most fundamental level, it is suggested that every complex, multi-cellular 

organism is likely to harbor at least some somatic mosaicism (Campbell et al., 2015; 

Forsberg et al., 2017). In the context of disease, mosaic phenotypic patterns can inform the 

timing of mutagenesis, which may help predict the likelihood of mutations in germ cells that 

can be passed on to progeny (Campbell et al., 2015). Phenotypic profiling at a number of 

anatomical sites may help decode somatic mutant phenotypes, which are important in both 

experimental and clinical settings.

Extracting biological information from somatic mutant phenotypes remains challenging for 

several reasons. One source of difficulty is our lack of understanding of quantitative 

phenotypic variation arising from mosaicism, and how best to analyze it. For spatially 

distributed organs (e.g., bone, skin, nerves, blood vessels), mosaicism can manifest as 

relatively uniform phenotypes reminiscent of a generalized condition, or alternating patterns 

of affected and unaffected body segments (Bernards and Gusella, 1994). Much of our 

knowledge of the phenotypic consequences of mosaicism has been derived from easily 

observable traits where spatial variations are readily discernible (Biesecker and Spinner, 

2013). As such, our ability to discern phenotypic manifestations of mosaicism for complex 

traits remains relatively limited (Biesecker and Spinner, 2013). Large-scale phenotyping 

workflows have mostly been defined in germline mutants (Gistelinck et al., 2018; Hur et al., 

2017; Thyme et al., 2019) or animals subjected to systemic drug exposure (Pardo-Martin et 

al., 2013). Different analytical methods may be needed for somatic mutants, where the 

specific set of altered measures, acquired from different anatomical locations, may be 

different from animal-to-animal.

Another source of difficulty is our limited understanding of biological factors that influence 

phenotypic expressivity in mosaic individuals. It is broadly accepted that spatial phenotypic 

patterns are dependent on the proliferation of mutant cells and their translocation to different 

sites. Lineage tracing of clonal populations from embryonic to adult zebrafish has provided a 

wealth of knowledge on clonal abundance in a variety of tissues, and suggests that, in most 

cases, a few clonal progenitors account for a majority of cells comprising the resulting tissue 

type (McKenna et al., 2016). Yet, how these clones distribute spatially within and across 

tissues remains unknown, and is a critical piece of information needed to interpret somatic 

mutant phenotypes.

A prime instance of experimental biology which necessitates decoding somatic mutant 

phenotypes is in a rapid-throughput genetic screen. Several prototypes for rapid CRISPR-

based reverse genetic screens have been developed in which phenotyping is performed 

directly in G0 founders (Shah et al., 2015; Wu et al., 2018). This increases throughput by 

alleviating the time and resources needed to breed mutant alleles to homozygosity. Such 

approaches may also be useful for animal models that require longer durations to reach 

sexual maturity or have long gestational intervals, making breeding to homozygosity 
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impractical. However, creating equivalent loss-of-function on an organism-wide scale (i.e. 

every individual cell) is challenging. When complexed with a targeting guide RNA (gRNA), 

the bacterial Cas9 enzyme will create a double strand break at a genome-specific location 

determined by complementary sequence in the gRNA. Errors in endogenous repair leads to 

insertions and deletions (indels) at the cut site, and potential loss of gene product function. 

Yet, when administered a single gRNA, 1/3 of indels are expected to be in-frame. Thus, less 

than half ([2/3]2=4/9) of cells are expected to have bi-allelic out-of-frame mutations, even 

with peak editing efficiency (Shah et al., 2015). While the use of multiple gRNAs to 

redundantly target the same gene can increase the proportion of bi-allelic out-of-frame 

mutations, this may also increase toxicity, and variable penetrance of null phenotypes is still 

prevalent (Wu et al., 2018). Microhomology-mediated end joining (MMEJ) is a promising 

direction to enrich somatic mutations for a predictable out-of-frame allele (Ata et al., 2018). 

However, imperfect editing efficiencies and some degree of mutated allelic mosaicism are 

still expected following MMEJ. These problems are confounded when multiple genes are 

knocked down; for example, when studying epistatic interactions of genes that are tightly 

linked, or knockdown of clusters of genes with functional redundancy (Sanjana, 2017; Shah 

et al., 2015; Shalem et al., 2014). Yet, mutation efficiency often decreases with the number 

genes that are multiplexed, due to a reduction in Cas9:gRNAs per gene. Due to the lower 

fidelity in detecting somatic mutant phenotypes, prototypical screens have mostly focused 

on severely dysmorphic phenotypes (Wu et al., 2018), or phenotypes whose spatial 

variations are easily observable (Shah et al., 2015).

In this study, our aims were threefold: to 1) characterize how CRISPR-induced mutations 

distribute-within individual bones, and groups of bones-in the skeletons of G0 zebrafish, and 

to better understand the etiology of such mosaic patterns; 2) assess how such mosaic patterns 

are phenotypically manifested by characterizing somatic mutant phenotypes for plod2 and 

bmpla; and 3) identify statistical methods effective at discerning somatic mutant phenotypes. 

Our studies identify strategies for decoding spatially variable phenotypes, i.e. those that have 

the potential for high site-to-site variability within a single organ system, in G0 zebrafish. 

When paired with CRISPR- based screens, these methods can identify genes contributing to 

skeletal disease.

RESULTS

CRISPR-based gene editing results in clusters of cells with loss-of-function

Our first aim was to characterize how CRISPR-induced mutations distribute in the skeletons 

of G0 zebrafish, and to better understand the etiology of such mosaic patterns. To examine 

this, sp7:EGFP (DeLaurier et al., 2010) embryos were injected with Cas9:gRNA 

ribonucleoprotein complexes (RNPs) targeting the fluorescent transgene. This enabled loss-

of-function mutations in EGFP to be visualized as loss-of- fluorescence (LOF) in sp7+ 

(osterix+) osteoblasts. Injected fish were examined for functional EGFP loss at 10-12dpf, a 

stage when the larvae are still transparent and most skeletal elements have formed. Regions 

of LOF were observed in virtually all formed skeletal elements (Figure 1A). This included 

bones of the craniofacial skeleton, median fin rays, hypurals, and the spine. While 

penetrance of LOF was high, expressivity was variable in regard to which bony elements in 
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each animal exhibited fluorescence loss, as well as the size and number of such regions 

within each bony element. Quantification of mean centrum fluorescence in sp7:EGFP 
somatic mutants revealed that, when averaged across the sample, fluorescence was 

uniformly decreased across the spine (Figure 1B). However, we observed jagged traces in 

some individual mutants, demonstrating variability in LOF within individuals (Figure 1C). 

As expected, centra in adult sp7:EGFP somatic mutants were well-mineralized and did not 

exhibit gross defects (Figure S1), indicating that LOF was attributable to loss of the 

transgene and not to loss of osteoblasts.

LOF regions are composed of clusters of cells with loss-of-function mutations: cells 

comprising each cluster represent a single clone, or multiple clones that merged at an earlier 

point in development (we are unable to distinguish these two possibilities). Within individual 

vertebrae, we often observed multiple, contiguous centra with complete or partial LOF, and 

which were flanked by at least one centra with no LOF. This resulted in two distinguishable 

types of cell clusters: “microscale” clusters confined within single vertebrae, and 

“macroscale” clusters spanning contiguous vertebrae (Figure 1D). Inspection at higher 

magnification revealed that some centra exhibited LOF in ventral, but not dorsal, regions (or 

vice versa). This dorso-ventral stratification could at times be seen across contiguous centra 

(Figure 1E), potentially due to these bodies’ shared clonal partners. In the neural arches, 

LOF often appeared to be associated with LOF in the centrum of the same vertebral body 

(Figure 1F). Because many bones retained partial or complete expression of the transgene, 

this suggested that individual bony elements are not explicitly derived from single clonal 

populations, and cannot be evaluated as independent functional or non-functional units.

A common distribution underlies the sizes of loss-of-function clusters in bones of distinct 
developmental lineages, and in animals with different mutation efficiencies

We next sought to understand the etiology of such mosaic patterns. While some aspects of 

patterns of fluorescence loss appeared to be non-random, patterns from fish- to-fish were 

unpredictable, suggesting that stochastic forces were an important etiological factor. Models 

of clonal population dynamics in fluorescence-based cell lineage tracing studies have 

demonstrated that while different factors can contribute to cluster size distributions during 

tissue growth, over time, contributions from random clonal merger and fragmentation 

(Figure 1G) become dominant over those from cell behaviors specified by developmental 

programs (e.g., cell division or loss) (Rulands et al., 2018). As a consequence, cluster size 

distributions across diverse developmental processes often exhibit the same characteristic 

distribution once cluster sizes in each individual are normalized by the average cluster size 

in that individual (Rulands et al., 2018). This distribution has the form:

y = e(−x/ < x > ) (Eq 1)

where x is cluster size, and <x> is the mean of x (Rulands et al., 2018).

Fluorescently-labeled cell clusters in lineage tracing studies and LOF cell clusters in somatic 

mutants share commonalities in their physical origins (postzygotic mutations) and 

interpretation (clusters may be comprised of a single clonal population, or multiple clones 

that merged earlier in development). As such, we hypothesized that LOF clusters in somatic 
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animals would also exhibit universality in their size distributions described by Eq 1. To test 

this, we manually traced regions of LOF on the dorsal and ventral aspects in the centra in 

each animal (Figure 1H). Individual fish exhibited variable numbers and sizes of LOF 

clusters (Figure 1I), as well as different compositions of microscale versus macroscale 

clusters. This variability manifested as distinct distributions of cluster sizes in each fish 

(Figure 1J). However, when normalized by average cluster size in each animal, the cluster 

size distributions collapsed to the distribution in Eq 1 for both microscale and macroscale 

clusters (Figure 1K). When microscale and macroscale clusters were analyzed separately, 

the curve fit was noticeably weaker (Figure S2A,B), presumably from incomplete sampling 

of cluster sizes. Note that results in Figure 1K were obtained by manual tracing of LOF 

regions. Similar results were obtained when regions were traced by a different individual 

(Figure S2C), suggesting that results were not strongly sensitive to individual differences in 

thresholding.

We hypothesized that this distribution would also describe LOF cluster sizes in bones of a 

different developmental lineage. We quantified LOF cluster size distributions within the 

branchiostegal rays of the craniofacial skeleton, which unlike the somite- derived vertebral 

column, derives from neural crest (Kague et al., 2012). Consistent with our hypothesis, a 

similar data collapse was observed (Figure 1L). These studies demonstrate that loss-of-

function cluster sizes in bones of distinct developmental lineages, and in animals with 

different loss-of-function efficiencies, can be described by a single distribution (Eq 1); the 

origin of which derives from numerical convergence behaviors associated with clonal 

fragmentation and merger events.

Quantifying the mosaic phenotypes associated with loss-of-function mutants in two 
models of Osteogenesis Imperfecta

In humans, mutations in PLOD2 and BMP1 are associated with Osteogenesis Imperfecta 

(OI). The enzyme encoded by PLOD2, lysyl hydroxylase 2, localizes to the endoplasmic 

reticulum, and catalyzes lysine residue hydroxylation in fibrillar collagen telopeptides 

(Gistelinck et al., 2016). BMP1 is a secreted enzyme that functions in the cleavage of C-

propeptides from procollagen precursors (Muir et al., 2014). We and others previously 

showed that zebrafish germline loss-of-function mutants for plod2 and bmpla exhibit severe 

skeletal abnormalities as adults, reminiscent of OI phenotypes (Asharani et al., 2012; 

Charles et al., 2017; Gistelinck et al., 2016; Hur et al., 2017).

Somatic mutants for plod2 and bmpla were generated by injection of RNP complexes into 

embryos, and a subset of larvae were individually screened for indels at 12 dpf. Sanger 

sequencing and TIDE analysis (Brinkman et al., 2018) estimated mutation efficiencies of 

82.7-88.1% and 71.0-87.5% for plod2 and bmpla, respectively. At 90 dpf, somatic mutants 

for both genes exhibited clear skeletal abnormalities similar to their adult germline mutant 

counterparts (Figure S3A,B). Somatic mutants for plod2 exhibited severe vertebral 

malformations including compression of the vertebrae along the anteroposterior axis, 

kyphosis, and increased bone formation. Somatic mutants for bmpla exhibited increased 

vertebral radiopacity and bone thickening. Standard length (S.L.) was significantly reduced 

compared to sham controls for both plod2 (Figure S3C; n=11/group) and bmpla (Figure 
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S3D; n=10 controls, n=14 bmpla somatic mutants). The presence of adult phenotypes adds 

to recent reports (D’Agati et al., 2017; Wu et al., 2018) examining the durability of crispant 

zebrafish phenotypes through the larval-to- adult transition.

Variability in phenotypic expressivity across animals was clearly evident. For plod2, such 

variability was perceptible by the number of dysmorphic vertebrae in each animal; in the 24 

anterior-most precaudal and caudal vertebrae, plod2 somatic mutants exhibited 12 [6-20] 

(median [range]) obviously thick or malformed vertebrae per fish. Further, 100% (11 out of 

11) of animals were penetrant, as all individuals exhibited at least one severely malformed 

vertebra per animal. For bmpla somatic mutants, many animals exhibited a qualitative 

increase in vertebral radiopacity along the spine, which was variable among individuals, 

ranging from mild to severe. Variability in phenotypic expressivity within each animal was 

also evident in some cases. Certain plod2 somatic mutants exhibited “patchy” expressivity 

characterized by contiguous spans of dysmorphic vertebrae surrounded by vertebrae that 

appeared qualitatively normal. In plod2 germline mutants, vertebrae are uniformly 

dysmorphic (Gistelinck et al., 2016), suggesting that patchy expressivity is not an inherent 

property of plod2 loss in adult fish. In contrast, for bmpla somatic mutants, intra-animal 

variability in phenotypic expressivity was less obvious; while radiopacity and thickening 

was variable from fish-to-fish, within each animal, these characteristics appeared relatively 

uniform.

We hypothesized that while plod2 and bmpla somatic mutants exhibit inter- and intra-animal 

variability, the traits affected in somatic mutants might be indicative of those affected in 

germline mutants when averaged across a large sample. Our rationale was partly based on 

loss-of-fluorescence in sp7:EGFP somatic mutants, which, as described earlier, were highly 

variable in each individual, yet when averaged across the group, resulted in a uniform 

decrease in fluorescence across the spine (see Figure 1B,C).

To test our hypothesis, we performed microCT-based spinal phenomics (Hur et al., 2017). 

We previously developed a microCT-based workflow and segmentation software, FishCuT, 

which enables rapid quantification of 100s of measures in the axial skeleton of adult 

zebrafish (Gistelinck et al., 2018; Hur et al., 2017, 2018). In this workflow, 25 different 

quantities are computed for each vertebra (Hur et al., 2017); see STAR Methods for 

description. Once calculated, these quantities are plotted as a function of vertebra number 

along the axial skeleton for each fish; we have termed such entities “vertebral traces”. For 

each combination of outcome/element, a standard score is computed and these data are 

arranged into matrix constructs that we have termed “skeletal barcodes”. In our studies, 16 

vertebrae (16*25=400 measures/animal) in 52 animals were analyzed, resulting in 

52*400=20,800 data points that provided a comprehensive characterization of bone 

morphology and microarchitecture across the majority of the axial skeleton for our zebrafish 

cohort. To facilitate comparisons with prior studies (Hur et al., 2017), we present data on ten 

combinatorial quantities (the nine possible combinations of 3 vertebral elements (centrum, 

Cent; neural arch, Neur; and haemal arch, Haem) x 3 characteristics (tissue mineral density, 

TMD; thickness, Th; and volume, Vol) plus centrum length (Cent.Le) in the 16 anterior-most 

vertebrae in the main text, and have included all 25 quantities in the supplemental material.
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We assessed which FishCuT measures exhibited differences in the global test. Analysis for 

plod2 somatic mutants (n=11 fish/group) indicated significant differences in Cent.TMD 

(p=0.000005), Haem.TMD (p=0.00008), Neur.TMD (p=0.00005), Cent.Vol, (p=0.004), 

Cent.Th (p=0.04), Cent.Le (p=0.00009), and Neur.Th (p=0.00007) (Figure 2A–L). Somatic 

mutants for bmpla (n=15 fish/group) exhibited significant differences in Cent.TMD 

(p=0.000004), Haem.TMD (p=0.00002), Neur.TMD (p=0.00005), Cent.Vol (p=0.004), 

Cent.Th (p=0.02), Cent.Le (p=0.01), and Haem.Th (p=0.008) (Figure 2A’–L’). Data for all 

25 combinatorial measures for plod2 and bmpla are provided in Figure S4 and Figure S5, 

respectively. For both plod2 and bmpla, most significantly different features were associated 

with vertebral traces that were elevated or depressed across all vertebrae; an exception was 

neural arch thickness in plod2 somatic mutants, which was lower in anterior vertebrae, but 

higher in posterior vertebrae. Notably, for plod2 somatic mutants, mean vertebral traces 

appeared smooth—despite intra-individual variability in phenotypic expressivity in some 

measures (Figure S6A; compare with bmpla somatic mutants, Figure S6B)—due to 

averaging across the sample.

Individual cells in the G0, somatic mutant zebrafish generated for both genes have a wide-

ranging spectrum of allelic variation, conferring different levels of functional loss for plod2 
or bmpla between chromosomes, cells, tissues and individuals. In contrast, germline mutants 

for each gene have a single, stably inherited loss-of-function allele for which they were bred 

to homozygosity. As such, we wanted to assess the extent to which somatic mutants for 

plod2 and bmpla could act as faithful models of their germline mutant counterparts. For 

these analyses, we compared global test results to measurements and FishCuT outputs for 

plod2 and bmpla germline mutants (n=3 for both germline groups) previously generated in 

(Hur et al., 2017) (Figure 3). Characteristic effect sizes in plod2 and bmpla somatic mutants 

were, on average, 25.6% and 24.4%, respectively, of those in their germline mutant 

counterparts (plod2 somatic: 0.95; plod2 germline: 3.71; bmpla somatic: 0.80; bmpla 
germline: 3.23).

Since the reduced standard length in plod2 somatic mutants was more muted compared to 

plod2 germline mutants (~4x less), we compared somatic mutant results to plod2 germline 

mutant phenotypes that had been subjected to allometric normalization. We previously 

showed that by transforming WT sibling data to a virtual phenome (scaled to the mean 

standard length of age-matched mutants) allometric models enable length- matched 

comparisons from an age-matched control group (Hur et al., 2017). Across the 10 primary 

measures, somatic mutants for plod2 exhibited significant differences for 80% (4 out of 5) of 

the measures significantly altered in plod2 germline mutants (Figure 3A,A’). Moreover, 60% 

(3 out of 5) of the combinatorial measures not significantly different in plod2 germline 

mutants were also not different in plod2 somatic mutants. Correspondence of affected traits 

was noticeably lower when plod2 somatic mutants were compared to plod2 germline 

mutants that had not been allometrically normalized (3 of 6 corresponding measures with 

statistical significance, 50%; and 1 of 4 corresponding measures without statistical 

significance, 25%). Comparisons of results to the other 15 measures in FishCuT were not 

possible because allometric models have yet to be developed for them.
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We also observed similarity in affected traits in bmpla somatic and germline mutants (Figure 

3B,B’). Specifically, across the 10 primary measures, bmpla somatic mutants exhibited 

significant differences for 86% (6 out of 7) of the measures significantly different in bmpla 
germline mutants. Further, 67% (2 out of 3) of the measures not significantly different in 

bmpla germline mutants were also not significantly different in bmpla somatic mutants. 

Correspondence was not improved when comparing bmpla somatic mutants to bmpla 
germline mutants that had been subjected to allometric normalization.

As an alternate method to assess similarity in somatic and germline mutant phenotypes, we 

computed correlations in mean barcode values in each group (Figure 3C,D). We chose to 

perform correlations on barcode values because 1) germline mutants were larger than their 

somatic mutant counterparts (mean (SD); 23.67 (1.01) mm vs 27.90 (0.72) mm for plod2 
somatic and germline controls, respectively; 23.11 (0.89) mm vs 25.77 (1.19) mm for bmpla 
somatic and germline controls, respectively), and 2) barcode values are computed by 

normalizing to controls, facilitating comparisons across different cohorts in which there are 

differences in body size. We computed R2 values of 0.67 and 0.61 for plod2 and bmpla, 
respectively. Correlations between mean skeletal barcodes for germline (always n=3) and 

somatic mutants generally improved as the number of somatic barcodes included in the 

analysis increased (Figure 3E). Note that for Figure 3, because all p-values were calculated 

based on comparisons of mutants to their clutchmate controls, this also accounts for 

differences between control groups. Despite their greater inter- and intra-animal variability, 

these data indicate that somatic mutants can predict germline mutant phenotypes with high 

fidelity if averaged across a sufficiently large sample.

The global test and Moran’s I are effective at discerning somatic mutant phenotypes

The third aim of this study was to identify statistical methods effective at discerning somatic 

mutant phenotypes, which are distinct from germline mutant phenotypes in regard to their 

inter- and intra-animal variability. Previously, we showed that the global test (Goeman et al., 

2004), a multivariate statistical test designed for data sets in which many features have been 

measured for the same subjects, was effective in detecting differences in collections of 

vertebral traces in germline mutants (Hur et al., 2017). Statistical power in multivariate tests 

is dependent on underlying distributions— e.g., whether there are small changes in a large 

number of measures, or large changes in a few measures. In somatic mutants, only a subset 

of vertebra may be affected, and these vertebrae can be different from animal-to-animal. 

Thus, the performance of the global test in discriminating somatic mutant populations, and 

how it compares to univariate approaches, is unknown. We tested the hypothesis that 

assessing vertebral patterns with the global test would provide greater sensitivity in 

distinguishing somatic mutants with variable phenotypic expressivity compared to (a) Mann-

Whitney (M.-W.) of individual vertebrae, and (b) M.-W. tests of quantities averaged across 

all vertebrae. We chose the M.-W. test as a reference univariate test because, like the global 

test, the M.- W. test is non-parametric.

To test this, we performed Monte Carlo simulations (see STAR Methods). The universal 

scaling distribution defined in sp7:EGFP somatic mutants (Eq 1) was used to simulate 

different patterns of mosaicism and levels of phenotypic variability (1,000 simulations per 
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analysis). For microscale loss-of-function clusters (Figure 4A), analyzing vertebrae 1:16 

using the global test resulted in up to a 1.41-fold increase in sensitivity (fraction of times in 

which p<0.05 when comparing simulated mutant fish to WT fish) compared to using the M.-

W. test using vertebra 2, and a 1.15-fold increase compared to the M.-W. test using 

quantities averaged across vertebrae 1:16 (Figure 4A’). Differences in testing procedure 

were dependent on how loss-of-function regions were spatially clustered. For instance, for 

macroscale loss-of-function clusters (Figure 4B), analyzing Cent.Vol in vertebrae 1:16 with 

the global test conferred up to a 3.65- and 1.21-fold increase in sensitivity compared to 

analyzing vertebra 2 and the mean of vertebrae 1:16 with the M.-W. test, respectively 

(Figure 4B’); noticeably higher compared to simulations using microscale clusters. We 

found that the relative benefits of the global test, compared to the univariate tests, became 

heightened as mutants become increasingly mosaic (i.e., less similar to germline mutants). 

Specifically, the sensitivity of the global test increased relative to the other tests with 

decreased values of lambda, the model parameter which parameterizes intra-animal variation 

(Figure 4C).

Simulated mutants generally underestimate phenotypic variability in the real world, as the 

characteristic effect size is assumed to be identical across all vertebrae. Thus, we examined 

the performance of the global test with experimental phenotypic data. We performed non-

parametric simulations using experimental data derived from plod2 somatic mutants (Figure 

4D). Generally, sensitivity differences between the global test and univariate tests were 

exacerbated when analyzing experimentally-derived phenotypes from plod2 somatic mutants 

compared to simulated mutant phenotypes. This was particularly evident when examining 

sensitivity differences between the global test and the M.-W. test using averaged quantities, 

which were somewhat modest using simulated mutant phenotypes (1.15-1.21 fold increase 

in sensitivity), but more pronounced using experimentally-derived phenotypes from plod2 
somatic mutants. For instance, across the seven measures in Figure 4D, the global test 

resulted in, on average, a 1.82-fold increase in sensitivity compared to the M.-W. test using 

averaged quantities. Taken together, our studies show that the global test is an effective test 

for detecting differences in collections of spatially varying phenotypes in somatic mutants. 

Further, they provide evidence that spinal phenomics increases sensitivity, with similar 

specificity, in discriminating somatic mutant populations, compared to analyzing single 

readouts.

Next, we explored statistical methods to discern the extent to which phenotypic expressivity 

in somatic mutants tended to be uniformly or focally dispersed throughout the skeleton, as 

such spatial phenotypic variation has the potential to encode biological information. For 

instance, phenotypic variability resembling a dosage curve has been previously hypothesized 

to occur when mutating a gene encoding a secreted factor, with different numbers of cells 

carrying the relevant mutation (Teboul et al., 2017). On the other hand, for genes that 

function cell-autonomously, phenotypic expressivity may be less uniform, and more closely 

resemble patterns of mosaicism at the cellular level. However, consensus approaches to 

discern spatial variability within phenomic data are lacking.

We explored the utility of Moran’s I, a measure of global spatial autocorrelation commonly 

employed for geostatistical analysis, for this purpose. Moran’s I usually ranges from 
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approximately −1 to 1, and can be interpreted as the extent to which values are spatially 

clustered (positive), dispersed (negative), or random (zero) (Figure 4E). In Monte Carlo 

simulations, we found that microscale clusters resulted in Moran’s I tending to decrease, 

whereas macroscale clusters resulted in Moran’s I tending to increase (Figure 4E’).

We computed Moran’s I for 10 combinatorial measures in plod2 (Figure 4F) and bmpla 
(Figure 4F’) somatic mutants. When the distribution of Moran’s I was calculated across all 

10 combinatorial measures, there was a marked shift in the center of the distribution toward 

I=0 for plod2 somatic mutants compared to controls (Figure 4G). In contrast, no obvious 

shift in distribution center was observed for Moran’s I in somatic mutants for bmpla (Figure 

4G’). The global test revealed a significant difference (p=0.008) in the values of Moran’s I in 

plod2 somatic mutants compared to controls, but no significant difference (p=0.53) in bmpla 
somatic mutants compared to controls. Note that distributions for plod2 and bmpla control 

groups also appeared different, presumably due to normal clutch-to-clutch variability. 

Finally, we used Moran’s I to examine spatial variability of loss-of-fluorescence in 

sp7:EGFP somatic mutant larvae (Figure S6C). Somatic sp7:EGFP mutants exhibited 

increased Moran’s I, with the M.-W. test revealing a statistical (p=0.0480) difference 

between groups. Thus, while the patchy phenotypic expressivity in plod2 somatic mutants 

superficially resembles mosaicism in sp7:EGFP somatic mutants, we found differences in 

the specific nature of spatial variation in each group.

DISCUSSION

This study demonstrates how somatic mutations distribute in CRISPR-edited G0 zebrafish, 

how this mosaicism phenotypically manifests in the skeleton, and how to statistically discern 

such phenotypes within phenomic datasets.

We found that Eq 1 described loss-of-function cluster sizes in the skeletal tissues studied. 

Because this relation arises via contributions from clonal fragmentation and merger events 

rather than cell fates specified by developmental programs, the data collapse in our study is 

unlikely to be unique to skeletal tissues, as clonal fragmentation and merger events initiate 

early in the developing embryo (Rulands et al., 2018). In lineage tracing studies, Eq 1 has 

been found to fit clonal cluster size distributions in diverse contexts (e.g. development of 

zebrafish heart, mouse liver, and mouse pancreas) but not when clonal fragmentation and 

merger events are actively suppressed (e.g., mouse acinar cells) (Rulands et al., 2018). We 

expect similar conditionality to apply in regard to CRISPR-induced somatic mutations.

While our studies implicate clonal fragmentation and merger as an influential factor in 

mosaic pattern development, they do not imply that developmental programs are 

unimportant. In zebrafish, the centrum first ossifies through direct mineralization of the 

notochord sheath, which is then encased by intramembranous bone produced by somite-

derived osteoblasts (Fleming et al., 2004). In the intervertebral growth center (IGC) model 

(Inohaya et al., 2007), osteoblasts on adjacent centra, as well as the arches they flank, are all 

descendants of the same intervertebral cells. The IGC model predicts that loss-of-

fluorescence should be related in the centra of adjacent vertebra, as well as in the neural 

arches and centra of the same vertebral bodies—events we observed in individuals. In this 
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context, developmental programs and clonal fragmentation and merger events may work in 

concert to influence mosaic patterns; while the latter primarily contributes to size 

distributions in loss-of-function clusters, both contribute to spatial distributions.

A general relationship describing loss-of-function cluster sizes in somatic animals may 

facilitate the detection and interpretation of spatially varying phenotypes commonly 

observed in G0 screens. In our own studies, Eq 1 enabled us to accurately model mosaicism 

in computer simulations and to make predictions on their phenotypic effects. These 

simulations enabled us to rigorously test the performance of the global test and univariate 

tests in discriminating somatic mutant populations, as well as estimate statistical power. 

They also enabled us to simulate how different patterns of mosaicism influence Moran’s I, 

and in turn, whether the nature of spatial phenotypic variation in plod2 and bmpla somatic 

mutants (as characterized by Moran’s I) could be traced to the pattern of LOF in sp7:EGFP 
fish during early development. Eq 1 may also be useful in analyzing non-skeletal tissues and 

in instances where estimates of cluster size distributions are needed, such as in therapeutic 

applications of CRISPR editing.

Lastly, we identify statistical methods to discern variable phenotypes in somatic mutants. In 

addition to finding that Moran’s I was useful to quantify spatial phenotypic variation, we 

also found that the global test was effective in discriminating collections of spatially variable 

phenotypes. The increased sensitivity of analyzing vertebral patterns with the global test, 

relative to univariate approaches, underscores the potential for phenomics to improve G0 

screen productivity, and facilitates the study of genetic variants of smaller effect sizes. 

Notably, the global test can be used for multivariate phenotypes where spatial relationships 

are not specified (e.g., a panel of measures taken at the same anatomical site), and thus may 

be broadly useful for detecting differences in groups of measures between different 

populations.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Claire Watson (cwalk1@uw.edu).

This study did not generate any new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish rearing—All studies were performed on an approved protocol in accordance 

with the University of Washington Institutional Animal Care and Use Committee (IACUC). 

Embryos were spawned in group breeding tanks, and all fish were housed in plastic tanks on 

a commercial recirculating aquaculture system. Animals were kept on a 14:10 hour 

light:dark cycle in a facility maintained at 28oC. Studies were conducted in mixed sex 

animals from either the wild-type AB strain or the transgenic sp7:EGFP (DeLaurier et al., 

2010) background. Stocks of both strains were obtained from the Zebrafish International 

Resource Center (ZIRC, http://zebrafish.org). The AB and sp7:EGFP embryos used in this 

study were 1 and 3 generations removed from imported ZIRC stocks, respectively.
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As we wanted to determine the feasibility of detecting subtle changes in the zebrafish 

skeleton, particular care was invested in maintaining genetic and environmental consistency 

between somatic mutants and their respective controls. Injected embryos and respective 

controls were progeny of the same breeding, and all embryos were collected prior to 

allocating into separate dishes for CRISPR-RNP or sham injections. Embryos used for 

injections for plod2 and bmpla cohorts did, however, come from different AB breeders 

(which were original ZIRC imports), possibly accounting for some of the clutch-to-clutch 

variability noted in the study. (Of note, the wild-type AB line at ZIRC is intentionally bred 

to maintain some genetic diversity and robustness.) After injection (with either a gene-

specific guide RNA or sham for controls) embryos were maintained in separate dishes until 

transferring into polyculture media at 5 dpf. Initial polyculture media was prepared in bulk 

for all larvae (so rotifer density was equivalent between groups), and subsequently divided 

into tanks for each experimental group at a volume of 20 mL/fish. Initial polyculture tanks 

contained no more than 40 fish. Fish were counted daily, and rotifer supplements were added 

daily on a per fish basis to equalize feed content/fish. At 12 dpf fish were transferred to our 

recirculating system where they were kept in adjacent 2.8L tanks. At this stage, tank 

populations for fish used in this study were as follows: plod2 somatic (29 fish), plod2 sham 

controls (31 fish), bmpla somatic (two tanks, 29 and 30 fish), bmpla sham controls (29 fish). 

All fish were fed the GEMMA Micro diet (Skretting) daily, on a per fish basis, according to 

the schedule provided in Table S1 to maintain consistency in growth within an experimental 

cohort (e.g. plod2 somatic mutants and sham controls). At 30 dpf, fish densities were 

equalized between mutant and control tanks for each experimental cohort to account for 

differences in survival during the larval to juvenile transition. Equal housing densities were 

maintained until 90 dpf, when zebrafish were euthanized by immersion in ice water and 

either immediately scanned, or stored frozen at −20°C.

CRISPR-induced generation of somatic mutants—CRISPR mutagenesis was 

performed using the Alt-R™ CRISPR-Cas9 System from Integrated DNA Technologies 

(IDT). Target sequences were identified using the web-based tool, CHOPCHOP (Labun et 

al., 2016; Montague et al., 2014), were designed using the GRCz10 reference genome 

(http://www.ensembl.org) and are as follows (PAM sequence in lowercase letters): 

GATGGCCGCGTCGATTCTGGagg for sp7, GACCAGGATGGGCACCACCCcgg for 

EGFP, AAGTATCCGTCTGTACGCAGtgg for plod2, and 

ATACGTGGGCCGCAGAGGAGggg for bmp1a. CRISPR-Cas9 crRNAs (gene-specific) 

and tracrRNAs (generic) were chemically synthesized and ordered from IDT. For each gene, 

gRNAs were generated by mixing the crRNA and tracrRNA in a 1:1 ratio, diluting to 20 μM 

in nuclease-free duplex buffer (IDT), incubating at 95oC for 5 minutes and cooling on ice. 

Cas9 protein (20 μM, NEB) was mixed in a 1:1 ratio with the gRNA complex and incubated 

for 5-10 minutes at room temperate to produce the Cas9:gRNA RNP complex at a final 

concentration of 10 μM. Sham complexes were injected into clutchmates as controls, these 

contained Cas9:tracrRNA at final concentration of 10 μM. RNPs were loaded into pre-pulled 

microcapillary needles (Tritech Research), calibrated, and 2 nL RNP complexes were 

injected into the yolk of 1- to 4-cell stage embryos.

Watson et al. Page 13

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ensembl.org


METHOD DETAILS

Sequencing and mutation efficiency analysis—Between 24 and 96 hpf, a few 

embryos from each injection group were pooled, DNA extracted, Sanger sequenced 

(GenScript), and screened for mutagenesis efficiency using the TIDE webtool (Brinkman et 

al., 2014). Individual animals were also screened for mutagenesis using whole larvae at 12 

dpf to predict mutation efficiencies using the TIDE webtool, and to check for clonal fitness 

effects. These data are reported as intra-animal efficiencies in the main text. Furthermore, 

without exception for bmpla and plod2, indel efficiencies were limited by the R2 value in the 

TIDE analysis, suggesting that these may represent the lower boundary of CRISPR-induced 

indels for all samples and/or target sites.

MicroCT scanning—MicroCT scanning was performed using a vivaCT40 (Scanco 

Medical, Switzerland). Scans with 21 pm isotropic voxel resolution were acquired using the 

following settings: 55kVp, 145mA, 1024 samples, 500proj/180 ° 200 ms integration time. 

DICOM files of individual fish were generated using Scanco software, and analyzed using 

FishCuT software (Hur et al., 2017, 2018). Two fish were scanned simultaneously in each 

acquisition. Preserved tissue from plod2 and bmpla germline mutants were used for analysis 

in this study; a description of these lines is described in (Hur et al., 2017).

Fluorescent imaging—Between 10-12dpf, zebrafish of the transgenic sp7:EGFP 
(DeLaurier et al., 2010) background were anesthetized in MS-222 and mounted into 

borosilicate glass capillaries using 0.75% low melt-agarose (Bio-Rad) diluted in system 

water containing 0.01% MS- 222. Capillaries were set on a custom 3-D printed holder to aid 

manipulation and rapid orientation of the specimen. Dual-channel (GFP, excitation 450-490, 

emission 500-550; DAPI, excitation 335-383, emission 420-470) images were collected on a 

high-content fluorescent microscopy system (Zeiss Axio Imager M2, constant exposure 

settings for all experiments) using a 2.5x objective (EC Plan-Neofluar 2.5x/0.075). For each 

fish, a composite image stack (usually 3/1 images in the x/y directions; and optimized to 

3070 pm slice intervals in the z direction across the entire region of interest, usually about 9 

slices; all at 2.58 pm/pixel) was acquired in mediolateral and anteroposterior views. 

Maximum intensity projections were generated from image stacks in Fiji (Schindelin et al., 

2012) for analysis.

Monte Carlo simulations—We previously characterized multivariate distributions for 

select FishCuT measures that exhibit evidence of multivariate normality (Hur et al., 2017). 

Using parameter estimates previously derived for such measures, we constructed wild-type 

and mutant distributions using methods described in Supplemental Information. Mutant 

phenotypic distributions were parameterized by several variables: d (characteristic effect 

size), λ (extent of intra-animal variation in phenotypic expressivity; 1=0 is most variable, 

λ=1 is least variable), and pi (a ‘loss-of-function vector’ whose values range from 0 to 1, 

and which encodes the spatial pattern of loss-of-function in each vertebra). We examined 

two classes of loss-of-function vectors. The first class, pi
microscale, simulated phenotypes 

arising from microscale loss-of-function clusters. The second class, pi
macroscale, simulated 

macroscale loss-of-function clusters. When λ=1, mutant distributions were identical for both 

microscale and macroscale clusters; because loss-of-function was uniform in this case, we 
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refer to simulated mutants with λ=1 as “germline mutants”. For simulations, unless 

otherwise noted, we assumed a characteristic effect size of d=2, and a sample size of n=10, 

or a characteristic effect size of d=2.5, and a sample size of n=15. Similar methods were 

used for Monte Carlo simulations for Moran’s I.

We previously characterized multivariate distributions for select FishCuT measures that 

exhibit evidence of multivariate normality (Hur et al., 2017). Using parameter estimates 

previously derived for such measures, we constructed two distributions. The wild-type (WT) 

distribution, yi
WT, consisted of a multivariate normal distribution using means μi

WT (which 

denotes the mean value in vertebra i in WT fish) and covariances ∏ij
WT (which denotes the 

covariance between vertebra i and vertebra j in WT fish) (Hur et al., 2017). The mutant 

distribution was computed as

yimutant = yiWT + d∗ σiWT [(1 − λ)pi + λ] Eq 2

where d is the characteristic effect size (Hur et al., 2017), σi
WT is the standard deviation in 

vertebra i in WT fish, λ is a parameter controlling intra-animal variability in loss-of-function 

that ranges from zero to one, and pi is a vector of values ranging from zero to one. When 

λ=0, Eq 2 simplifies to yi
mutant = yi

WT + d*σi
WT*pi. Here, it can be seen that phenotypic 

severity varies from vertebra-to-vertebra, depending on values of pi. We termed pi the ‘loss-

of-function vector’ because it encodes the degree of phenotypic severity in each vertebra.

We constructed two classes of loss-of-function vectors. The first class, pi
microscale, simulated 

phenotypes arising from microscale loss-of-function clusters. In this case, values of 

pi
microscale were drawn from the distribution of Eq 1, assuming <x>=0.5 vertebrae. The 

second class, pi
macroscale, simulated macroscale loss-of-function clusters. Here, each mutant 

possessed a single macroscale loss-of-function cluster whose size was drawn from the 

distribution of Eq 1. For this, we assumed <x>=8 vertebrae, representing a moderately 

variable phenotype where half of the vertebrae, on average, are affected. For this class, pi 

was specified as a binary vector, with the center of the macroscale cluster drawn from a 

uniform distribution. In both cases, gene action was assumed to be cell autonomous, in that 

phenotypic severity in each vertebra was proportional to the extent of loss-of-function within 

it. Note that when λ=1, Eq 2 simplifies to yi
mutant = yi

WT + d*σi
WT, and is identical for both 

microscale and macroscale clusters. For simulations, unless otherwise noted, we assumed a 

characteristic effect size of d=2, and a sample size of n=10, or a characteristic effect size of 

d=2.5, and a sample size of n=15. All Monte Carlo simulations were performed in R (Team, 

2015). For all simulations, specificity (1 - the fraction of times in which p<0.05 when 

comparing WT to WT fish) ranged between 0.94-0.97, closely bracketing the expected value 

of 0.95.

For simulations in Figure 4D, we used FishCuT data from the plod2 somatic mutant and 

sibling controls to perform bootstrap simulations in which control and somatic mutant 

phenotypic profiles were randomly sampled (with replacement) to form groups of biological 

replicates. After these groups of phenotypic profiles were formed, testing procedures 

proceeded identically to those in our other Monte Carlo analyses (1,000 simulations per 

analysis). For initial simulations, n=10 was chosen. For traits with larger effect sizes in the 
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plod2 experimental cohort, n=10 resulted in saturation (i.e. sensitivity=1 for all tests). In 

these instances, sample size was modified to n=4.

Moran’s I—Similar methods to those above were used for Monte Carlo simulations for 

Moran’s I. Moran’s I was computed using the Moran.I function in the ape package in R 

(Team, 2015). The following weight matrix Wij was used:

Wij = 1 if abs(i-j)=1, else

Wij = 0

where i and j denote the ith and jth vertebra. We computed Moran’s I for each vertebral trace 

as I(di), where di = [yi−μi
WT]/σi

WT, and yi is a vertebral trace drawn from the distribution of 

Eq 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fluorescent cluster analysis—Max intensity projected images of each sp7:EGFP 
somatic mutant larvae were analyzed for microscale and macroscale clusters by tracing loss-

of-fluorescence regions along both the dorsal and ventral sides of the developing notochord 

in Fiji (Schindelin et al., 2012). Loss-of-fluorescence was subjective to user interpretation, 

but can be generally defined as a region with no detectable fluorescence above background, 

and/or markedly reduced signal compared to adjacent bony structures. Multiple users 

quantified loss-of-fluorescence in the centra, to account for individual differences in 

thresholding, and generated comparable datasets (Figure 1K and Figure S2C). A similar 

approach was used in the quantification of loss-of-fluorescence clusters in the craniofacial 

skeleton.

Of note, grouped breeding of this line yields ~95% positive “glower” fish (when screened at 

24hpf) suggesting breeders and G0 crispants from this line are comprised of at least 50% of 

fish homozygous for the transgene. Notably, Eq 1 is expected to hold for clones representing 

mono- or multi-allelic loss, and thus our use of animals with mixed transgenic zygosities is 

not expected to influence our results. G0 crispants used for assessment of clonal dynamics 

were excluded if no distinct fluorescence could be detected above background during 

imaging. No attempt was made to quantify relative levels of fluorescence between fish.

MicroCT image analysis—MicroCT scanned images of each fish were converted to 

DICOM files and analyzed using FishCuT software, the following description of which is 

adapted from (Hur et al., 2017). FishCuT analysis proceeds in 6 stages:

1. Preprocessing: Images were rotated along the anteroposterior axis to orient 

specimens in an upright position.

2. Thresholding: Thresholds for each animal were calculated using a semi-

automatic approach. To filter out background, an ROI was drawn from a 

maximum intensity projection to outlining the entire fish. Values outside the ROI 

were set to 0, and the threshold was calculated using the IsoData algorithm in 

Fiji (Schindelin et al., 2012).
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3. Vertebral segmentation: Planes of separation between vertebra were defined by 

drawing a ‘separation line’ between each pair of centra. The software sets voxels 

within a plane defined by the separation line as 0, connected components are 

computed, and connected component labels are tallied for each of the two 

volumes separated by the plane. If the connected components with the plurality 

of votes in the two regions are distinct, the algorithm stops; otherwise, the 

separation line is extended, and the process repeated until all vertebrae are 

segmented. In cases where two distinct vertebrae were not automatically 

segmented by FishCuT software after this step (usually when severe vertebral 

malformations cause a fusion of relevant bones), the manual cutting tool was 

used to sever connections between skeletal elements.

4. Vertebral assignment: Vertebrae 1:16 were assigned by manually clicking on 

each vertebra, resulting in a color-coded map of connected components for each 

vertebra.

5. Intra-vertebral segmentation: Neural arches, centra, and haemal arches were 

segmented for each vertebrae by FishCut. Segmentations were verified from a 

color- coded output and manually adjusted as necessary.

6. Calculation of measures: FishCuT software computed the following measures as 

herein described. Local thickness is computed using the Local Thickness plugin 

(Dougherty and Kunzelmann, 2007) in Fiji (Schindelin et al., 2012). Volume and 

surface area were computed using the nnz and bwperim functions in MATLAB. 

TMD was computed using the following relationship: mgHA/cm3 = (x/

4096)*slope + intercept, where x = the pixel intensity in the DICOM image, and 

the values for slope (281.706) and intercept (−195.402) were acquired during 

scanner calibration. Centrum length is calculated as the distance between planes 

separating adjacent vertebral bodies. Variation (indicated as “.sd”) was computed 

for measures dependent on mean values within a skeletal element and were 

calculated as the standard deviation in either voxel TMD (TMD.sd) or local 

thickness (Th.sd).

Thus, the following key describes the 25 combinatorial measures quantified for each 

vertebrae: centrum surface area (Cent.SA), centrum thickness (Cent.Th), variation in 

centrum thickness (Cent.Th.sd), centrum tissue mineral density (Cent.TMD), variation in 

centrum tissue mineral density (Cent.TMD.sd), centrum length (Cent.Le), haemal arch 

surface area (Haem.SA), haemal arch thickness (Haem.Th), variation in haemal arch 

thickness (Haem.Th.sd), haemal arch tissue mineral density (Haem.TMD), variation in 

haemal arch tissue mineral density (Haem.TMD.sd), neural arch surface area (Neur.SA), 

neural arch thickness (Neur.Th), variation in neural arch thickness (Neur.Th.sd), neural arch 

tissue mineral density (Neur.TMD), variation in neural arch tissue mineral density 

(Neur.TMD.sd), vertebral surface area (Vert.SA), vertebral thickness (Vert.Th), variation in 

vertebral thickness (Vert.Th.sd), vertebral tissue mineral density (Vert.TMD), and variation 

in vertebral tissue mineral density (Vert.TMD.sd). Vertebral measures (Vert) represent the 

total vertebral body, with all three elements (centrum, haemal arch, neural arch) combined.

Watson et al. Page 17

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Standard scores were computed to generate skeletal barcodes, and were defined as the 

difference between the value of the feature in the individual fish and the mean value of the 

feature across all vertebrae in the control population, divided by the standard deviation of the 

feature across all vertebrae in the control population. Thus, a single barcode represents the 

spectrum of values for each feature for an individual fish, compared to the entire control 

population for that fish. Mean barcodes were computed as the average value for each feature 

among two or more skeletal barcodes. Correlations of values in mean barcodes were plotted 

and R2 values computed in Prism software (GraphPad).

Statistical approach—For mutant fish with a known axial skeletal phenotype (bmpla and 

plod2 somatic mutants), results are reported from a single experiment; for characterization 

of mosaicism in sp7:EGFP fish, results are reported from two experiments. Each biological 

replicate represents one technical replicate. Empirical data are shown as either distributions 

of individual measurements, or are reported as mean ± SEM. Group sizes (n) are reported in 

the Figure panels themselves or in respective legends. Mild and extreme outliers were 

identified only for descriptive purposes; all data were included in statistical analyses. All 

statistical analyses were performed in R (Team, 2015), with the following exceptions; R2 

values of mean barcode correlations, and Mann-Whitney test of somatic standard lengths; 

which were performed in GraphPad Prism. In general, the Mann-Whitney test was used for 

univariate analyses between two groups. Dysmorphic phenotypes were analyzed using a test 

for equal proportions.

Multivariate analysis using the global test was performed using the globaltest package 

(Goeman et al., 2004). p<0.05 was considered statistically significant in all cases. To reduce 

Type I error, we minimized the number of hypotheses tested per mutant. We did this in two 

ways. First, we focused on 10 out of 25 combinatorial measures, selected based on our 

previous studies of plod2 and bmpla germline mutants. Second, rather than performing 

univariate tests on each measure at each location, we performed global tests using spinal 

patterns of each measure. This reduced the number of hypotheses tested per mutant from 

160 (16 vertebrae x 10 measures = 160 measures total) to 10 total. Reported p-values for 

these 10 measures are uncorrected. This is consistent with common practice when reporting 

a similar number of microCT measures in the literature, where a minimal set of 8 measures 

(4 for cortical, and 4 for trabecular) are recommended for murine bone (Bouxsein et al., 

2010).

DATA AND CODE AVAILABILITY

All datasets generated and analyzed during this study are included in the manuscript.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

Research reported in this publication was supported by NIH grants AR066061 and AR072199, a Royalty Research 
Fund Award from UW, a John H. Tietze Stem Cell Scientist Award, and a Seed Grant from the University of 

Watson et al. Page 18

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Washington Department of Orthopaedics and Sports Medicine. We gratefully thank Drs. Cecilia Moens and Peter 
Byers for helpful discussions.

REFERENCES

Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P, et 
al. (2012). Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in 
humans and zebrafish. Am J Hum Genet 90, 661–674. [PubMed: 22482805] 

Ata H, Ekstrom TL, Martinez-Galvez G, Mann CM, Dvornikov AV, Schaefbauer KJ, Ma AC, Dobbs 
D, Clark KJ, and Ekker SC (2018). Robust activation of microhomology-mediated end joining for 
precision gene editing applications. PLoS Genet 14, e1007652. [PubMed: 30208061] 

Bernards A, and Gusella JF (1994). The importance of genetic mosaicism in human disease. N Engl J 
Med 331, 1447–1449. [PubMed: 7969285] 

Biesecker LG, and Spinner NB (2013). A genomic view of mosaicism and human disease. Nat Rev 
Genet 14, 307–320. [PubMed: 23594909] 

Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, and Muller R (2010). Guidelines 
for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner 
Res 25, 1468–1486. [PubMed: 20533309] 

Brinkman EK, Chen T, Amendola M, and van Steensel B (2014). Easy quantitative assessment of 
genome editing by sequence trace decomposition. Nucleic Acids Res 42, e168. [PubMed: 
25300484] 

Brinkman EK, Kousholt AN, Harmsen T, Leemans C, Chen T, Jonkers J, and van Steensel B (2018). 
Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res 46, e58. 
[PubMed: 29538768] 

Campbell IM, Shaw CA, Stankiewicz P, and Lupski JR (2015). Somatic mosaicism: implications for 
disease and transmission genetics. Trends Genet 31, 382–392. [PubMed: 25910407] 

Charles JF, Sury M, Tsang K, Urso K, Henke K, Huang Y, Russell R, Duryea J, and Harris MP (2017). 
Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function 
during skeletogenesis. Bone 101, 162–171. [PubMed: 28476577] 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. 
(2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823. 
[PubMed: 23287718] 

D’Agati G, Beltre R, Sessa A, Burger A, Zhou Y, Mosimann C, and White RM (2017). A defect in the 
mitochondrial protein Mpv17 underlies the transparent casper zebrafish. Dev Biol 430, 11–17. 
[PubMed: 28760346] 

DeLaurier A, Eames BF, Blanco-Sanchez B, Peng G, He X, Swartz ME, Ullmann B, Westerfield M, 
and Kimmel CB (2010). Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, 
skeletogenesis, and bone regeneration. Genesis 48, 505–511. [PubMed: 20506187] 

Dougherty R, and Kunzelmann K-H (2007). Computing Local Thickness of 3D Structures with 
ImageJ. Microsc Microanal 13, 1678 CD–1679 CD.

Fleming A, Keynes R, and Tannahill D (2004). A central role for the notochord in vertebral patterning. 
Development 131, 873–880. [PubMed: 14736741] 

Forsberg LA, Gisselsson D, and Dumanski JP (2017). Mosaicism in health and disease - clones 
picking up speed. Nat Rev Genet 18, 128–142. [PubMed: 27941868] 

Gistelinck C, Kwon RY, Malfait F, Symoens S, Harris MP, Henke K, Hawkins MB, Fisher S, Sips P, 
Guillemyn B, et al. (2018). Zebrafish type I collagen mutants faithfully recapitulate human type I 
collagenopathies. Proc Natl Acad Sci U S A 115, E8037–E8046. [PubMed: 30082390] 

Gistelinck C, Witten PE, Huysseune A, Symoens S, Malfait F, Larionova D, Simoens P, Dierick M, 
Van Hoorebeke L, De Paepe A, et al. (2016). Loss of Type I Collagen Telopeptide Lysyl 
Hydroxylation Causes Musculoskeletal Abnormalities in a Zebrafish Model of Bruck Syndrome. J 
Bone Miner Res 31, 1930–1942. [PubMed: 27541483] 

Goeman JJ, van de Geer SA, de Kort F, and van Houwelingen HC (2004). A global test for groups of 
genes: testing association with a clinical outcome. Bioinformatics 20, 93–99. [PubMed: 14693814] 

Watson et al. Page 19

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gottlieb B, Beitel LK, Alvarado C, and Trifiro MA (2010). Selection and mutation in the “new” 
genetics: an emerging hypothesis. Hum Genet 127, 491–501. [PubMed: 20099069] 

Houle D, Govindaraju DR, and Omholt S (2010). Phenomics: the next challenge. Nat Rev Genet 11, 
855–866. [PubMed: 21085204] 

Hur M, Gistelinck CA, Huber P, Lee J, Thompson MH, Monstad-Rios AT, Watson CJ, McMenamin 
SK, Willaert A, Parichy DM, et al. (2017). MicroCT-based phenomics in the zebrafish skeleton 
reveals virtues of deep phenotyping in a distributed organ system. Elife 6.

Hur M, Gistelinck CA, Huber P, Lee J, Thompson MH, Monstad-Rios AT, Watson CJ, McMenamin 
SK, Willaert A, Parichy DM, et al. (2018). MicroCT-Based Phenomics in the Zebrafish Skeleton 
Reveals Virtues of Deep Phenotyping in a Distributed Organ System. Zebrafish 15, 77–78. 
[PubMed: 29173118] 

Inohaya K, Takano Y, and Kudo A (2007). The teleost intervertebral region acts as a growth center of 
the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 
236, 3031–3046. [PubMed: 17907202] 

Iourov IY, Vorsanova SG, and Yurov YB (2010). Somatic genome variations in health and disease. 
Curr Genomics 11, 387–396. [PubMed: 21358982] 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, and Charpentier E (2012). A programmable 
dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821. 
[PubMed: 22745249] 

Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, and Fisher S (2012). Skeletogenic fate 
of zebrafish cranial and trunk neural crest. Plos One 7, e47394. [PubMed: 23155370] 

Labun K, Montague TG, Gagnon JA, Thyme SB, and Valen E (2016). CHOPCHOP v2: a web tool for 
the next generation of CRISPR genome engineering. Nucleic Acids Res 44, W272–276. [PubMed: 
27185894] 

McCoy RC (2017). Mosaicism in Preimplantation Human Embryos: When Chromosomal 
Abnormalities Are the Norm. Trends Genet 33, 448–463. [PubMed: 28457629] 

McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, and Shendure J (2016). Whole-
organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907. 
[PubMed: 27229144] 

Montague TG, Cruz JM, Gagnon JA, Church GM, and Valen E (2014). CHOPCHOP: a CRISPR/Cas9 
and TALEN web tool for genome editing. Nucleic Acids Res 42, W401–407. [PubMed: 
24861617] 

Muir AM, Ren Y, Butz DH, Davis NA, Blank RD, Birk DE, Lee SJ, Rowe D, Feng JQ, and Greenspan 
DS (2014). Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum 
Mol Genet 23, 3085–3101. [PubMed: 24419319] 

Pardo-Martin C, Allalou A, Medina J, Eimon PM, Wahlby C, and Fatih Yanik M (2013). High-
throughput hyperdimensional vertebrate phenotyping. Nat Commun 4, 1467. [PubMed: 23403568] 

Rulands S, Lescroart F, Chabab S, Hindley CJ, Prior N, Sznurkowska MK, Huch M, Philpott A, 
Blanpain C, and Simons BD (2018). Universality of clone dynamics during tissue development. 
Nat Phys 14, 469–474. [PubMed: 29736183] 

Sanjana NE (2017). Genome-scale CRISPR pooled screens. Anal Biochem 532, 95–99. [PubMed: 
27261176] 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 
Saalfeld S, Schmid B, et al. (2012). Fiji: an open- source platform for biological-image analysis. 
Nat Methods 9, 676–682. [PubMed: 22743772] 

Shah AN, Davey CF, Whitebirch AC, Miller AC, and Moens CB (2015). Rapid reverse genetic 
screening using CRISPR in zebrafish. Nat Methods 12, 535–540. [PubMed: 25867848] 

Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, 
Doench JG, et al. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. 
Science 343, 84–87. [PubMed: 24336571] 

Team RC (2015). A language and environment for statistical computing (Vienna, Austria: R 
Foundation for Statistical Computing).

Teboul L, Murray SA, and Nolan PM (2017). Phenotyping first-generation genome editing mutants: a 
new standard? Mamm Genome 28, 377–382. [PubMed: 28756587] 

Watson et al. Page 20

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thyme SB, Pieper LM, Li EH, Pandey S, Wang Y, Morris NS, Sha C, Choi JW, Herrera KJ, Soucy ER, 
et al. (2019). Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and 
Their Shared Functions. Cell 177, 478–491 e420. [PubMed: 30929901] 

Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula 
M, Schuit F, et al. (2009). Chromosome instability is common in human cleavage-stage embryos. 
Nat Med 15, 577–583. [PubMed: 19396175] 

Wu RS, Lam II, Clay H, Duong DN, Deo RC, and Coughlin SR (2018). A Rapid Method for Directed 
Gene Knockout for Screening in G0 Zebrafish. Dev Cell 46, 112–125 e114. [PubMed: 29974860] 

Watson et al. Page 21

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights:

#1 Clonal clusters arising from CRISPR editing follow a universal size 

distribution

#2 Distinct phenotypic patterns arise from mosaic gene loss

#3 Large-scale phenotyping heightens sensitivity in detecting somatic mutant 

populations
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Figure 1. A common distribution underlies loss-of-function cluster size in bones of distinct 
developmental lineages, and in animals with different mutation efficiencies.
(A) Larval sp7:EGFP transgenic fish show relatively uniform EGFP expression in the 

skeleton of control fish (top). Somatic mutants with either moderate (middle) or high 

(bottom) loss-of-fluorescence (LOF) display a wide and varied range of LOF clusters, 

including in the craniofacial skeleton, the axial skeleton, and in the caudal fin rays. Fish 

shown are 10 dpf clutchmates. Scale bar, 500 μm. (B) Somatic mutants have a mean 

reduction in sp7:EGFP fluorescence in the developing axial skeleton of 10dpf zebrafish 

compared to non-injected clutchmates (controls). (C) Traces of fluorescence intensity for 
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each developing centrum along the spine for individual somatic mutants (purple, green and 

gray lines) show jagged topology, indicating clusters of loss of transgene expression 

compared to control (black line) and averaged expression (panel B). (D) Loss-of-

fluorescence occurs on both the Amacroscale (spanning multiple vertebral bodies) and the 

*microscale (contained within a vertebral body) compared to controls. Note the distinction 

between opacity due to developing pigmentation in the controls (top) compared to loss-of-

fluorescence in somatic mutants (bottom). asc, anterior spinal column; psc, posterior spinal 

column. (E) On multiple instances, loss-of-fluorescence in somatic mutants was stratified 

along the dorso-ventral axis of the centrum, with loss occurring preferentially on the dorsal 

side (top) or ventral side (bottom). (F) EGFP expression on the dorsal side of the centrum in 

somatic mutants often corresponded to expression in the neural arch and spine. Scale bar for 

(D-F) = 100 μm. (G) Schematic demonstrating clonal fragmentation and merger events. (H) 

Example tracing of microscale (white) and macroscale (orange) LOF clusters on dorsal and 

ventral centrum surfaces. (I) Cluster sizes in vertebrae of individual fish. Note the 

differences in the number and sizes of clusters, indicative of differences in functional loss in 

each fish. (J) Vertebral cluster size distributions in individual fish, using data from panel I. 

(K) Vertebral cluster size distributions in individual fish, when normalized by the mean 

length in each fish. Color mapping is same as for panels I and J. The data collapse onto a 

common distribution, which overlaps with Eq. 1. See Figure S2 for distributions of only 

micro- or macroscale clusters. (L) Cluster size distributions for LOF clusters in the 

branchiostegal rays. Color mapping is same as for panels I and J.
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Figure 2. FishCuT analysis of somatic mutants.
(A,A’) Skeletal barcodes visually depict individual phenomes for control and plod2 (A) or 

bmpla (A’) somatic mutant fish (3 fish/group shown). See STAR Methods for barcode 

quantification. (B-K,B’-K’) Phenotypic features, indicated by the graph title (with units for 

y-axis), are plotted as a function of vertebra along the axial skeleton. Plots associated with 

p<0.05 in the global test are in a lighter coloring scheme and are indicated by an asterisk 

(mean ± SE, see text for p-values). For plod2 (B-K) n=11/group, and for bmpla (B’-K’) 

n=15/group. Data for all 25 combinatorial measures are presented in Figure S4 and S5. Cent, 
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centrum; Haem, haemal arch, Neur, neural arch; Vol, volume; TMD, tissue mineral density; 

Th, thickness; Le, length. (L,L’) Representative maximum intensity projections of microCT 

scans for plod2 (L) and bmpla (L’) somatic mutant fish and controls.

Watson et al. Page 26

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Correspondence between somatic and germline mutant phenotypes for plod2 and 
bmp1a.
Phenotypic features are plotted as a function of vertebra (mean ± SE). Plots associated with 

p<0.05 in the global test are in a lighter coloring scheme (see text for p-values) and indicated 

by an asterisk. (A-A’) Comparison of plod2 somatic (A) and germline (A’) mutants. Data in 

(A’) were subjected to allometric normalization, due to the severe reduction in body length 

in plod2 germline mutants. (B-B’) Comparison of bmpla somatic (B) and germline (B’) 

mutants. A majority of statistically different traits in germline mutants for both genes are 

also affected in somatic mutants. For A’ and B’, n=3/group. Cent, centrum; Haem, haemal 

arch; Neur, neural arch; Vol, volume; TMD, tissue mineral density; Th, thickness; Le, 

length. (C-D) Correlations between mean somatic mutant barcodes for entire plod2 (C, n= 

11) and bmpla (D, n=15) cohorts, plotted against respective mean germline mutant barcodes 
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(n=3/group). (E) Correlation in mean somatic and germline mutant barcodes as a function of 

somatic mutant barcode sample size. As sample size (the number of barcodes included in the 

analysis) increases, phenome-wide correlation increases in an asymptotic manner.
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Figure 4. Analyses of vertebral patterns using the global test and Moran’s I are useful in 
discriminating somatic mutant phenotypes.
(A-C) Monte Carlo simulations of somatic vertebral patterns were analyzed for sensitivity in 

detecting differences in phenotypic measures. Representative mosaic patterns are shown for 

simulations of microscale (A) and macroscale (B) loss-of-function clusters. Values indicate 

extent of gene loss. Sensitivity of the global test is higher compared to univariate approaches 

for simulated mutants with microscale (A’) or macroscale (B’) loss-of-function clusters. (C) 

Sensitivity of the global test in detecting changes in centrum volume compared to univariate 

approaches for simulated mutants with microscale loss-of-function clusters and different 

degrees of intra-animal variability (parameterized by lambda). Improvement of the global 

test over univariate tests is heightened as mosaicism increases (i.e., as lambda goes to zero). 

(D) Bootstrap analysis using experimentally-derived data from plod2 somatic mutants. The 

global test out-performs M.-W. tests for 6 of the 7 statistically significant phenotypic 

measures detected for plod2 somatic mutants and is nearly as sensitive for the final measure. 

For details on bootstrap analysis, (e.g. use of n) see STAR Methods. (E) Schematic of 
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Moran’s I for different simulated patterns of mosaicism. (E’) Moran’s I changes with 

characteristic effect size, d. Simulated microscale loss-of-function clusters decrease Moran’s 

I, whereas simulated macroscale clusters increase it. (F,F’) Moran’s I quantified for each of 

the 10 primary combinatorial measures in plod2 (F) and bmpla (F’) somatic mutants. (G,G’) 

Combined distributions of all quantities calculated for Moran’s I shown in panels F and F’. 

Moran’s I for plod2 mutants (G) shows a shift towards a random distribution compared to 

controls, while that of bmpla mutants (G’) does not.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

20 uM Cas9-NLS NEB Cat #: M0646T

Alt-R CRISPR-Cas9 tracrRNA IDT Cat #: 1072532

Nuclease-Free Duplex Buffer IDT Cat # 11-01-03-01

Phenol Red Sigma-Aldrich Cat #: P0290

MS-222 Sigma-Aldrich Cat #: E10521

Low-melt agarose Bio-Rad Cat #: 161-3111

Critical Commercial Assays

GeneJET Gel Extraction Kit Thermo Scientific Cat #: K0691

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Zebrafish: AB ZIRC ZFIN ID: ZDB-GENO-960809-7

Zebrafish: Tg(sp7:EGFP)b1212 ZIRC ZFIN ID: ZDB-ALT-100402-1

Oligonucleotides

Protospacer sequence for crRNA design: plod2, 
AAGTATCCGTCTGTACGCAG

IDT Alt-R® CRISPR-Cas9 crRNA, 2 nmol, custom 
design

Protospacer sequence for crRNA design: bmp1a, 
ATACGTGGGCCGCAGAGGAG

IDT Alt-R® CRISPR-Cas9 crRNA, 2 nmol, custom 
design

Protospacer sequence for crRNA design: sp7:EGFP, 
GATGGCCGCGTCGATTCTGG

IDT Alt-R® CRISPR-Cas9 crRNA, 2 nmol, custom 
design

sp7 F: ACCCCAAGAATCAAACCCCA sp7 R: 
AGTTAACATGCAGTAATCATCGCA

Sigma-Aldrich Custom oligo

plod2 F: ACTGGAAAGCAGTGGACAGG plod2 R: 
AGGGTTGAAGACGGGGTAGA

Sigma-Aldrich Custom oligo

bmp1a F: AGTTGGACGATATTTACCCTGGT bmp1a R: 
CGCACCCCCAGAGAAAACC

Sigma-Aldrich Custom oligo

Recombinant DNA

Software and Algorithms

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

Prism 6 and 7 GraphPad https://www.graphpad.com/

R R Core Team, 2016 https://www.R-project.org/

FishCuT Hur et al., 2017 https://github.com/elifesciences-publications/
FishCuT

MATLAB MathWorks https://www.mathworks.com/products/
matlab.html
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