birpublications.org/dmfr

REVIEW ARTICLE Stafne's bone cyst revisited and renamed: the benign mandibular concavity

¹Johan K.M. Aps, ²Natasha Koelmeyer and ³Cina Yaqub

¹Dental School, Division of Oral Diagnostic and Surgical Sciences, University of Western Australia, Crawley, Australia; ²Private dental practice, Melbourne, Australia; ³Dental Officer Oral Health Centre Western Australia, University of Western Australia, Crawley, Australia

Objective: Stafne's bone cyst (SBC) is an asymptomatic, round or oval-shaped, well-defined, uniform radiolucent lesion, usually incidentally observed in the posterior aspects of the mandible. Radiographical appearance may be confusing though. This study aimed to review the literature on SBCs and to map the SBC as shown in their respective papers.

Methods: A Pubmed® search (1/9/2018 till 31/5/2019), mentioning SBC, was carried out. Included papers had to contain: patient's age, gender and radiographs.

Results: In total, 114 papers were found, but only 64 papers were retained, which contained 109 cases (95 males, 14 females). The patients' ages ranged between 14 and 89 years old (mean age being 52 years). Male patients' ages (N = 95) ranged from 14 to 89 years (mean age 52.3 years), whereas the females (N = 14) ages ranged between 22 and 68 (mean age 50.2 years). 28 combinations of locations of SBC were recorded. Only three lesions were located at the symphysis, six were bilateral, 55 appeared on the left hand side and 45 on the right hand side of the mandible. The literature mentioned that these cavities could contain salivary gland tissue, muscular tissue, lymphoid tissue, blood vessels, fat tissue or connective tissue.

Discussion/Conclusion: This study illustrates the wide variation of SBC locations across the mandible and leads us to conclude that the differential diagnosis of every asymptomatic, oval or round, well-defined, uniform radiolucent lesion on two-dimensional radiographs of the mandible should include "a benign mandibular concavity", formerly known as SBC. *Dentomaxillofacial Radiology* (2020) **49**, 20190475. doi: 10.1259/dmfr.20190475

Cite this article as: Aps JK.M, Koelmeyer N, Yaqub C. Stafne's bone cyst revisited and renamed: the benign mandibular concavity. *Dentomaxillofac Radiol* 2020; **49**: 20190475.

Keywords: Stafne's bone cyst mandibular concavity

Introduction

A clinically justified diagnostic panoramic radiograph is common grounds in dentistry and provides an overview of the dentomaxillofacial complex and its adjacent anatomy. Dental clinicians are trained to recognize normal anatomical boundaries and landmarks, besides identifying pathology in the jaws. However, aberrant anatomy and its radiographical appearance can be confusing and may be misinterpreted as pathology.¹ The latter can lead to unnecessary additional imaging (*e.g.*, CBCT or multi-slice CT (MSCT)) which results in an increased cost and radiation burden for the patient. Moreover this can also result in unnecessary surgical interventions, which also have a cost, a potential risk of complications and it contradicts the Hippocratic oath (primum non-nocere). This can all be avoided if clinicians can be trained better by providing evidence, by publications, for these aberrant anatomical presentations appearing in radiographs.

Panoramic and intraoral radiographs of the mandible can reveal incidental findings, like a unilocular round or oval cystic appearing, uniform radiolucent, lesion with well-defined borders, which can be confusing for interpretation, especially if it occurs superior of or seems to be encroaching on the inferior alveolar nerve canal or on the inferior cortical border of the mandible, or if

Correspondence to: Johan K.M. Aps, E-mail: johan.apsdmfr@hotmail.com Received 21 November 2019; revised 05 January 2020; accepted 09 January 2020

projected on a tooth's apex, or if observed in the ramus of the mandible.²⁻⁴ It is important that clinicians think of a differential diagnosis when assessing their diagnostic images.

In 1942 Edward Stafne described for the first time, 35 asymptomatic, radiographically radiolucent cavities, unilaterally located in the posterior region of the mandible, between the mandibular angle and the third molar, and below the inferior dental canal and slightly above the inferior cortical border of the mandible. He described the following phenomenon as Stafne's bone cyst (SBC).⁵⁻¹⁰ While at the time Stafne did not analyse the contents of these cavities on a microscopic level, what triggered his interest was fuelled by a multitude of factors. These included the similarity in the appearance of these cavities and a somewhat consistent location in oblique lateral and lateral radiographs. This congruence across the 35 cases that he observed suggested a common aetiological factor, which continued to be reported in the literature over time.⁶ The aetiology remains unclear, but assumptions such as hypertrophy of a lobe of a salivary gland, bony erosion caused by vascular compression, or an incomplete Meckel cartilage calcification during ossification, have been proposed. According to Hisatomi et al. (2019),⁶ the incidence of SBC is less than 0.5% for the posterior lingual variant, and differences in prevalence have been reported to vary between 0.10 and 0.48% and in a cadaver study a prevalence as high as 6.06% was reported.^{11,12} The anterior lingual variant appears to be seven times less prevalent than the posterior one and can be expected between the incisors and the premolar area, superior to the insertion of the mylohyoid muscle.^{13,14} According to the literature, the age range is quite wide, with a predilection for males over 50 years of age.^{7,8,15} The size of the lesion was studied by Adisen et al. (2015) and they found that the mean volume of the defect was 361.7 mm³.¹⁶ This also explains the confusion it can cause when visible on radiographs.

Different definitions can be found in various radiology text books:

- (1) a bone cavity or depression on the lingual aspect of the mandible near the lower border;¹⁷
- (2) a well-defined round or ovoid or occasionally lobulated radiolucency that ranges in diameter from 1 to 3 cm, below the inferior alveolar canal and anterior to the angle of the mandible, in the region of the antegonial notch and the submandibular gland fossa;¹⁸
- (3) a corticated unilocular radiolucency below the mandibular canal, between the first molar and a the angle of the mandible, with rare location in the ramus of the mandible (buccal or lingual);¹⁹
- (4) a developmental depression along the mesial aspect of the mandible most commonly near the angle but sometimes along the body more anteriorly;²⁰
- (5) a not always corticated, well-defined round or oval defect or pseudocyst in the lingual surface of the mandible, usually at the mandibular angle caudally to the mandibular canal, seldom in the anterior part of the mandible.^{21,22}

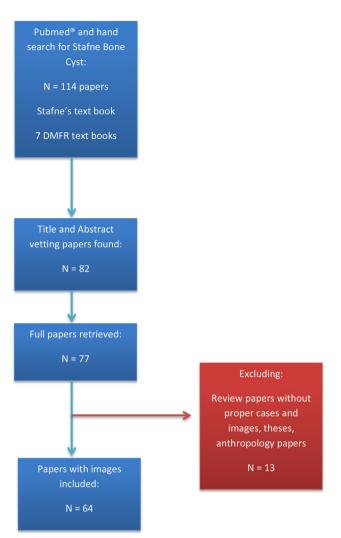


Figure 1 PRISMA flow chart for Stafne Bone Cyst narrative review (1 September 2018 – 31 May 2019)

The SBC is also known under a myriad of synonyms: Stafne bone cavity, lingual salivary gland depression, lingual mandibular bone depression, developmental salivary gland defect, Stafne defect, static bone cavity, latent bone cyst, mandibular salivary gland defect and idiopathic bone cavity.^{1–22}

The aim of the present narrative review was to investigate, verify and map the different locations of a SBC from publications that actually showed the radiographs with the exact location of the lesion. Knowledge of the possible locations of this lesion helps clinicians establish a differential diagnosis when a round or oval, uniform radiolucent, well-defined, lesion is observed on a radiographic image of the mandible.

Methods and materials

A Pubmed[®] search for "SBC" was conducted between 1 September 2018 and 31 May 2019. Inclusion criteria for the review were: English, Dutch, French or German language, full papers available (some with the help of

2 of 9

Table 1 Publications on Stafne's Bone Cyst found on Pubmed[®] in the period 1980–2019, which contained images that were eligible for this narrative review

Year of Publication	Authors	Country of Origin
1980	Adra et al. ²⁴	Lebanon
1984	Chen and Ohba ²⁵	Japan
1985	Smith et al. ²⁶	United Kingdom
1986	Wolf et al. ²⁷	Finland
1988	Barker ²⁸	United Kingdom
1989	Tominaga et al. ²⁹	Japan
1990	Grellner et al. ³⁰	USA
1993	Ariji et al. ³¹ Shigematsu et al. ⁹	Japan Japan
1994	Tsui and Chan ³²	Hong Kong
1997	Graham et al. ³³	United Kingdom
1998	Reuter ³⁴	Germany
1999	Apruzzese and Longini ³⁵ Branstetter et al. ³⁶ Junquera et al. ³⁷	Italy USA Spain
2000	Boyle et al. ³⁸	United Kingdom
2001	Katz et al. ¹⁴	Israel
2002	de Courten et al. ³⁹ Dorman and Pierse ⁴⁰ Philipsen et al. ⁷	Switzerland United Kingdom Japan
2003	Longo et al. ⁴¹	Italy
2004	Campos et al. ⁴² Guedes Queiroz et al. ⁴³ Phillips and Yates ⁴⁴	Brazil Brazil United Kingdom
2006	Minowa et al. ⁴⁵ Quesada-Gomez et al. ⁸ Segev et al. ⁴⁶	Japan and USA Spain Israel
2009	Bornstein et al.47	Switzerland
2010	Kao et al. ⁴⁸ Kopp et al. ⁴⁹ Krafft et al. ⁵⁰ Sisman et al. ¹³ Turkoglu and Orhan ⁵¹ Flores Campos et al. ⁵²	Taiwan Germany Germany Turkey Turkey Brazil
2011	Vieira Aguiar et al. ⁵³ Li et al. ⁵⁴	Brazil China
2012	Dereci and Duran ⁵⁵ Etoz et al. ⁵⁶ Friedrich et al. ⁵⁷ Munevveroglu and Aydin ⁵⁸ Sisman et al. ¹²	Turkey Turkey Germany Turkey Turkey
2013	Boffano et al. ⁵⁹ Prechtl et al. ⁶⁰ Saglam et al. ⁶¹	Italy Germany Turkey
2014	Assaf et al. ¹¹ Herranz-Aparicio et al. ⁶² Kim et al. ⁶³ Miloglu et al. ⁶⁴ Probst et al. ⁶⁵ Schneider et al. ⁶⁶ Taysi et al. ⁶⁷	Switzerland Spain Korea Turkey Germany Switzerland Turkey

(Continued)

Year of Publication	Authors	Country of Origin
2015	Adisen et al. ¹⁶ Lee et al. ⁶⁹ Mauprivez et al. ⁶⁹ More et al. ⁷⁰ Ozaki et al. ⁷¹ Venkatesh ⁷²	Turkey Australia and United Kingdom France India Japan Kingdom of Saudi Arabia
2016	Atil et al. ⁷³ Chen et al. ⁷⁴ Deyhimi et al. ⁷⁵ Lee et al. ⁷⁶	Turkey USA Iran Korea
2017	Hisatomi et al.77	Japan and Brazil
2018	da Silva et al. ⁷⁸ Kaya et al. ⁷⁹ Nishimura et al. ⁸⁰	Brazil Turkey Japan
2019	Lee et al. ⁸¹ Bayrak ⁸²	USA Turkey

the library of the University of Western Australia and by emailing authors), radiographic image of the lesion available in the publication, and finally patient gender and age clearly mentioned. A hand search was also performed through dental and medical handbooks available to the authors. A check was done using different search terms, such as aberrant salivary gland, Stafne bone cavity, Stafne's bone cavity and static bone cavity, in order to identify more papers, but that did not result in any additional manuscripts. Therefore, the authors considered their search as comprehensive and complete enough for the purpose of this narrative review.

Results

Figure 1 provides an overview of the search methodology in a typical PRISMA flow chart model.²³ A total of 114 papers were found on Pubmed®, of which 82 were deemed eligible for the purpose of this review. Only 77 papers were available as full paper. After thorough selection and vetting by the three authors, a final selection of 64 papers was deemed eligible for the final assessment, as they contained enough detailed imaging and patient information to be used for mapping the lesions. This resulted in 109 patient cases with SBC. The 13 papers that were excluded contained anthropomorphic studies, a PhD thesis, letters to the editor, general papers about incidental findings on radiographs and papers regarding other types of lesions mimicking SBC and finally papers covering classification of SBCs. The hand search resulted in retrieving Edward Stafne's 1963 text book and six other text books on dental and maxillofacial radiology which had a section dedicated to SBC.

Table 1 provides an overview of the publications per year, the authors and the country of origin of these papers. The period covers 1980 to 2019. There seems to be a trend, namely that the number of reports published per year has

 Table 2
 Distribution of imaging modalities used in the papers used
 for this narrative review about Stafne's bone cvst (N is the number of cases per imaging modality or combination of imaging modalities)

Type of Imaging	Publications	N	%
PANO	Chen and Ohba 1984 ²⁵ Sisman et al. 2012 ¹² Philipsen et al. 2002 ⁷ Shigematsu et al. 1993 ⁹ Adra et al. 1980 ²⁴ Assaf et al. 2014 ¹¹ Smith et al. 1985 ²⁶ de Courten et al. 2002 ³⁹ Apruzzese and Longoni 1999 ³⁵ Barker 1988 ²⁸ Prechtl et al. 2013 ⁶⁰ Friedrich et al. 2012 ⁵⁷ Kim et al. 2014 ⁴ Miloglu et al. 2014 ⁶⁴	40	36.70%
PANO + MSCT	da Silva et al. 2018 ⁷⁸ Minowa et al. 2006 ⁴⁵ Ariji et al. 1993 ³¹ Boyle et al. 2000 ³⁸ Grellner et al. 1990 ³⁰ Phillips and Yates 2004 ⁴⁴ Kao et al. 2010 ⁴⁸ Katz et al. 2001 ¹⁴ Bayrak 2019 ⁸² Campos et al. 2004 ⁴² Etoz et al. 2012 ⁵⁶ Reuter 1998 ³⁴ Junquera et al. 1999 ³⁷ Nishimura et al. 2018 ⁸⁰ Vieira Aguiar et al. 2011 ⁵³	18	16.50%
PANO + CBCT	More et al. 2015^{70} Ozaki et al. 2015^{71} Atil et al. 2016^{73} Bornstein et al. 2009^{47} Sisman et al. 2010^{13} Boffano et al. 2013^{59} Muenevveroglu and Aydin 2012^{58} Venkatesh 2015^{72} Kopp et al. 2010^{49} Taysi et al. 2014^{67} Krafft et al. 2019^{81}	19	17.40%
CBCT	Assaf et al. 2014 ¹¹	1	0.90%
PANO + CBCT+MRI	Schneider et al. 2014 ⁶⁶ Probst et al. 2014 ⁶⁵ Bornstein et al. 2009 ⁴⁷	3	2.80%
PANO + MSCT+MRI	Branstetter et al. 1999 ³⁶ Herranz-Aparicio et al. 2014 ⁶² Segev et al. 2006 ⁴⁶ Saglam et al. 2013 ⁶¹	4	3.70%
MSCT	Dereci and Duran 2012 ⁵⁵	1	0.90%
PANO + IO	Deyhimi et al. 2016 ⁷⁵ Dorman and Pierse 2002 ⁴⁰ Guedes Queiroz et al. 2004 ⁴³	3	2.80%

Table 2	(Continued)

Type of Imaging	Publications	N	%
PANO + MRI	Graham et al. 1997 ³³ Lee et al. 2015 ⁶⁸ Hisatomi et al. 2017 ⁷⁷ Kaya et al. 2018 ⁷⁹ Mauprivez et al. 2015 ⁶⁹	5	4.60%
PANO + IO+MSCT	Turkoglu and Orhan 2010 ⁵¹ Grellner et al. 1990 ³⁰	2	1.80%
IO + MSCT	Minowa et al. 200645	1	0.90%
PANO + MSCT+ SIALOGRAPHY	Li et al. 2011 ⁵⁴ Tominaga et al. 1989 ²⁹	2	1.80%
PANO + OCCL	Tsui and Chan 1994 ³²	1	0.90%
PANO + SIALOGRAPHY	Wolf et al. 1986 ²⁷	1	0.90%
CEPH + CBCT	Lee et al. 2016 ⁷⁶	1	0.90%
PANO + CEPH+CBCT	Longo et al. 2003 ⁴¹	1	0.90%
PANO + CBCT+MSCT	Sisman et al. 2012 ¹²	5	4.60%
		109	100.00%

CBCT, cone beam computed tomography; CEPH, cephalometric radiography; IO, intraoral radiography; MRI, magnetic resonance imaging; MSCT, multi-slice computed tomography; OCCL, occlusal radiography; PANO, panoramic radiography.

increased after 2009, compared to the period before. The majority of papers came from Turkey, Japan and the UK.

In Table 2, one can find the distribution of imaging modalities that were used in the 64 manuscripts. Panoramic radiography, only, was used in 36.7% of the reports, with a combination of panoramic radiography and CBCT being used in 17.4% of cases and a combination of panoramic radiography and multi-slice CT being used in 16.5% of cases. The table shows the prevalence of imaging combinations used in the different papers. Panoramic imaging was involved in 14 of the 18 found imaging combinations in these papers (77.7%), as was expected as SBC is an incidental finding after all. Table 2 also shows which imaging modalities or combinations of modalities were used in the respective papers.

Table 3 summarises the different locations of SBC as recorded from the radiographic images found in the included papers of this review. The table also shows the anatomical locations per gender for the 109 cases in total. Only three lesions were located at the symphysis, six were bilateral, 55 appeared on the left hand side and 45 on the right hand side of the mandible.

With regard to patient age range, our analysis showed that patients' ages ranged from 14 to 89 years old, with the mean age being 52 years. Male patients' ages (N =95) ranged from 14 to 89 years (mean age 52.3 years), whereas the females (N = 14) ages ranged from 22 to 68 (mean age 50.2 years).

In Figure 2, the different anatomical locations of SBCs are mapped on a panoramic radiograph of a mandible. This figure shows graphically what Table 3 summarised. In red are the ones that did not encroach on the mandibular canal, whereas the blue ovals are. The orange ovals involve **Table 3** Summary of the locations of Stafne's bone cysts, for the entire sample (N) and per gender (M,F), as checked in the radiographs included in the manuscripts used for this narrative review. The abbreviations used in this table are: RHS = right hand side, PM = premolar, M = molar, IANC = inferior alveolar nerve canal

Location of Stafne's Bone Cyst	Publications	N	M	F
RHS PM inferior to IANC	Shigematsu et al.1993 ⁹	1	1	
RHS PM superior to IANC	Phillips and Yates 200444	1	1	
LHS PM superior to IANC	Krafft et al. 2010 ⁵⁰	1	1	
Bilateral M to angle area, inferior to IANC but encroaching	Junquera et al. 1999 ³⁷	1	1	
Bilateral angle of mandible	Mauprivez et al. 2015 ⁶⁹	1	1	
LHS angle to M area inferior to IANC - double lesion	Miloglu et al. 2014 ⁶⁴	1	1	
RHS ramus and LHS M area inferior to IANC and encroaching	Nishimura et al. 2018 ⁸⁰	1	1	
RHS angle and RHS anterior mandible	Ozaki et al. 2015 ⁷¹	1	1	
RHS M inferior to IANC + RHS PM inferior IANC + LHS PM inferior IANC	Vieira Aguiar et al. 2011 ⁵³	1	1	
LHS M superior to IANC	de Courten et al. 2002 ³⁹ Kopp et al. 2010 ⁴⁹	2	2	
RHS anterior mandible	Tominaga et al. 1989 ²⁹ Turkoglu and Orhan 2010 ⁵¹	2	2	
RHS ramus	Campos et al. 2004 ⁴² Lee et al. 2015 ⁶⁸	2	2	
Bilateral PM area	Grellner et al. 1990^{30} Kim et al. 2014^{63}	2	1	1
RHS angle of mandible and encroaching IANC	Chen and Ohba 1984 ²⁵ Ozaki et al. 2015 ⁷¹ Philipsen et al. 2002 ⁷	3	3	
LHS ramus	Barker 1988 ²⁸ Hisatomi et al. 2017 ⁷⁷ Lee et al. 2019 ⁸¹	3	3	
Midline mandible	Dorman and Pierse 2002 ⁴⁰ Grellner et al. 1990 ³⁰ Guedes Queiroz et al. 2004 ⁴³	3	1	2
RHS M inferior to IANC	Minowa et al. 2006 ⁴⁵ Shigematsu et al. 1993 ⁹ Sisman et al. 2012 ¹²	4	4	
RHS PM inferior to IANC and encroaching	Bornstein et al. 2009 ⁴⁷ Shigematsu et al. 1993 ⁹ Sisman et al. 2010 ¹³ Sisman et al. 2012 ¹²	4	2	2
LHS M inferior to IANC	Assaf et al. 2014 ¹¹ More et al. 2015 ⁷⁰ Sisman et al. 2012 ¹²	4	3	1
LHS PM inferior to IANC and encroaching	Apruzzese and Longoni 1999 ³⁵ Bornstein et al. 2009 ⁴⁷ Katz et al. 2001 ¹⁴ Taysi et al. 2014 ⁶⁷	4	3	1
LHS anterior mandible	Bayrak 2019 ⁸² Dereci and Duran 2012 ⁵⁵ Deyhimi et al. 2016 ⁷⁵ Minowa et al. 2006 ⁴⁵	4	4	
LHS angle to M area inferior to IANC and encroaching	Etoz et al. 2012^{56} Flores Campos et al. 2010^{52} Lee et al. 2016^{76} Prechtl et al. 2013^{60} Reuter 1998^{34}	5	4	1
RHS angle to M area inferior to IANC and encroaching	Friedrich et al. 2012 ⁵⁷ Kaya et al. 2018 ⁷⁹ Longo et al. 2003 ⁴¹ Muenevveroglu and Aydin 2012 ⁵⁸ Saglam et al. 2013 ⁶¹	5	5	

(Continued)

6 of 9

Stafne's bone cyst revisited Aps et al

Table 3(Continued)

Location of Stafne's Bone Cyst	Publications	N	М	F
LHS angle of mandible	Philipsen et al. 2002 ⁷ Shigematsu et al. 1993 ⁹ Sisman et al. 2012 ¹²	6	5	1
LHS angle of mandible and encroaching IANC	Adra et al. 1980 ²⁴ Assaf et al. 2014 ¹¹ Chen and Ohba 1984 ²⁵ da Silva et al. 2018 ⁷⁸ Herranz-Aparicio et al. 2014 ⁶² Sisman et al. 2012 ¹²	9	9	
RHS angle of mandible	Branstetter et al. 1999 ³⁶ Chen and Ohba 1984 ²⁵ More et al. 2015 ⁷⁰ Sisman et al. 2012 ¹²	11	9	2
RHS M inferior to IANC and encroaching	Ariji et al. 1993 ³¹ Atil et al. 2016 ⁷³ Boyle et al. 2000 ³⁸ Grellner et al. 1990 ³⁰ More et al. 2015 ⁷⁰ Schneider et al. 2014 ⁶⁶ Shigematsu et al. 1993 ⁹ Smith et al. 1985 ²⁶ Tsui and Chan 1994 ³²	11	10	1
LHS M inferior to IANC and encroaching	Adra et al. 1980 ²⁴ Ariji et al. 1993 ³¹ Boffano et al. 2013 ⁵⁹ Graham et al. 1997 ³³ Kao et al. 2010 ⁴⁸ Li et al. 2011 ⁵⁴ More et al. 2015 ⁷⁰ Muenevveroglu and Aydin 2012 ⁵⁸ Probst et al. 2014 ⁶⁵ Segev et al. 2006 ⁴⁶ Sisman et al. 2012 ¹² Smith et al. 1985 ²⁶ Venkatesh 2015 ⁷² Wolf et al. 1986 ²⁷	16	14	2
Total		109	95	14

IANC, inferior alveolar nerve canal; LHS, left hand side; M, molar; PM, premolar; RHS, right hand side.

locations where the SBC was close to the apex of a tooth, mimicking a radicular lesion. In green are the lesions that covered a larger area of the jaw and in purple are the lesions located in the rami of the mandible. Eight cases were not graphically shown in this figure as these were patients in whom multiple SBCs were observed in different locations. The information about these can be retrieved from Table 3 (the white boxes in the prevalence column).

Discussion

The current study can be considered an inventory of published radiographically illustrated cases, which has resulted in an evidence-based map of SBC locations, which can now be used for teaching purposes. This study did not question and/or investigate the aetiology of the SBC or the age range in which one can expect this asymptomatic, incidental, radiographic finding to be observed. Therefore, the information regarding prevalence, age and gender is nothing new.

What is new, is however, what is illustrated in Figure 2: the mapping of possible locations of SBCs. The latter shows that radiographic interpretation of radiolucent lesions in the mandible can be complicated, as for instance SBCs can mimic other radiolucent lesions, as they can occur anywhere in the mandible. Occurrence of an SBC superior of the inferior alveolar canal and/or close to the apex of a tooth, complicates differential diagnosis of radiolucent lesions.^{1-4,38,39,50,70,78} It is therefore the authors' opinion that all asymptomatic well-defined, round or oval, uniform radiolucent lesions, in the mandible should be considered as possible SBC. That being said, the definition of SBC as mentioned in text books and by Edward Stafne in 1942 is no longer accurate and we think these lesions should be called "benign mandibular concavities", as their content may be salivary gland tissue, but also lymphoid, muscular, adipose or vascular tissue, as mentioned in several publications. 5,10,17-22,31,33,36,46,47,54,57,63,69,70,80

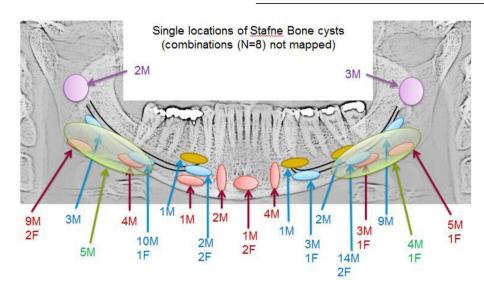


Figure 2 The mappings of the different locations of Stafne Bone Cysts as retrieved from the 64 papers which were included in this narrative review. M stands for male, F stands for female and the number indicates how many cases were identified. Eight cases in which multiple locations were present are not shown in this figure, as it would clutter the figure.

We are aware that several classifications have been proposed to identify the depth of the concavity and its actual content, but as this was not within the scope of the current review, we refer the interested reader to the relevant literature on this.^{9,10,17–22,31,70} We were purely interested in the anatomical mapping of the lesions in order to illustrate to clinicians that a benign concavity in the mandible should always be considered with the incidental identification of an asymptomatic, round or oval-shaped, well-defined, uniform radiolucent lesion, anywhere in the mandible.

As mentioned above, the aetiology is unknown and it seems interesting to the authors that, despite the fact that millions of teenagers receive orthodontic treatment, and therefore undergo panoramic and other diagnostic imaging, there is no information available on the presence or emergence of these benign mandibular concavities in teenagers. Does that support the hypotheses that it is a developmental lesion? This calls for a longitudinal or retrospective study in which panoramic radiographs,

REFERENCES

- Sirotheau Corrêa Pontes F, Paiva Fonseca F, Souza de Jesus A, Garcia Alves AC, Marques Araújo L, Silva do Nascimento L, et al. Nonendodontic lesions misdiagnosed as apical periodontitis lesions: series of case reports and review of literature. *J Endod* 2014; 40: 16–27. doi: https://doi.org/10.1016/j.joen.2013.08.021
- Lam EW, Ruprecht A, Dolan KD, Frank JA. Osteomyelitis of the mandible simulating a Stafne mandibular cortical defect. *Ann Otol Rhinol Laryngol* 1994; **103**: 490–4. doi: https://doi.org/10. 1177/000348949410300612
- Parvizi F, Rout PG. An ossifying fibroma presenting as Stafne's idiopathic bone cavity. *Dentomaxillofac Radiol* 1997; 26: 361–3. doi: https://doi.org/10.1038/sj.dmfr.4600294
- 4. Togan B, Gander T, Lanzer M, Martin R, Lübbers H-T. Incidence and frequency of nondental incidental findings on cone-

taken for the right reasons, from patients are studied from childhood into adulthood.

It should be emphasized that this narrative review did not investigate the validity or accuracy of the imaging techniques to identify mandibular concavities. However, this could be an interesting topic for a future review.

Conclusion

SBC is an asymptomatic, incidental radiographic finding in the mandible. The current review study has mapped the locations of these lesions as mentioned in their respective publications. The conclusion is that these lesions can occur anywhere in the mandible and that they can mimic any asymptomatic round or ovalshaped, well-defined, uniform radiolucent lesion on a two-dimensional radiograph of the mandible. Therefore we suggest to leave the name SBC and to rename the entity as "benign mandibular concavity".

beam computed tomography. *J Craniomaxillofac Surg* 2016; **44**: 1373–80. doi: https://doi.org/10.1016/j.jcms.2016.06.026

- Stafne EC. Congenital defect of the mandible containing salivary gland tissue. In: Stafne E. C, ed. *Oral Roentgenographic Diagnosis*. 2nd Ed. Philadelphia and London: WB Saunders Company; 1963. pp. 43–6.
- Hisatomi M, Munhoz L, Asaumi J, Arita E-S. Stafne bone defects radiographic features in panoramic radiographs: assessment of 91 cases. *Med Oral Patol Oral Cir Bucal* 2019; 24: e12–19. doi: https://doi.org/10.4317/medoral.22592
- Philipsen HP, Takata T, Reichart PA, Sato S, Suei Y. Lingual and buccal mandibular bone depressions: a review based on 583 cases from a world-wide literature survey, including 69 new cases from

Japan. Dentomaxillofac Radiol 2002; 31: 281–90. doi: https://doi.org/10.1038/sj.dmfr.4600718

- Quesada-Gómez C, Valmaseda-Castellón E, Berini-Aytés L, Gay-Escoda C. Stafne bone cavity: a retrospective study of 11 cases. *Med Oral Patol Oral Cir Bucal* 2006; 11: e277–80.
- Shigematsu H, Suzuki S, Osuga T, Okumura Y, Fujita K. A radiographical classification of Stafne's bone cavity. *Oral Radiol* 1993;
 9: 13–18. doi: https://doi.org/10.1007/BF02351544
- Shimizu M, Osa N, Okamura K, Yoshiura K. Ct analysis of the Stafne's bone defects of the mandible. *Dentomaxillofac Radiol* 2006; 35: 95–102. doi: https://doi.org/10.1259/dmfr/71115878
- Assaf AT, Solaty M, Zrnc TA, Fuhrmann AW, Scheuer H, Heiland M, et al. Prevalence of Stafne's bone cavity--retrospective analysis of 14,005 panoramic views. *In Vivo* 2014; 28: 1159–64.
- Sisman Y, Miloglu O, Sekerci AE, Yilmaz AB, Demirtas O, Tokmak TT. Radiographic evaluation on prevalence of Stafne bone defect: a study from two centres in turkey. *Dentomaxillofac Radiol* 2012; 41: 152–8. doi: https://doi.org/10.1259/dmfr/ 10586700
- Sisman Y, Etöz OA, Mavili E, Sahman H, Tarim Ertas E. Anterior Stafne bone defect mimicking a residual cyst: a case report. *Dentomaxillofac Radiol* 2010; **39**: 124–6. doi: https://doi.org/10. 1259/dmfr/49320253
- Katz J, Chaushu G, Rotstein I. Stafne's bone cavity in the anterior mandible: a possible diagnostic challenge. *J Endod* 2001; 27: 304–7. doi: https://doi.org/10.1097/00004770-200104000-00020
- Correll RW, Jensen JL, Rhyne RR. Lingual cortical mandibular defects: a radiographic incidence study. *Oral Surg Oral Med Oral Pathol* 1980; **50**: 287–91. doi: https://doi.org/10.1016/0030-4220(80)90386-2
- Adisen MZ, Yilmaz S, Misirlioglu M, Atil F. Evaluation of volumetric measurements on CBCT images using stafne bone cavities as an example. *Med Oral* 2015; 20: e580–6. doi: https://doi.org/10. 4317/medoral.20633
- Whaites E. Differential diagnosis of radiolucent lesions of the jaws. In: Whaites E, Drage N, eds. *Essentials of dental radiography* and radiology. *Churchill Livingstone Edinburgh*. 5th Ed; 2013. pp. 333–58.
- Murdoch-Kinch CA. Craniofacial Anomalies. In: White S. C, Pharoah M. J, eds. Oral radiology. Principles and interpretation. 7th Ed. Canada: Elsevier; 2014. pp. 612–29.
- Koenig L. Mandible and Maxilla. Section 3. In: Koenig L, ed. Diagnostic imaging. Oral and maxillofacial. 1st ed: Amirsys; 2012.
- Mancuso AA, Pettigrew JC, Nair MK. Mandible: introduction and general principles. In: Mancuso A. A, Hanafee W. N, eds. *Head and neck radiology*. 1. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins; 2011. pp. 508–18.
- Larheim TA, Westesson P-LA. Jaw cysts and cyst-like conditions. In: Larheim T. A, Westesson P. -L. A, eds. *Maxillofacial imaging*. *Springer*. 2nd Ed.; 2018. pp. 23–56.
- MacDonald D. Radiolucencies. In: MacDonald D, ed. Oral and maxillofacial radiology. A diagnostic approach: Wiley-Blackwell West Sussex; 2011. pp. 93–150.
- Moher D, Liberati A, Tetzlaff J, Altman DG, .PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009; 6: e1000097. doi: https://doi.org/10.1371/journal.pmed.1000097
- Adra NA, Barakat N, Melhem RE. Salivary gland inclusions in the mandible: Stafne's idiopathic bone cavity. *AJR Am J Roentgenol* 1980; **134**: 1082–3. doi: https://doi.org/10.2214/ajr.134.5. 1082
- Chen CY, Ohba T. An analysis of radiological findings of Stafne's idiopathic bone cavity. *Dentomaxillofac Radiol* 1981; 10: 18–23. doi: https://doi.org/10.1259/dmfr.1981.0004
- Smith NJ, Looh FC, Todd JM, Whaites EJ. Stafne's bone cavity: a review of the literature and report of two cases. *Clin Radiol* 1985; 36: 297–9. doi: https://doi.org/10.1016/S0009-9260(85)80068-4
- Wolf J, Mattila K, Ankkuriniemi O. Development of a Stafne mandibular bone cavity. Report of a case. Oral Surg Oral Med Oral Pathol 1986; 61: 519–21. doi: https://doi.org/10.1016/0030-4220(86)90398-1

- Barker GR. A radiolucency of the ascending ramus of the mandible associated with invested parotid salivary gland material and analogous with a Stafne bone cavity. Br J Oral Maxillofac Surg 1988; 26: 81–4. doi: https://doi.org/10.1016/0266-4356(88) 90155-6
- Tominaga K, Kuga Y, Kubota K, Ohba T. Stafne's bone cavity in the anterior mandible: report of a case. *Dentomaxillofac Radiol* 1990; 19: 28–30. doi: https://doi.org/10.1259/dmfr.19.1.2387472
- Grellner TJ, Frost DE, Brannon RB. Lingual mandibular bone defect: report of three cases. J Oral Maxillofac Surg 1990; 48: 288–96. doi: https://doi.org/10.1016/0278-2391(90)90396-J
- 31. Ariji E, Fujiwara N, Tabata O, Nakayama E, Kanda S, Shiratsuchi Y, et al. Stafne's bone cavity. classification based on outline and content determined by computed tomography. *Oral Surg Oral Med Oral Pathol* 1993; **76**: 375–80. doi: https://doi.org/ 10.1016/0030-4220(93)90271-5
- 32. Tsui SH, Chan FF. Lingual mandibular bone defect. Case report and review of the literature. *Aust Dent J* 1994; **39**: 368–71. doi: https://doi.org/10.1111/j.1834-7819.1994.tb03108.x
- Graham RM, Duncan KA, Needham G. The appearance of Stafne's idiopathic bone cavity on magnetic resonance imaging. *Dentomaxillofac Radiol* 1997; 26: 74–5. doi: https://doi.org/10. 1038/sj.dmfr.4600224
- Reuter I. An unusual case of Stafne bone cavity with extraosseous course of the mandibular neurovascular bundle. *Dentomaxillofac Radiol* 1998; 27: 189–91. doi: https://doi.org/10.1038/ sj.dmfr.4600349
- Apruzzese D, Longoni S. Stafne cyst in an anterior location. J Oral Maxillofac Surg 1999; 57: 333–8. doi: https://doi.org/10. 1016/S0278-2391(99)90684-5
- Branstetter BF, Weissman JL, Kaplan SB. Imaging of a Stafne bone cavity: what Mr adds and why a new name is needed. *AJNR Am J Neuroradiol* 1999; 20: 587–9.
- Junquera LM, Albertos JM, Ferreras J, Baladron J. Stafne bone cyst. revision of four cases, one of them with bilateral affectation. *Ann Otolaryngol Chir Cervicofac* 1999; 116: 295–8.
- Boyle CA, Horner K, Coulthard P, Fleming GJ. Multiple Stafne bone cavities: a diagnostic dilemma. *Dent Update* 2000; 27: 494–7. doi: https://doi.org/10.12968/denu.2000.27.10.494
- de Courten A, Küffer R, Samson J, Lombardi T. Anterior lingual mandibular salivary gland defect (Stafne defect) presenting as a residual cyst. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2002; 94: 460–4. doi: https://doi. org/10.1067/moe.2002.125196
- Dorman M, Pierse D. Ectopic salivary gland tissue in the anterior mandible: a case report. Br Dent J 2002; 193: 571–2. doi: https:// doi.org/10.1038/sj.bdj.4801629
- Longo F, Piombino P, Califano L. Stafne's bone cyst. *Plast Reconstr Surg* 2003; 111: 1369–70. doi: https://doi.org/10.1097/00006534-200303000-00080
- Campos PSF, Panella J, Crusoé-Rebello IM, Azevedo RA, Pena N, Cunha T. Mandibular ramus-related Stafne's bone cavity. *Dentomaxillofac Radiol* 2004; 33: 63–6. doi: https://doi.org/10. 1259/dmfr/39682286
- Queiroz LMG, Rocha RS, de Medeiros KB, da Silveira EJD, Lins RDAU, Guedes Queiroz LM. Anterior bilateral presentation of Stafne defect: an unusual case report. J Oral Maxillofac Surg 2004; 62: 613–5. doi: https://doi.org/10.1016/j.joms.2003.04. 019
- Phillips A, Yates C. Case report: anterior lingual mandibular cortical bone concavity. *Dent Update* 2004; 31: 175–6. doi: https:// doi.org/10.12968/denu.2004.31.3.175
- 45. Minowa K, Inoue N, Izumiyama Y, Ashikaga Y, Chu B, Maravilla KR, et al. Static bone cavity of the mandible: computed tomography findings with histopathologic correlation. *Acta Radiol* 2006; 47: 705–9. doi: https://doi.org/10.1080/02841850600796517
- Segev Y, Puterman M, Bodner L. Stafne bone cavity--magnetic resonance imaging. *Med Oral Patol Oral Cir Bucal* 2006; 11: e345– 7.
- 47. Bornstein MM, Wiest R, Balsiger R, Reichart PA. Anterior Stafne's bone cavity mimicking a periapical lesion of endodontic

origin: report of two cases. J Endod 2009; 35: 1598-602. doi: https://doi.org/10.1016/j.joen.2009.08.008

- Kao Y-H, Huang I-YE, Chen C-M, Wu C-W, Hsu K-J, Chen C-M. Late mandibular fracture after lower third molar extraction in a patient with Stafne bone cavity: a case report. *J Oral Maxillofac Surg* 2010; 68: 1698–700. doi: https://doi.org/10.1016/j.joms.2009. 06.019
- Kopp S, Ihde S, Bienengraber V. Differential diagnosis of stafne idiopathic bone cyst with digital volume tomography (DVT. J Maxillofac Oral Surg 2010; 9: 80–1. doi: https://doi.org/10.1007/ s12663-010-0023-x
- Krafft T, Eggert J, Karl M. A Stafne bone defect in the anterior mandible--a diagnostic dilemma. *Quintessence Int* 2010; 41: 391– 3.
- Turkoglu K, Orhan K. Stafne bone cavity in the anterior mandible. J Craniofac Surg 2010; 21: 1769–75. doi: https://doi.org/10.1097/ SCS.0b013e3181f40347
- Flores Campos PS, Oliveira JAC, Dantas JA, de Melo DP, Pena N, Santos LAN, et al. Stafne's defect with buccal cortical expansion: a case report. *Int J Dent* 2010; 2010: 1–3. doi: https://doi.org/10. 1155/2010/515931
- Vieira Aguiar LB, Sampaioneves F, Costa Bastos L, Crusoe-Rebello I, Bovi Ambrosano GM, Flores Campos PS. Multiple Stafne bone defects: a rare entity. *ISNR Dentistry* 2011; 1–3.
- Li B, Long X, Cheng Y, Wang S. Cone beam CT sialography of Stafne bone cavity. *Dentomaxillofac Radiol* 2011; 40: 519–23. doi: https://doi.org/10.1259/dmfr/84472023
- Dereci O, Duran S. Intraorally exposed anterior Stafne bone defect: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113: e1–3. doi: https://doi.org/10.1016/j.tripleo.2011.07.029
- Etöz M, Etöz OA, Şahman H, Şekerci AE, Polat HB. An unusual case of multilocular Stafne bone cavity. *Dentomaxillofac Radiol* 2012; 41: 75–8. doi: https://doi.org/10.1259/dmfr/34731967
- Friedrich RE, Zustin J, Scheuer HA, Assaf AT, Gröbe A. An unilateral basal bone defect of the mandible occupied by fatty tissue: Stafne's cavity. *In Vivo* 2012; 26: 1045–8.
- Münevveroğlu AP, Aydın KC. Stafne bone defect: report of two cases. *Case Rep Dent* 2012; 2012: 1–5. doi: https://doi.org/10.1155/ 2012/654839
- Boffano P, Gallesio C, Daniele D, Roccia F. An unusual trilobate Stafne bone cavity. Surg Radiol Anat 2013; 35: 351–3. doi: https:// doi.org/10.1007/s00276-012-1043-7
- Prechtl C, Stockmann P, Neukam FW, Schlegel KA. Enlargement of a Stafne cyst as an indication for surgical treatment - a case report. *J Craniomaxillofac Surg* 2013; **41**: 270–3. doi: https://doi. org/10.1016/j.jcms.2012.10.013
- Saglam M, Salihoglu M, Sivrioglu AK, Kara K. Multimodality imaging of Stafne bone defect. *BMJ Case Rep* 2013.
- Herranz-Aparicio J, Figueiredo R, Gay-Escoda C. Stafne's bone cavity: an unusual case with involvement of the buccal and lingual mandibular plates. J Clin Exp Dent 2014; 6: e96–9. doi: https:// doi.org/10.4317/jced.51229
- 63. Kim H, Seok JY, Lee S, An J, Kim NR, Chung DH, et al. Bilateral stafne bone cavity in the anterior mandible with heterotopic salivary gland tissue: a case report. *Korean J Pathol* 2014; 48: 248–9. doi: https://doi.org/10.4132/KoreanJPathol.2014.48.3.248
- Miloğlu Özkan, Sekerci AE, Yasa Y, Dagistan S. Unilateral bone cavities situated near the angle of the mandibula. *J Craniofac Surg* 2015; 26: e27–8. doi: https://doi.org/10.1097/SCS. 000000000001262
- 65. Probst FA, Probst M, Maistreli I-Z, Otto S, Troeltzsch M. Imaging characteristics of a Stafne bone cavity--panoramic radi-

ography, computed tomography and magnetic resonance imaging. *Oral Maxillofac Surg* 2014; **18**: 351–3. doi: https://doi.org/10. 1007/s10006-014-0454-5

- Schneider T, Filo K, Stadlinger B, Locher M, Kruse AL, Luebbers H-T. Eine ungewoenliche Stafne-kavitaet. Swiss Dental J 2014; 124: 545–50.
- Taysi M, Ozden C, Cankaya B, Olgac V, Yıldırım S. Stafne bone defect in the anterior mandible. *Dentomaxillofac Radiol* 2014; 43: 20140075. doi: https://doi.org/10.1259/dmfr.20140075
- Lee KH, Thiruchelvam JK, McDermott P. An unusual presentation of Stafne bone cyst. J Maxillofac Oral Surg 2015; 14: 841–4. doi: https://doi.org/10.1007/s12663-014-0737-2
- Mauprivez C, Sahli Amor M, Khonsari RH. Magnetic resonance sialography of bilateral Stafne bone cavities. *Journal of Oral and Maxillofacial Surgery* 2015; 73: 934.e1–934.e7. doi: https://doi. org/10.1016/j.joms.2015.01.034
- More CB, Das S, Gupta S, Patel P, Saha N. Stafne's bone cavity: a diagnostic challenge. *J Clin Diagn Res* 2015; 9: ZD16–19. doi: https://doi.org/10.7860/JCDR/2015/14273.6772
- Ozaki H, Ishikawa S, Kitabatake K, Yusa K, Tachibana H, Iino M. A case of simultaneous unilateral anterior and posterior Stafne bone defects. *Case Rep Dent* 2015; 2015: 1–5. doi: https:// doi.org/10.1155/2015/983956
- Venkatesh E. Stafne bone cavity and cone-beam computed tomography: a report of two cases. J Korean Assoc Oral Maxillofac Surg 2015; 41: 145–8. doi: https://doi.org/10.5125/jkaoms. 2015.41.3.145
- Atil F, Adisen MZ, Misirlioglu M, Suer BT. Atafne bone cavity complicated by periapical infection. J Coll Phys Surg Pakistan 2016; 26: S109–10.
- 74. Chen CA, Ahn Y, Odell S, Mupparapu M, Graham DM. Developmental salivary gland depression in the ascending mandibular ramus: a cone-beam computed tomography study. *Imaging Sci Dent* 2016; 46: 223–7. doi: https://doi.org/10.5624/isd.2016.46.3. 223
- Deyhimi P, Darisavi S, Khalesi S. Stafne bone cavity with ectopic salivary gland tissue in the anterior of mandible. *Dent Res J* 2016; 13: 454–7.
- Lee JI, Kang SJ, Jeon SP, Sun H, Sum H. Stafne bone cavity of the mandible. *Arch Craniofac Surg* 2016; 17: 162–4. doi: https://doi. org/10.7181/acfs.2016.17.3.162
- Hisatomi M, Munhoz L, Asaumi J, Arita ES. Parotid mandibular bone defect: a case report emphasizing imaging features in plain radiographs and magnetic resonance imaging. *Imaging Sci Dent* 2017; 47: 269–73. doi: https://doi.org/10.5624/isd.2017.47.4.269
- da Silva W-G, Kemp A-T, Dos Santos-Silva A-R, Diz MDP-E, Brandão T-B. Stafne's bone defect in a metastatic prostate cancer patient: a diagnostic conundrum. *J Clin Exp Dent* 2018; 10: e88– 91. doi: https://doi.org/10.4317/jced.53656
- Kaya M, Ugur KS, Dagli E, Kurtaran H, Gunduz M. Stafne bone cavity containing ectopic parotid gland. *Braz J Otorhinolaryngol* 2018; 84: 669–72. doi: https://doi.org/10.1016/j.bjorl.2016.02.004
- Nishimura S, Osawa K, Tanaka T, Imamura Y, Kokuryo S, Habu M, et al. Multiple mandibular static bone depressions attached to the three major salivary glands. *Oral Radiol* 2018; 34: 277–80. doi: https://doi.org/10.1007/s11282-017-0304-x
- Lee KC, Yoon AJ, Philipone EM, Peters SM. Stafne bone defect involving the ascending ramus. *J Craniofac Surg* 2019; 30: e301–3. doi: https://doi.org/10.1097/SCS.000000000005252
- Bayrak NB. A rare presentation of stafne bone cyst. J Stomatol Oral Maxillofac Surg 2019;12 Feb 2019. doi: https://doi.org/10. 1016/j.jormas.2019.02.006