
S U P P L E M E N T  A R T I C L E

Monitoring Nipah Virus Epidemiology  •  jid  2020:221  (Suppl 4)  •  S363

The Journal of Infectious Diseases

 

aS. C. and E. S. G. are co-senior authors.
Correspondence: Henrik Salje, PhD, Institut Pasteur, 25-28 Rue Dr Roux, Paris 75015, France  

(hsalje@pasteur.fr).

The Journal of Infectious Diseases®    2020;221(S4):S363–9
© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society 
of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
DOI: 10.1093/infdis/jiaa074

A Framework to Monitor Changes in Transmission and 
Epidemiology of Emerging Pathogens: Lessons From 
Nipah Virus
Birgit Nikolay,1 Henrik Salje,1 A. K. M. Dawlat Khan,2 Hossain M. S. Sazzad,2 Syed M. Satter,2 Mahmudur Rahman,2 Stephanie Doan,3 Barbara Knust,3 
Meerjady Sabrina Flora,4 Stephen P. Luby,5 Simon Cauchemez,1,a and Emily S. Gurley2,6,a

1Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France, 2Infectious Diseases Division, icddr,b, Dhaka, Bangladesh, 3Centers for Disease Control 
and Prevention, Atlanta, Georgia, USA, 4Institute of Epidemiology Disease Control and Research, Dhaka, Bangladesh, 5Infectious Diseases and Geographic Medicine Division, Stanford University, 
Stanford, California, USA, 6Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

It is of uttermost importance that the global health community develops the surveillance capability to effectively monitor emerging 
zoonotic pathogens that constitute a major and evolving threat for human health. In this study, we propose a comprehensive frame-
work to measure changes in (1) spillover risk, (2) interhuman transmission, and (3) morbidity/mortality associated with infections 
based on 6 epidemiological key indicators derived from routine surveillance. We demonstrate the indicators’ value for the retro-
spective or real-time assessment of changes in transmission and epidemiological characteristics using data collected through a 
long-standing, systematic, hospital-based surveillance system for Nipah virus in Bangladesh. We show that although interhuman 
transmission and morbidity/mortality indicators were stable, the number and geographic extent of spillovers varied significantly 
over time. This combination of systematic surveillance and active tracking of transmission and epidemiological indicators should be 
applied to other high-risk emerging pathogens to prevent public health emergencies.
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Emerging zoonotic pathogens represent an important and 
growing risk to humans. As cross-species interactions increase 
at the human-animal interface, more opportunities arise for 
pathogens to spillover. Large-scale epidemics of human immu-
nodeficiency virus, Ebola, or Middle East respiratory syndrome 
coronavirus can trace their roots back to spillovers from a zoo-
notic reservoir [1]. The timely deployment of targeted interven-
tions to prevent public health emergencies would clearly benefit 
from the real-time evaluation of temporal trends suggestive of 
altered spillover risk or evolutionary changes linked to increased 
transmission or disease. Given that many emerging pathogens 
spill over infrequently, changes in pathogen characteristics may 
go undetected unless there are systematic efforts to track these 
changes. Therefore, enhanced monitoring approaches that go 
beyond tracking case numbers to identify changes in disease 
risk and underlying mechanisms would help to improve global 
preparedness and response capacities. The International Health 
Regulations and Global Health Security Agenda both call for 
stronger surveillance and trend monitoring [2, 3]. However, it 

has rarely been possible to develop a comprehensive monitoring 
framework for emerging zoonotic pathogens due to the lack of 
stable surveillance collecting detailed case information.

Nipah virus (NiV) is an emerging zoonotic pathogen found 
in fruit bats throughout South and Southeast Asia. NiV is con-
sidered by the World Health Organization as an important health 
threat to humans due to the severity of disease it causes, the ab-
sence of treatments or vaccines, and its ability to be transmitted 
between people [4, 5]. Bangladesh is the only country reporting 
regular spillovers of NiV, which are almost exclusively detected 
through a systematic, hospital-based surveillance system, im-
plemented in 2007 after the ad hoc identification of ~100 cases 
during 2001–2006 [6]. The surveillance system is based on 3 sen-
tinel hospitals where all meningoencephalitis cases are routinely 
tested for NiV. Identification of an NiV case triggers detailed 
investigations in affected communities including the identifica-
tion of transmission networks and the tracing of contacts. The 
hospital-based surveillance system leverages clinical services 
and is therefore less expensive and easier to maintain than other 
population-based surveillance systems.

In this study, we propose 6 epidemiological indicators of 
emerging zoonotic pathogens and their transmission that can 
be derived from such routine surveillance data to measure 
changes in (1) spillover risk, (2) interhuman transmission, and 
(3) morbidity/mortality associated with infections (Figure 1A). 
Although many of these measures are commonly used in ep-
idemiological studies, their role in the routine monitoring of 
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emerging infectious diseases is not yet defined. The NiV sur-
veillance system in Bangladesh provides a unique opportunity 
to collect comparable data on cases and their characteristics 
over time. The objective of this study was to demonstrate how 
these indicators can be obtained from routine surveillance data 
and used to monitor changes in disease transmission and epi-
demiology to inform future public health policy and practice.

METHODS

Establishing Baseline Measures and Assessing Historical Changes

We used data from the systematic NiV surveillance system col-
lected during 2007–2018 to establish baseline measures of the 
6 indicators and assess historical changes over time. Details of 
the surveillance methods have been previously published [7, 8], 
but, in short, at 3 tertiary care hospitals, all patients admitted 
with signs and symptoms consistent with febrile neurological 

illness during December–March had clinical and epidemio-
logical information collected and serum samples obtained for 
testing for immunoglobulin M antibodies against NiV. We fur-
ther assessed all 6 indicators using data collected during 2001–
2006, a time period before routine hospital-based surveillance 
was implemented, and cases were not systematically detected 
(see Supplementary Material). During this time period, cases 
were detected through community investigations after the noti-
fication of case clusters, and NiV cases not associated with case 
clusters were likely to be missed.

Spillover Risk
In Bangladesh, humans usually acquire NiV through drinking 
date palm sap contaminated with the virus by fruit bats [4]. 
It is important to monitor spillover frequency because any 
increase may result in higher disease burden, or it may indicate 
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Figure 1.  (A) Indicators for changes in spillover risk, interhuman transmission, and morbidity/mortality of NiV and other zoonotic pathogens. (B) Total number of Nipah cases 
ever reported by districts in Bangladesh (2007 to 2018).
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emergence of new transmission pathways. In addition, each 
spillover event represents an opportunity for more transmis-
sible or virulent strains to emerge. A spillover event is defined as 
a single case infected from the reservoir or a cluster of cases that 
can be traced back to a single spillover source (i.e., 1 or several 
individuals infected through a contaminated palm sap pot plus 
subsequent cases infected by interhuman transmission), and 
the annual spillover rate is defined as the number of spillover 
events in a given transmission season (December of the pre-
vious year until May of the given year). We assumed that spill-
over events follow a Poisson distribution, and we estimated the 
spillover rate observed in a given year with Poisson exact 95% 
confidence intervals (CIs) and the average annual spillover rate 
during a given time period (i.e., for the duration of stable sur-
veillance or time periods between change points) with approx-
imate Poisson 95% CIs. We tested the statistical significance of 
changes in spillover frequency before and after a specific time 
point using exact Poisson test, in which we moved the time 
point by 1-year increments over the duration of stable surveil-
lance. If several time points resulted in significant differences, 
we selected the time point resulting in the lowest P value. We 
further assessed linear changes in annual spillover rates using 
Poisson regression: we evaluated statistical significance of linear 
changes using a likelihood ratio test and compared this model 
to step-change models using the Akaike Information Criterion.

Geographic Extent
The geographic extent of case occurrence informs the size and 
location of the population at risk. Moreover, pathogen intro-
ductions into new ecological areas or populations (e.g., higher 
population density, mobility) can affect transmission dynamics 
and potentially boost the spread and impact of the pathogen 
[9]. Using surveillance data on the geographic location of 
cases, we can monitor the geographic extent of NiV risk. The 
geographic extent of case reports is defined as the number of 
districts from which cases are reported. We quantified the geo-
graphic extent using 3-year sliding windows over the duration 
of the surveillance dataset and assessed spatial patterns based 
on administrative boundaries obtained from the Database of 
Global Administrative Areas (www.gadm.org).

Cluster Size
The NiV surveillance data can also be used to monitor indi-
cators for changes in spillover mechanisms. The number of 
individuals who are infected from the reservoir during each 
spillover event may vary depending on the spillover source. 
For example, clusters associated with drinking palm sap may 
differ in size from clusters associated with pig exposure, which 
was the main spillover route in the Malaysian NiV outbreak 
[10]. Cluster sizes are also affected by interhuman transmission 
through the number of secondary cases associated with a spill-
over event (see section on Proportion of Cases Who Transmit 

Infection). We defined a cluster of cases as individuals who ac-
quired infection through a single spillover event (either through 
1 or more bat-to-human transmission events in one time and 
place or through subsequent interhuman transmission). We 
estimated the median and interquartile range (IQR) of cluster 
sizes for a given year or a given time period. We used Wilcoxon 
rank-sum test to assess changes in outbreak sizes by comparing 
cluster size distributions before and after a specific time point 
that we moved along the time of stable surveillance.

Reproduction Number
The reproduction number R (i.e., the average number of in-
dividuals infected by a case) is the standard measure of the 
interhuman transmission potential of a pathogen [11]. Whereas 
sustained transmission of a pathogen in a population can occur 
only if R ≥ 1, even increases in R to values <1 can lead to larger 
cluster sizes with transmission ceasing only after a substantial 
number of transmission generations. Therefore, tracking this 
parameter can provide an early warning sign of a change in 
transmission [12–14]. For NiV in Bangladesh, this essential pa-
rameter can be directly estimated from the transmission trees 
that are reconstructed during outbreak investigations. We es-
timated R and 95% CIs based on the observed number of sec-
ondary cases caused by a case, assuming that the number of 
secondary cases follows a negative binomial distribution with 
mean R and a dispersion parameter k [14]. We used a likelihood 
ratio test to assess changes in R before and after a specific time 
point that we moved along the duration of stable surveillance. 
We further assessed linear changes in R by year using negative 
binomial regression.

Proportion of Persons Who Transmit Infection
Interhuman transmission of emerging zoonotic pathogens is 
often highly heterogeneous, meaning that a large part of sec-
ondary cases originates from only a few superspreading events 
as previously noted for NiV [8, 15]. The mechanisms leading to 
superspreading events can be of social (e.g., a higher number of 
contacts resulting in more transmission opportunities) or bio-
logical nature (e.g., higher levels of virus shedding or stronger 
symptoms facilitating transmission) [14]. The extent of trans-
mission heterogeneity has important implications for the op-
timization of control strategies [14]. For instances in which 
detailed information on transmission trees is available, we can 
quantify transmission heterogeneity as the percentage of cases 
who transmit the pathogen [14]. For a given reproduction 
number, a smaller percentage of cases who transmit will indi-
cate a stronger transmission heterogeneity [14]. We estimated 
the proportion of spreaders among NiV cases and exact bino-
mial 95% CIs for a given year or a given time period. We used 
an exact binomial test to assess changes in the proportion of 
spreaders before and after a specific time point that we moved 
along the time of stable surveillance. We further assessed linear 
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changes in proportion of spreaders by year using logistic re-
gression. We also assessed the probability of observing mul-
tiple superspreading events (i.e., an NiV patient infecting ≥5 
individuals) during outbreaks of various sizes (Supplementary 
Material).

Morbidity and Mortality
Changes in the case fatality ratio (CFR) and the prevalence of 
specific symptoms such as difficulty breathing (a symptom pre-
viously found associated with interhuman transmission [6]), 
can indicate an adaptation of a pathogen to the human host. We 
estimated the CFR (ie, the proportion of cases who died among 
cases) and exact binomial 95% CIs for a given year or a given 
time period separately for cases infected by the reservoir (pri-
mary cases) and cases infected through interhuman transmis-
sion (secondary cases). We used an exact binomial test to assess 
changes in the case-fatality rate before and after a specific time 
point that we moved along the time of stable surveillance. We 
further assessed linear changes in the case-fatality rate by year 
using logistic regression. We applied the same methods to as-
sess changes in the proportion of cases with difficulty breathing.

Real-Time Monitoring of Indicators

Changes in the transmission and epidemiology of NiV can 
also be assessed in real-time using the proposed framework 
by plotting new observations against baseline distributions of 
indicators established above. To facilitate identification of epi-
demiologic changes prospectively within this system, we iden-
tified thresholds for “highly unlikely” events by quantifying the 
2.5th and 97.5th percentiles of these baseline distributions.

RESULTS

Monitoring Spillover Risk

During 2007–2018, 76 NiV spillover events were detected in 
Bangladesh resulting in 166 NiV cases (Figure  1B). We ob-
served that the average annual number of spillovers detected 
in Bangladesh varied significantly over time; it increased from 
2.2 (95% CI, 1.3–3.7) in 2007–2009 to 10.5 (95% CI, 8.2–13.4) 
in 2010–2015, and it returned to the lower level in 2016–2018 
(Figure 2A).

Coinciding with the temporary increase in spillover fre-
quency, we found that the number of districts reporting cases 
was more than 2 times greater in 2011–2015 compared with the 
other time windows (Figure 2B). However, this increase does 
not seem to reflect a gradual spread of NiV into previously un-
affected areas; instead, there were more regular spillovers in 
geographic regions where NiV had previously been observed 
(Supplementary Figure S1). Two NiV cases who acquired in-
fections in rural areas were reported in Dhaka, the capital city 
of Bangladesh.

We observed a constant median cluster size of 1 case (IQR, 
1–2) over time (Figure 2C). The median cluster size was higher 

in 2008 (with 2 clusters of 6 and 4 spillover cases, respectively) 
than in other years.

Monitoring Interhuman Transmission

Transmission potential of NiV did not vary significantly in 
Bangladesh during 2007–2018, with an average reproduc-
tion number of 0.20 (95% CI, 0.10–0.40) (Figure  2D). No 
interhuman transmission events were observed in 2008–2009 
and 2015–2018, which is consistent with the estimated av-
erage reproduction number and may be explained by a smaller 
number of NiV cases during these years (Supplementary 
Figure S2).

Eight percent (95% CI, 5–14) of cases transmitted NiV to 
another person, which was stable over time (Supplementary 
Figure 2E). During 2007–2018, 2 outbreaks were driven 
by a superspreading event. The occurrence of more than 1 
superspreading event in a single outbreak has never been ob-
served and is unlikely given the current reproduction number 
(Supplementary Figure S3).

Monitoring Morbidity/Mortality Associated With Infections

We observed a stable CFR over time among cases infected 
by the reservoir (86%; 95% CI, 79–92) (Figure 2F) and those 
infected through interhuman transmission (46%; 95% CI, 
29–63) (Supplementary Figure S4A). The percentage of NiV 
patients who developed breathing difficulties also remained 
constant over time with an average of 57% (95% CI, 49–64) 
(Supplementary Figure S4B). No significant difference in the 
proportion with breathing difficulties were detected between 
patients infected by the reservoir and those infected through 
interhuman transmission (χ 2 P  =  .37). The CFR was higher 
among patients with breathing difficulty (90%) than those 
without (61%; χ 2 P < .001).

Based on data collected during 2001–2006, a period before 
routine hospital-based surveillance was implemented and cases 
were not systematically detected, we observed a much higher 
variability in some of these indicators (in particular for spill-
over frequency, outbreak size, and reproduction number) 
(Supplementary Figure S5).

Real-Time Monitoring of Indicators

The baseline measures for these 6 indicators that we es-
tablished here can be used by public health officials to de-
tect future changes in NiV characteristics (Supplementary 
Figure S6). Such changes can be evaluated in real time by 
comparing expected values (e.g., percentiles of estimated 
distributions) to new observations, either for a single out-
break or for a transmission season. For example, based on 
current estimates of spillover frequency, observing more 
than 17 spillovers in a season is very unlikely (based on the 
97.5th percentile of the high spillover frequency period), 
whereas half of the time, more than 10 spillovers are ex-
pected to occur (Supplementary Figure S6A).
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DISCUSSION

Systematic NiV surveillance in Bangladesh has been an important 
step forward in the response to the emerging threat of this virus. 
These routinely collected data enable the establishment of baseline 
measures that comprehensively describe current NiV spillover risk, 
interhuman transmission, and morbidity/mortality, which can now 
be used by public health authorities to guide rapid and reliable deci-
sions to respond to NiV outbreaks. Using these baseline measures in 

real-time assessments allows the detection of deviations from these 
at early stages of a transmission season or an ongoing outbreak.

Although interhuman transmission and morbidity/mortality 
of NiV has been stable since the start of systematic surveillance, 
frequency and geographic extent of spillovers temporarily in-
creased during that time period before returning to initial levels. 
The temporary increase may reflect NiV transmission and shed-
ding dynamics in bat populations [16], changes in bat behavior 
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(e.g., moving to new areas to look for food), or changes in 
human behavior (eg, sap drinking, access to hospitals). A study of 
weather associations with spillovers between 2007 and 2013 iden-
tified a significant correlation between increasing spillovers and 
colder winter temperatures, suggesting that climatic factors could 
be driving some of these patterns over longer time scales [17]. The 
monitoring framework has thereby provided insights that can (1) 
form the basis of studies to test different hypotheses of what drives 
these patterns and (2) measure changes in patterns that could result 
from primary or secondary prevention programs. Continuing sur-
veillance efforts to monitor time trends or cyclical dynamics in this 
disease system are critical and should be prioritized for funding.

Observed cluster sizes were stable over time, suggesting that no 
changes in spillover mechanisms had occurred during the time 
period of surveillance. This finding is consistent with other epi-
demiological evidence that identified palm sap as the main spill-
over route over time, including during spillovers in 2008 that were 
larger in size [18, 19]. No increase in the interhuman transmis-
sion potential has been suggested by any of the indicators, and 
the reproduction number currently is lower than what is required 
for a large outbreak. Based on the established baseline measures, 
the occurrence of multiple superspreading events during a single 
outbreak is highly unlikely and may therefore represent an early 
warning sign for the emergence of a more transmissible strain. 
For monitoring situations in which details on transmission net-
works are unavailable, R could also be derived from the distri-
bution of cluster sizes or the proportion of cases infected by the 
reservoir [13, 20]. The detection of 2 NiV cases in Dhaka, the cap-
ital of Bangladesh, demonstrates the risk of virus introductions 
into densely populated areas where large-scale outbreaks may 
be more likely to occur. The observed heterogeneity in some in-
dicators during 2001–2006, a time period before hospital-based 
surveillance started in Bangladesh, highlights that systematic sur-
veillance for NiV, as introduced in Bangladesh in 2007, is key for 
establishing reliable baseline estimates of transmission character-
istics and will remain crucial for the detection of departures from 
these trends in the future. However, based on established estimates 
of R, it would be highly unlikely to observe superspreading events 
as reported before 2007 (with 11 and 22 secondary cases generated 
by an NiV case) (Supplementary Figure S6C).

CONCLUSIONS

The analysis of the collected epidemiological data also provided 
other insights that can be investigated in future studies, such as 
the difference in the CFR between cases infected through the res-
ervoir and those infected through interhuman transmission. This 
difference may be due to a higher dose of virus received through 
date palm sap than through contact with a patient. Developing 
capacities to efficiently detect and respond to unusual public 
health events is key for improved global epidemic preparedness 
[2, 3]. Therefore, in 2015, the World Health Organization ad-
vocated for prioritizing several emerging zoonotic diseases for 

urgent research and development that would allow for improved 
disease control. In addition to NiV, these diseases included 
Crimean Congo hemorrhagic fever, Ebola, Marburg, Lassa fever, 
Middle East respiratory syndrome and other coronaviruses, and 
Rift Valley fever [5]. We believe that systematic surveillance for 
these diseases, as exemplified by NiV surveillance in Bangladesh, 
should be implemented to enable the collection of comparable 
and reliable data over time. The framework proposed here would 
also allow tracking outbreaks of these diseases and targeting dis-
ease control measures. The global community would be much 
better prepared for these threats through investments in system-
atic surveillance coupled with active tracking and reporting of 
transmission and epidemiological indicators.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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