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Abstract

Background: Lipid-based nutrient supplements (LNS) have been effective in the treatment of 

acute malnutrition among children. We evaluated the use of LNS supplementation for improving 

the micronutrient status of young children.

Methods: A 12-month randomized controlled trial was conducted among children aged 6–18 

month living in Intibucá, Honduras. Communities (n=18) were randomized into clusters matched 

by poverty indicators (9 intervention, n=160 and 9 controls, n=140). Intervention participants 

received LNS. All children received food vouchers and nutrition education. Primary outcomes 

included measures of micronutrient status: at baseline, 6 and 12 month blood was collected for 

assessment of folate, iron, zinc, riboflavin and vitamin B12 status; hemoglobin was measured 

every 3 months; and dietary and anthropometry collected monthly. Longitudinal analyses were 

based on intent-to treat and LNS adherence. Generalized estimating equations were used in the 

estimation of generalized linear regression models specified for the data.

Results: At 6 months follow-up, children in the intervention group had a lower proportion 

classified as deficient for B12 (43.6%) compared to the control (67.7%; P=0.03). The intervention 

group had a higher mean concentration for folate at 6 months (P=0.06), and improvements 
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continued through 12 months for folate (P=0.002) and vitamin A deficiency (P=0.03). This pattern 

of results, with improved significance, remained in sub-analysis based on LNS adherence.

Conclusion: These data demonstrate that LNS improved select micronutrient status in young 

non-malnourished Honduran children.
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About 171 million children aged 0–5 years suffer from chronic undernutrition, mainly in 

developing countries undergoing economic transitions.1 In Latin America this represents a 

total of about 7 million children, where stunting is now much more common than 

underweight and wasting. 1 Large disparities in economic growth in Latin America have led 

to higher levels of undernourishment, food insecurity and poor access to quality foods for 

those living in the rural areas. 2 A diet low in animal-source foods, fruits and vegetables, and 

high in phytates (beans, maize) may result in micronutrient deficiencies that lead to anemia, 

poor growth, developmental delays and increased morbidity.3,4 Efforts to improve 

micronutrient intake should target children during the first two years of life when the 

irreversible outcomes of malnutrition may be prevented.1,3

Food-based interventions targeting children under 2 have shown some improvements in 

growth outcomes and micronutrient status.3 A review of these strategies indicated that 

interventions pairing supplementation of energy dense products with education have better 

results compared to educational interventions or food fortification strategies alone.3

Lipid-based nutrient supplements (LNS) are energy dense products that provide essential 

fatty acids and micronutrients. LNS may be advantageous over other types of food-based 

efforts because they allow more nutrients to be consumed in a serving, do not require major 

diet behavior changes and include lipids that improve the absorption of fat-soluble vitamins;
5 evidence suggests that LNS products are effective in treating severe child malnutrition,6–9 

and are tolerated and consumed by infants.5,10,11

LNS studies in Sub-Saharan Africa, targeting prevention of chronic malnutrition, have 

reported improvements in weight gain and a reduced incidence of wasting and stunting. 
12–15 These ranged from 3–12 month-long-interventions for children 6 to 60 months old 

using varying doses of LNS. Only one study has examined micronutrients (i.e. zinc and 

selenium) but no improvements were reported.12 Given the lack of evidence on the effect of 

LNS on micronutrient status of children, this study used a cluster-randomized trial to test if 

LNS supplementation can improve the micronutrient status of children 6–18 months old 

living in a rural poor region of Central America.
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Methods

Setting

The study was conducted in three municipalities (Santa Lucia, Magdalena and San Antonio) 

in the southwestern part of Intibucá, Honduras, bordering El Salvador. Recruitment for the 

12-month intervention was conducted during the dry season (March-April 2009) with 

follow-up conducted until April 2010. All study participants experienced 6 months each of 

the dry and rainy season.

Study Design

This was a cluster randomized controlled trial. 18 communities were paired by region and 

matched on several poverty indicators; percent of houses with dirt floors, no toilet, 4 or more 

people per room, and total poverty score (the sum of all the indicators). Clusters were 

geographically separated to avoid potential cross contamination. One cluster within each 

pair was then randomized to intervention (n=9) or control group (n=9). Thereafter the 

mother-infant pairs were enrolled in the study groups according to their cluster 

randomization.

Our research staff made initial contact with mothers living in the selected communities at 

community centers, health centers and schools. Recruitment was conducted at each site over 

a one-month period with one recruitment day per village. Eligible caregiver-child pairs were 

enrolled from their site of recruitment or from the health clinic on their date of recruitment, 

making this a convenience sample.

The primary outcomes include micronutrient biomarkers (folate, iron, zinc, vitamin B12, 

vitamin A, and riboflavin). Secondary outcomes include growth, dietary intake and food 

insecurity. The study was blinded to study group allocation at the data entry level and at the 

biomarker analysis level. Given the difficulties of working in this rural setting, delivery of 

the intervention was not blinded for project staff conducting the assessments.

The Institutional Review Board of the University of North Carolina at Chapel Hill and the 

Honduran IRB committee approved the study protocol. The Intibucá Ministry of Health 

endorsed the study’s objectives and collaborated in its implementation. An advisory 

committee monitored the incidence of any adverse effects. Mothers/caretakers gave 

informed consent for the participation of their child. Participants were referred to a health 

clinic for iron supplementation if hemoglobin values were <100 g/L.

Study Population

Infants and caretakers (mothers/caretakers >16 years of age) were eligible for the study if the 

infants were 5–18 months of age at time of recruitment, not participating in a child health 

brigade that provided vitamin A supplementation, residing within the three study 

municipalities, had no plans to move outside of the study region in the next 2 months, and 

had no medical conditions. Infants with congenital anomalies, mental retardation, severe 

physical handicap, under-nutrition caused by medical conditions, and allergy to peanuts 

(determined with an allergy reaction test using 5–15 grams of LNS) were ineligible. Infant 
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with a weight for height z-score ≤ −2 standard deviations below the norm were not eligible 

and were referred to a qualified health care provider.

Sample Size

We attempted to recruit 150 participants per study group, based on funding as well as on a 

cluster randomization power analysis (Software Power and Sample Size (PASS), NCSS 

LLC; http://www.ncss.com. See online Supplementary Material for details.

Intervention

Participants in the intervention group received a monthly supply of a LNS product 

(Plumpy’doz by Nutriset, Malaunay, France) throughout the 12-month study period. 

Plumpy’doz provides 247 kcal, 5.9 g protein, 16.0 g fat, 400 μg vitamin A, 0.9 μg vitamin 

B12, 9 mg iron and 9 mg zinc in a 46.3 g dose. Caretakers in the intervention group were 

counseled to feed 3 tsp, 3 times per day (a total of 46.3 g) of LNS to infants 6–12 months 

and 4.5 tsp. 3 times per day (a total of 70 g) to children 13–30 months. These doses were 

informed by consultation with experts, recognizing that the product had never been used for 

this purpose and in this setting. Infants enrolled at 5 months were gradually transitioned to 

the 46.3 gm dose when solid foods were introduced. Caregivers were advised on correct 

spoon size and were allowed to mix the product with other foods. The Project Staff 

counseled mothers to continue breast feeding as normal and not to force feed LNS to the 

children.

Given the high levels of food insecurity in this region, our study provided food vouchers to 

all participants, as well as monthly nutritional education sessions. The food vouchers were 

also intended to offset sharing of the LNS product with other children in the intervention 

families. Food vouchers were granted based on household size: <4 = L 200 per month, 5–8 = 

L 300 per month, >=8 = L 400 per month (L= Lempiras; 18L = US $1 during the study 

period). These were redeemable at local stores for rice, beans, corn, vegetables and fruits 

which provided only a minimal percentage of the household’s food supplies. Use of the food 

vouchers by study participants and store owners was monitored. Ten culturally- tailored, 

age-appropriate educational sessions were delivered on nutritional and health topics.

Data and Blood Sample Collection

Non-fasting blood samples were collected at baseline, 6 months and at the end of the 12 

month study period. Venous blood samples were drawn by a nurse using trace element free 

BD Vacutainer tubes (1.5 mL), 2 hour post-prandial (See online Supplementary Material for 

details). Hemoglobin was measured at baseline and every three months thereafter from a 

finger prick using a StatSite-MHgb (Stanbio Laboratory, Boerne, Texas) and recorded to the 

nearest g/L. The StatSite-MHgb was calibrated three times during the study.

Age-specific cut points for deficiency or suboptimal states were used for hemoglobin16 and 

B12.17 For biomarkers without age-specific cut-points, generally-accepted cut-points were 

used: <3 ng/ml for folate18, >8.3 ug/ml for soluble transferrin19, <65 ug/dl for zinc20, <0.70 

μmol/L of retinol for Vitamin A deficiency21,22 and <170 nmol/L for riboflavin.23 For CRP, 

>3 mg/L indicated acute inflammation. 24
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Sociodemographic, Anthropometric, Diet and Food Security Measures

Baseline demographic information was collected using culturally-appropriate 

questionnaires. Infant weight and length were measured monthly, without clothing or wet 

diapers, using an electronic weighing scale to the nearest 10 g for weight, and with an 

infantometer to the nearest 0.10 cm for length. Growth parameters were assessed using 

WHO 2006 Child Growth Standards.25 Monthly 24-hour recalls were conducted by two 

trained local staff using the multiple-pass approach with the aid of measurement models (i.e. 

cups, plates) and the Minnesota Nutrition Data System for Research food guide.26 

Additionally, a validated food security questionnaire was implemented at baseline, 6 months 

and end of study27. The results for these secondary outcomes are not included in this 

analysis.

Statistical Methods

A concern about the potential effect of LNS on breastfeeding led us to determine the 

proportion of women who self-reported any breast feeding (yes/no) from the 24-hour recall 

at baseline, 3, 6, 9, and 12 months. Based on the intent-to-treat assumption and LNS 

adherence, generalized linear regression models were estimated using generalized estimation 

equations (GEE) to compare treatment and control groups with randomization at the village 

(group) level. The analyses were performed using SAS procedure GENMOD.

Retinol analyses included CRP levels as a covariate. Micronutrient biomarkers in their 

continuous form were log-transformed and complete case analysis was used for each 

outcome variable. Binary outcome variables were created for biomarker analyses based on 

deficiency cut points described above. Hemoglobin values were adjusted for altitude using 

the correction by Dirren et al.28

Sub-analyses were done with regard to adherence to the LNS consumption protocol assessed 

from mother’s report of child’s dietary intake collected by 24 hour recalls at 3, 6, 9 and 12 

months. Two variables described adherence, one based on the study’s protocol called 

“protocol” adherence (at least 46 g/d for children <12 months and at least 70 g/d for those 

≥12 months), and the other based on “any consumption” of the product. These variables 

were coded dichotomously, with adherence coded as 1. We computed the average amount of 

LNS consumed only among those children coded as adherent.

Missing data occurred primarily due to participants’ missed visits (see figure 1). The amount 

of missing data was similar between treatment groups at each time point though missed 

visits were more frequent toward the end of the study. Multiple imputation was used to 

examine the influence of missing data using the MI procedure in SAS with no difference in 

results between the imputed and intent-to-treat analyses (See online Supplementary 

Materials for details).29–33 Therefore, only the intent-to-treat and subanalyses results are 

presented in this paper. SAS (version, 9.3; SAS Institute, Cary, NC) was used for all data 

analyses.
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Results

Of the 300 children enrolled in the study, 160 were in the intervention group and 140 in the 

control group. Sample collection rates at baseline, 6 months, and 12 months are shown in 

Figure 1. After verification of eligibility criteria our final sample size was 298. Table 1 

details the socio- demographic and selected maternal characteristics of the participants. 

Because the randomization occurred at the village, and not at the participant, level, we 

would not expect the treatment groups to have similar characteristics. Mean (±SD) length-

for-age, weight-for-age z, and weight-for-length z scores were −0.56 ± 1.05, −0.35 ± 0.93, 

and −0.08 ± 0.99 for the control children respectively and −0.72 ± 1.06, −0.53 ± 0.96, and 

−0.19 ± 0.91for the intervention children; these were not statistically different (data not 

shown). The mean food insecurity score for the population at baseline was 33 ± 5.4 (range 

19 to 42) which indicates moderate food insecurity.34

Adherence to the intervention

Overall, there was low adherence to the study protocol of consuming Plumpy’ doz. At study 

month 3, protocol adherence was 5% (Table 2). Adherence increased to 9% at study month 6 

and then declined. The mean daily intake of LNS by children with protocol adherence 

ranged from 82 g to 105 g. However, approximately 73% of children reported any LNS 

consumption from study months 3 to 9 and this decreased to 69% at month 12. The average 

amount consumed by children in this category ranged from 34 g to 50 g, achieving stability 

after month 6 (Table 2). Given the low adherence to the suggested LNS dose, the sub-

analysis was limited to the main study outcomes of the ‘any’ dose category.

The pattern of self-reported breastfeeding was different between the study groups (See 

Supplemental Table #1 for details). At baseline and at three months, there were no 

differences between study groups in the proportion of caregivers who reported any 

breastfeeding. However, beginning at month 6, a greater reduction in breastfeeding was 

observed in the intervention group compared to the controls (64% control versus 56% in the 

intervention group) and this continued throughout the remaining intervention period.

Micronutrient status

There were no subjects identified as folate deficient in either group at any time during the 

study. At baseline there were significantly lower concentrations of retinol and thus a higher 

frequency of vitamin A deficiency in the control group compared to the intervention group 

(Table 3). Additionally we observed higher levels of CRP in the intervention group 

compared to the control. No other significant differences between intervention and control 

groups were noted.

At the 6th month time point, a significant difference between groups was found for the mean 

concentration of vitamin B12 and retinol; the latter was adjusted for baseline level and time-

specific CRP levels (Table 3). Additionally, the intervention group had a significantly lower 

proportion of children classified as deficient for B12. The intervention group had a higher 

mean concentration for folate compared to controls (P=0.06).
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At the 12th month time point, mean folate concentration continued to be higher in the 

intervention than the control group (Table 3). The trend towards higher levels of B12 in the 

intervention group (285.3±2.04), compared to the control group (227±2.16) continued 

(P=0.08). Children in the intervention group continued to have lower risk of vitamin B12 and 

A deficiency.

The subanalysis taking into account the adherence reflected those found with the intent-to-

treat analysis (See online Supplementary Materials for details).

Adverse effects

Throughout the 12 month study duration, no participants experienced any clinician-

documented adverse effect and none experienced a serious adverse effect.

Comment

This trial of an LNS product conducted in Intibucá Honduras for children 6–18 months 

resulted in improved mean vitamin B12, folate and retinol concentrations after 6 months of 

the intervention. After one year of the intervention, a significant difference between the 

intervention and control groups continued for folate concentrations and the intervention 

group had a significantly lower prevalence of vitamin A deficiency not attributed to baseline 

values or CRP levels. Furthermore, the trend of improvement for B12 continued. Subanalysis 

based on adherence with the LNS product mirrored the results found in the intent-to-treat 

analysis, with improved significance.

This study shows that the LNS supplement was able to improve mean folate concentration 

for the children; mean plasma folate concentration ranged from 16 to19 ng/mL and normal 

folate concentration for children usually ranges between 2.7 to 17 ng/mL.35 Folate 

deficiency was not detected at any time point in either group. We speculate that the control 

group may have had increased consumption of folic acid fortified wheat (as a result of 

increases in corn prices) or high intake of folate rich foods such as beans due to the 

vouchers. In Honduras more than 80% of wheat flour is fortified with iron, folic acid and 

vitamins B1, B2 and niacin as established by a national mandate implemented in 2002.36

Our study population had a baseline prevalence of anemia (50.0% control and 39.6% 

intervention) of severe public health significance as defined by WHO.37 In contrast to 

studies conducted in Africa among moderately malnourished children, results from this 

study did not show improvements in iron status as measured by hemoglobin or transferrin 

receptors.5,10 This difference in the study populations, moderately malnourished versus non-

malnourished children, may explain our lack of findings for iron status improvement.

Vitamin A (retinol) deficiency also met criteria for severe public health significance38 and 

was higher in the control group at baseline (45% control vs. 27% intervention). This 

intervention reduced vitamin A deficiency to moderate levels (≥10% to <20%) among 

children in the intervention group, values comparable to those reported in a Honduran 

national survey in 1996 .38 Serum retinol concentration was significantly improved in the 

intervention group at the 6 month time point and to a lesser degree at the 12 months after 

controlling for baseline values and CRP. The ability to detect larger differences between 
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groups could have been masked by concomitant vitamin A supplementation by the health 

clinic prevention programs. Although the study guidelines instructed clinical staff not to 

provide additional vitamin A supplementation to children participating in the study, it was 

difficult to monitor adherence to these instructions. To the best of our knowledge, this is the 

first LNS trial to measure and report significant increases in retinol among intervention 

participants.

The risk of zinc deficiency in this population is high (37.5–62.3% at baseline).39 This trial 

aimed to supplement children with 9 to 14 mg of zinc daily, the upper level of suggested 

intake.20,40,41 High consumption of phytates in their dietary staples (i.e. beans, corn), and 

low adherence to LNS may explain the consistently high prevalence of zinc deficiency 

throughout the study. Studies using food fortification have also shown no reduction in the 

prevalence of low serum zinc concentrations42–44, which may be explained by poor 

absorption, or interference by the iron fortificant.45 A lack of effect on plasma zinc levels 

was also reported in other studies.10,12

The lower than expected levels of adherence to the LNS protocol partly may be explained by 

measurement error or sharing of the product within the household. Adherence was measured 

using one 24-hour recall collected each month which did capture true consumption over the 

entire month if mothers ran out of LNS the day before. However, the very low proportion of 

participants reporting protocol adherence suggests this is not the only explanation. 

Furthermore, qualitative process evaluations showed that sharing or improper use of the 

product (i.e. spoon sizes) was present only among a small subgroup of households. 

Nevertheless, approximately 73% of participants reported consuming an average dose of 50 

g/d with positive effects on vitamin B12, folate and retinol. Adherence results indicated that 

a higher dose of 70 g/d was not achievable by the Honduran children 12–36 months living in 

a rural area.

This study reported a reduction in breast milk consumption among intervention participants, 

specifically after study month 6. These findings contrast those reported in Malawi and the 

Democratic Republic of Congo which reported no displacement of breast milk by 

complementary foods.46,47 However, both of these studies used short follow up periods with 

small sample sizes and comparison groups that provided an equivalent source of energy; our 

control participants did not receive any other equivalent source of energy dense foods, 

therefore providing a more realistic scenario for comparison. This reduction of breast milk 

consumption among intervention participants is expected for children increasing the amount 

of complementary foods in their diet.48

A limitation of the study design was the integration of food vouchers and complementary 

feeding education to both groups. This most likely contributed to the improvement in food 

security we saw over time (data not shown), and limited our ability to detect larger changes. 

A second limitation was the inability to truly match the villages on all socio-economic 

indicators. The sampling clusters differed in some socio-economic characteristics which 

may influence adherence to the trial and health outcomes. Finally, although we were unable 

to mask mothers to the intervention group and they were able to travel from an intervention 

to control village, data entry and laboratory personnel were masked to group allocation.
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In summary, this study is the first LNS efficacy trial to be reported in Latin America. 

Caregivers were highly engaged in the process and had low attrition rates throughout the 

study period. Acceptability of the product was good and overall consumption of LNS by 

children that averaged close to 50 g per day is reasonable given the uniqueness of the 

product. Clearly, our expectation of 70 g for older children was too high. These results add 

to the current literature on the feasibility and efficacy of LNS strategies using integrated 

approaches to prevent malnutrition. Results from this study could inform future development 

of effectiveness LNS trials for hard-to-reach rural populations in Latin America.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Attrition rates based on completed blood specimen collection.
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Table 1.

Sociodemographic characteristics of the study population at baseline per study group

Demographic Characteristic
Treatment (n=160) Control (n=138)

No. (%) No.  (%)

Interviewee is the mother of participant

 No 14 (9) 4 (3)

 Yes 146 (91) 134 (97)

Interviewee is the child’s primary caregiver

 No 1 (1) 0 (0)

 Yes 159 (99) 138 (100)

Age of primary caregiver (years)

 ≤22 47 (29) 46 (33)

 23–30 61 (38) 54 (39)

 ≥31 52 (33) 38 (28)

Maximum education level of primary caregiver

 Did not attend school 13 (8) 6 (4)

 Primary school (1st−6th grade) 131 (82) 112 (81)

 Secondary school (7th−9th grade) 6 (4) 7 (5)

 Career/diversified 10 (6) 12 (9)

 University 0 (0) 1 (1)

Marital status of primary caregiver

 Cohabiting 63 (39) 70 (51)

 Married 42 (26) 42 (30)

 Single/Divorced/Widowed/Separated 21 (13) 26 (19)

Age at first birth of primary caregiver/mother (years)

 ≤22 132 (84) 113 (82)

 23–30 24 (15) 21 (15)

 ≥31 1 (1) 3 (2)

 Missing 3 1

Total number of pregnancies

 1 45 (28) 44 (32)

 2 29 (18) 32 (23)

 ≥3 86 (54) 62 (45)

Total number of live children

 1 49 (31) 50 (36)

 2 31 (19) 33 (24)

 ≥3 79 (50) 54 (39)

 Missing 1 1

Number of people living in home

 ≤4 33 (21) 26 (19)

 5–8 82 (51) 74 (54)
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Demographic Characteristic
Treatment (n=160) Control (n=138)

No. (%) No.  (%)

 ≥9 45 (28) 38 (28)

Number of adults living in home

 ≤2 86 (54) 64 (46)

 3–5 62 (39) 62 (45)

 ≥6 12 (8) 12 (9)

Other people’s children live/eat in interviewee’s home

 No 116 (73) 87 (63)

 Yes 44 (27) 51 (37)

Primary caregiver was employed at study entry

 No 143 (90) 125 (91)

 Yes 16 (10) 13 (9)

 Missing 1 0

Age of Child

   ≤12 months 86 (54) 72 (52)

   > 12 months 74 (46) 66 (48)
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Table 2.

Adherence and grams of Plumpy’doz consumed daily at four time points among intervention children.

Time Point
(Sample size)

Protocol dose

adherence
b

Any Plumpy’doz
consumption

% Mean intake
a
 (SD) % Mean intake

a
 (SD)

Month 3 (149) 4.7 88.3 (42.4) 72.5 34.7 (23.8)

Month 6 (150) 8.7 102.2 (40.5) 72.7 50.5 (28.3)

Month 9 (128) 5.5 105.3 (43.6) 72.7 48.5 (26.9)

Month 12 (129) 1.6 81.6 (10.5) 69.0 50.0 (16.7)

a
Mean intake in grams, SD=standard deviations among consumers only

b
Protocol adherence: 46.3+ daily grams for children aged ≤12 months; 70+ daily grams for children aged >12 months
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Table 3.

Intent to Treat, Comparison of biomarkers at three time points, per study group

Biomarker Control
a
 [n] Intervention

b
 [n] P-value

c

Vitamin B12 (pg/mL)

   Baseline 177.3±2.3 [93] 226.5±2.1 [105] 0.14

   Month 6 189.1±2.0 [97] 248.5±2.0 [110] 0.03

   Month 12 227.0±2.2 [99] 285.3±2.0 [122] 0.08

Vitamin B12 deficiency
d
 (%)

   Baseline 58.1 [93] 47.6 [105] 0.25

   Month 6 67.0 [93] 43.6 [105] 0.01

   Month 12 61.6 [99] 48.3 [122] 0.09

CRP (mg/L)

   Baseline 0.75±4.2 [97] 1.35±5.2 [115] 0.03

   Month 6 0.89±4.7 [96] 0.78±4.4 [114] 0.60

   Month 12 0.74±6.2 [99] 0.73±6.8 [121] 0.96

CRP >3 mg/L (%)

   Baseline 18.6 [97] 33.0 [115] 0.02

   Month 6 21.9 [96] 16.7 [114] 0.43

   Month 12 23.2 [99] 20.7 [121] 0.53

Folate (ng/mL)
e

   Baseline 17.36±1.4 [93] 17.66±1.5 [110] 0.76

   Month 6 16.65±1.4 [97] 18.48±1.5 [115] 0.06

   Month 12 16.25±1.4 [99] 18.73±1.4 [122] 0.002

Hemoglobin (g/L)
f

   Baseline 101.8±1.2 [134] 106.7±1.1 [144] 0.10

   Month 6 102.5±1.2 [128] 106.6±1.2 [144] 0.17

   Month 12 105.7±1.1 [109] 108.7±1.1 [134] 0.14

Anemia (%)
f

   Baseline 50.0 [134] 39.6 [144] 0.18

   Month 6 65.6 [128] 50.7 [144] 0.07

   Month 12 55.1 [109] 51.5 [134] 0.60

Transferrin receptors (μg/mL)

   Baseline 8.11±1.6 [97] 8.70±1.5 [115] 0.26

   Month 6 7.81±1.7 [96] 8.20±1.6 [112] 0.55

   Month 12 7.62±1.5 [98] 7.11±1.8 [122] 0.63

Transferrin >8.3 μg/mL (%)

   Baseline 49.5 [97] 52.2 [115] 0.68

   Month 6 45.8 [96] 49.1 [112] 0.67

   Month 12 28.6 [98] 26.2 [122] 0.86

Zinc (μg/dL)
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Biomarker Control
a
 [n] Intervention

b
 [n] P-value

c

   Baseline 62.4±1.6 [109] 66.2±1.4 [128] 0.35

   Month 6 65.6±1.3 [91] 64.9±1.3 [111] 0.84

   Month 12 63.4±1.2 [77] 65.1±1.2 [99] 0.55

Zinc <65 μg/dL (%)

   Baseline 47.7 [109] 37.5 [128] 0.42

   Month 6 51.7 [91] 54.1 [111] 0.83

   Month 12 62.3 [77] 55.6 [99] 0.48

Retinol (μmol/L)
f

   Baseline 0.75±1.3 [82] 0.80±1.3 [97] 0.006

   Month 6 0.82±1.3 [89] 0.92±1.2 [102] 0.03

   Month 12 0.82±1.4 [75] 0.88±1.3 [96] 0.34

Vitamin A Deficiency (Retinol <0.70 μmol/L) (%)
g

   Baseline 45.1 [82] 26.8 [97] <0.0001

   Month 6 25.8 [89] 13.7 [102] 0.19

   Month 12 33.3 [75] 17.7 [96] 0.03

Riboflavin (nmol/L)

   Baseline 215.9±1.7 [92] 254.4±1.4 [134] 0.11

   Month 6 273.5±1.4 [78] 277.3±1.4 [52] 0.89

   Month 12 261.4±1.3 [86] 265.1±1.3 [117] 0.78

Riboflavin <170 nmol/L (%)

   Baseline 20.7 [92] 8.2 [134] 0.18

   Month 6 6.4 [78] 11.5 [52] 0.31

   Month 12 4.7 [86] 3.4 [117] 0.70

a,b
Geometric means and geometric standard deviation.

c
P-values based on GEE analysis using PROC GENMOD, taking into account randomization at village level.

d
Cut points were <167.9 pg/ml for 5–11 mo old, <266.79 pg/ml for 11–24 mo olds, and <319.6 for >24 mo olds.

e
There were no cases of folate deficiency defined as <3 ng/mL at any time point.

f
Hemoglobin values adjusted for altitude. Cut points were <100 g/L for <12 mo olds, <110 g/L for 12 to 24 mo olds, and <111 g/l for 2 to 5 yr olds.

g
P-values for retinol and vitamin A deficiency based on GEE analysis using PROC GENMOD, taking into account randomization at village level 

and adjusted for baseline value and time point-specific measured CRP level.
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