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Abstract

The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating 

pathways and rate constants for rare events such as protein folding and protein binding using 

atomistic molecular dynamics simulations. Here we present five tutorials instructing users in the 

best practices for preparing, carrying out, and analyzing WE simulations for various applications 

using the WESTPA software. Users are expected to already have significant experience with 

running standard molecular dynamics simulations using the underlying dynamics engine of 

interest (e.g. Amber, Gromacs, OpenMM). The tutorials range from a molecular association 
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process in explicit solvent to more complex processes such as host-guest association, peptide 

conformational sampling, and protein folding.

1 Introduction and Scope of Tutorials

WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis; 

https://westpa.github.io/westpa) [1] is an open-source, highly scalable software framework 

for carrying out extended-timescale simulations of rare events with rigorous kinetics using 

the weighted ensemble (WE) strategy [2]. Key features of WESTPA, written in Python, 

include (i) a general interface that enables interoperability with any dynamics engine (e.g. 

Gromacs [3], Amber [4], OpenMM [5]); (ii) an optimized, parallel implementation of the 

WE strategy that exhibits perfect scaling out to >4000 CPU cores; (iii) an effective suite of 

tools for analysis of the millions of files created by each simulation; (iv) full extensibility for 

enhancements to simulation protocols and analysis tools; and (v) portability of the software 

on any Unix-like computing resource, including typical computing clusters and 

supercomputers. The WESTPA software also includes plugins for using a WE-based string 

method [6] and a WE strategy utilizing hierarchical Voronoi bins (WExplore) [7]. The 

WESTPA software package has enabled efficient atomistic simulations of host-guest 

associations [8], protein binding processes [9, 10], and protein folding [11]. This efficiency 

(relative to standard “brute force” simulations) has been demonstrated to increase 

exponentially with the effective free energy barrier of the rare event [12].

Here we present a suite of five tutorials for the WESTPA software in order of difficulty from 

basic to advanced, including a tutorial involving the suite of analysis tools. These tutorials 

can also be found online in the WESTPA GitHub repository (https://github.com/westpa/

westpa_tutorials/wiki). Learning objectives and expected outcomes are outlined for each 

tutorial. This set of tutorials is restricted to applications in molecular dynamics (MD) 

simulations, but WE and WESTPA are applicable to arbitrary stochastic simulations [13–

15].

After completing the Basic Tutorial involving the simulation of Na+/Cl− association, the user 

should be able to:

1. Understand the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

5. Monitor a simulation

After completing the Intermediate Tutorial involving the conformation sampling of a p53 

peptide fragment, the user should be able to:

1. Set up a two-dimensional progress coordinate

2. Monitor this coordinate as the simulation progresses
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3. Evaluate whether the binning scheme is effective

4. Combine and create bins “on-the-fly”

5. Store and access auxiliary data

After completing Advanced Tutorial 1 involving the folding/unfolding of the chignolin mini-

protein the user should be able to:

1. Use brute force simulations to identify appropriate initial and/or target states

2. Obtain the probability flux into the target state of a WESTPA simulation, convert 

it to a mean rate constant, and interpret the results

3. Approach larger, more biologically relevant events (like protein folding) with a 

WE-oriented mindset

After completing Advanced Tutorial 2 involving K+/18-crown-6 ether association and 

WExplore plugin, the user should be able to:

1. Install and use the WExplore-WESTPA plugin

2. Define and implement their own distance metric for use in a WExplore 

simulation

3. Determine appropriate values for WExplore-specific parameters for their system 

of interest

4. Analyze simulations by inspecting properties of the Voronoi “images”

After completing the Analysis Tutorials, the user should be able to:

1. Calculate progress coordinates using an external analysis suite (MDTraj or 

MDAnalysis)

2. Automate analysis and interactively explore WE simulation data using the w_ipa 

tool

3. Create a movie of how a probability distribution evolves with time

The tutorials will use an array of different dynamics packages to showcase WESTPA’s 

interoperability. In each tutorial, all of the required packages and auxiliary programs (for 

analysis etc.) are freely available and documentation can be readily found online. The 

version of each software package is also provided in each tutorial’s “computational 

requirements” section.

1.1 Using WE Concepts in MD Simulation

The WE strategy organizes an array of MD trajectories strategically in configuration space 

to target quantities of interest which would not be calculable via standard MD. Typical 

examples are the calculation of pathways and rate constants for conformational and binding 

processes. The overall WE strategy can be embodied in a wide variety of specific 

algorithms. The WESTPA software can be considered a direct descendent of the Huber and 

Kim algorithm [2], although the idea to use trajectory “splitting” and reweighting had been 

devised decades earlier for research at Los Alamos [16].
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As sketched in Figure 1, the essence of WE is to use a statistically unbiased, weighted 

sample of MD trajectories in such a way that a higher density of trajectories is deployed in 

regions of configuration space where sampling would otherwise be rare in standard MD. 

These rare regions might be (free) energetic barriers or merely distant regions of 

configuration space. The trajectory weights, which are fundamental to WE, result from the 

statistical resampling procedures which either prune or replicate trajectories according to 

rules implemented in WESTPA [1, 2, 17]. The rules typically generate trajectory replicates

—which will diverge upon additional simulation using a stochastic thermostat or dynamics

—in under-sampled regions while pruning trajectories that occur in over-sampled regions.

Procedurally, WE runs a large number of ordinary, unbiased MD trajectory segments in 

parallel, with each segment halted and examined after a short interval of time (e.g. 1–100 ps, 

see Table 1) called τ. After each interval, some trajectories are replicated and some are 

pruned according to user-specified parameters - see below. This in turn triggers automated 

adjustment of the weights to complete the resampling process. The remaining trajectories are 

then continued for another τ interval.

The rules for resampling trajectories without bias are extremely flexible [17] and numerous 

possibilities are implemented within the WESTPA software. Typically, WE simulations rely 

on “bins,” which are defined regions of configuration space for which the user defines a 

target number of trajectories [2]. In WESTPA, bins can be constructed from simple one or 

two-dimensional “progress coordinates”, a hierarchical nesting of bins inside of other bins, 

Voronoi cells, or the WExplore hierarchical Voronoi strategy [1, 7]. Strictly speaking, it is 

worth noting that bins are not required to perform WE-like resampling [18].

Each WE simulation ultimately yields an ensemble of trajectories, from which different 

types of information can be extracted. Each trajectory which makes a full transition between 

states of interest, say from A to B, yields an ordered set of configurations which can be 

analyzed for structural changes and for the sequence of events. The full weighted ensemble 

of trajectories, if clustered into pathway groups, can provide information on the relative 

importance of different pathways [19]. If WE was performed with a “recycling” condition 

where trajectories reaching B are fed back to A, then the rate constant for the process can be 

estimated from the probability flux arriving to state B if the simulation achieves steady state 

and hence constant flux [20, 21]. If a WE simulation does not achieve steady state, it is still 

possible in principle to estimate rate constants using a non-Markovian analysis, also called a 

history-augmented Markov State Model [11, 22, 23].

1.2 Prerequisites

1.2.1 Background Knowledge and Experience—The WESTPA software is not 

intended for total beginners in molecular simulation. A prerequisite for all of WESTPA 

tutorials presented here is that users already have extensive experience with running standard 

molecular dynamics (MD) simulations using the underlying dynamics engine of interest 

(Amber, Gromacs, OpenMM, etc.). In fact, we recommend running multiple short, standard 

simulations prior to applying the WE strategy in order to (i) ensure that the system is 

prepared and the dynamics are propagated according to best practices (e.g., see [24]), (ii) 

identify potential progress coordinates and other observables that may be worth monitoring 
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during the WE simulation, (iii) determine an initial definition of the target state, and (iv) 

estimate storage needs for your eventual WE simulation and the ns/day that can be generated 

for your system. It is also important to identify sources of validation for your simulation 

(e.g., from experiment and/or standard simulations) and to be familiar with the estimation of 

statistical uncertainty in the computed observables, including those used for validation 

([25]). We highly recommend that new users read the WE overview (https://

www.csb.pitt.edu/Faculty/zuckerman/we-overview.pdf) as well as a recent review article 

[21]. In addition, new users are encouraged to search the WESTPA mailing list (https://

groups.google.com/forum/#!forum/westpa-users) for possible solutions or to submit 

questions/issues to the mailing list.

1.2.2 Software Requirements—The WESTPA software requires Python and a number 

of standard Python scientific computing packages. All required software is available through 

the Anaconda Python distribution, which also provides the preferred mechanism for 

obtaining and installing WESTPA itself. The software can be used on any Unix operating 

system, including academic clusters and supercomputers. The installation of WESTPA is 

streamlined by an Anaconda conda install recipe that enables WESTPA and all software 

dependencies to be installed at the same time.

In addition, WESTPA will require interfacing with an external dynamics engine in order to 

run WE simulations. Examples of dynamics engines that can be used (all free of charge), 

and the versions used are included before each tutorial in this manuscript.

1.2.3 Hardware Requirements—The highly scalable WESTPA software is particularly 

well-suited for high-performance computing (HPC) clusters, including those at academic 

institutions or supercomputing centers. Much of the computing effort is independent (i.e. 

highly parallelizable) with only a small amount of data being transferred to a central process 

at the end of each WE iteration. Furthermore, the amount of memory per computing node 

need only be sufficient for the underlying dynamics engine, e.g., ~1 GB per CPU core for 

atomistic MD simulations.

The two major computing hardware considerations for large-scale WESTPA simulations are 

(i) the number of available processors, and (ii) the amount of disk storage in the scratch 

(working) space. Further details about these requirements are provided below.

Number of Processors.: WESTPA can be run on even a single processor, but the ideal 

scenario is to use the same number of processors — all with the same processor speed — as 

the number of trajectories you are simultaneously running at any point in time; in this way, 

all trajectories that are being run can be completed at the same time. If the ideal number of 

processors is not available, we suggest requesting a number by which the number of 

trajectories at any point in time is divisible. These are not strict requirements, but following 

these guidelines will ensure the most economical use of computer time possible.

Storage Requirements.: To estimate the storage requirement for your WE simulation, we 

suggest running a single MD simulation for length τ, estimating the maximum number of 

trajectories you will generate for any WE iteration (number of bins multiplied by number of 
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trajectories per bin), and estimating the number of WE iterations you will need to converge 

the observable of interest. This results in the maximum total number of trajectories per 

simulation, which can be used to estimate the total storage requirements (both number of 

files and aggregate storage space). Ideally, the scratch space of your computing cluster 

should be sufficiently large to temporarily store the entire simulation, which makes the 

analysis easier in the not-unlikely event you need to reanalyze each trajectory. Regardless of 

your estimate, having an off-cluster storage option that can store the simulation in case you 

need to extend the simulation further on the cluster would be ideal. Also, make sure that you 

are not exceeding any limits on the total number of files a user can have on your computing 

cluster.

As an example, we present the hardware requirements of our largest-scale WESTPA 

simulation to date, which involved a protein-protein binding process in explicit solvent. To 

enable convenient analysis of this simulation, the scratch directory of a computing cluster 

would ideally allow for 15 TB of disk space to store trajectory coordinates for the entire 

system, including explicit water molecules, checkpoint files for continuing trajectories, and 

other files required for analysis. If the scratch space is much less than this amount (e.g. 2 

TB), we recommend separately tarring and archiving each WE iteration, keeping the last five 

WE iterations untarred, and moving the archived files to local storage. This strategy enables 

one to restart a WE simulation from the last few iterations if necessary. We realize that this 

protein-protein binding simulation is an extreme use case, but nonetheless, this scenario 

highlights the importance of allocating the necessary storage space for more typical use 

cases.

We note that most distributed storage filesystems used on large clusters (e.g. Lustre or 

GPFS) do not distribute metadata (file size, modification time, etc.) processing, and this 

centralized treatment of metadata can become a “choke point” for WESTPA simulations. In 

the worst case, a poorly-configured WESTPA simulation can result in denial of service to 

other users. There are no viable alternative file systems at this time. Fortunately, a simple 

remedy exists. The burden of running WESTPA simulations on these distributed filesystems 

can be substantially reduced by using the full pathnames to all executables called by any 

WESTPA process (for example, writing/usr/bin/awk instead of simply awk).

1.2.4 Running WESTPA on a Computing Cluster—Prior to running full-blown 

WESTPA simulations on your desired computing cluster, it is advisable to consult with the 

system administrator about how best to run your simulation on the cluster. In addition, test 

simulations consisting of a few WE iterations should be run using the development queue to 

gauge if the I/O is too frequent for the cluster and to optimize the execution of your 

simulation (see Table 1 for examples of computing resources that have been suitable for 

various WE applications). Sample shell scripts for executing WESTPA simulations on 

various computing resources have been provided for the Intermediate Tutorial (Section 6.2) 

on GitHub.
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2 Workflow of Running a WE Simulation

An overview of the workflow for running a WE simulation using WESTPA is detailed 

below. This workflow is only meant to give a sense of the mechanics and flow of using 

WESTPA once your system and WE parameters have already been carefully chosen. See 

Table 2 for a summary of all files mentioned in this workflow.

Overall Flow

Ready: The purpose of this step is to ensure that the chosen WE parameters are correctly 

specified in the proper places and that all environment variables are correctly set. Most of 

the WE parameters (such as the number of WE iterations, binning scheme etc.) and auxiliary 

datasets (auxdata; see Section 6.2) are specified in the west.cfg file. You can view an 

example of this file in any of the tutorials below; labels exist directing where to specify each 

parameter. More complex binning schemes (such as recursive schemes or schemes involving 

functional bin mappers) can be specified in an external file called system.py. A user may 

also choose to write functions to this file. Usually, these functions will calculate progress 

coordinate or auxiliary data and are more complex than usual.

The environment is set up in the env.sh file. The location of the main WESTPA simulation 

directory (WEST_SIM_ROOT) and the location of dynamics/analysis programs are placed 

in your system path. When setting up WESTPA on a cluster, program modules will be 

loaded in the runwe.slurm file instead of the env.sh file (see Section 6.1 and view the cluster-

specific runwe.slurm file). It is a best practice to define variables in env.sh for each program 

that will be called. These variables should contain the full path to that program (such as 

CPPTRAJ=$(which cpptraj), see Section 4.3 for more information). Always source env.sh 

before trying to run WESTPA just to see if any errors appear relating to programs not being 

found. If errors are present, edit env.sh to specify the proper locations of programs and try to 

source it again. The goal of this action is to make sure that any issues with your environment 

are fixed before continuing so that troubleshooting becomes much easier later on.

Set: After setting up the system environment and specifying the WE parameters, users will 

need to initialize the simulation. This involves running the init.sh script, which will take an 

initial structure (or structures), calculate a progress coordinate (pcoord for short, this is also 

the name used in WESTPA datasets pertaining to the progress coordinate) value for that 

structure and then place that structure in the appropriate bin. The init.sh file is also the 

location where users can specify whether the simulation will be run under equilibrium or 

steady-state conditions.

Place the starting structure(s) in the bstates/ directory. The structure should be a coordinate 

file giving the starting configuration of your system (e.g. Amber restart file). The bstate.file 

tells WESTPA which structure to use as the initial structure for the simulation. If you have 

only one structure, this file will contain the name of that structure only; if you have more 

than one structure, bstate.file should list each structure along with its associated statistical 

weight. An example of the latter is a representative ensemble of unbound protein 

conformations in a binding process that could be generated using a prior equilibrium WE 

simulation [9, 10].
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Next, specify whether the simulation will be run under equilibrium or steady-state 

conditions. This specification is made in the init.sh file. Including a TSTATE_ARGS 

argument for w_init will signal for WESTPA to run under steady state conditions. The 

tstate.txt file in the main simulation directory is where the progress coordinate value of the 

target state is specified. If the TSTATE_ARGS argument is absent, the simulation will be run 

under equilibrium conditions. See the tutorials in Sections 6.1 and 6.2 below for examples of 

how init.sh will change from running a steady-state simulation versus an equilibrium 

simulation (respectively).

Running init.sh will cause WESTPA to execute get_pcoord.sh, which is a script located in 

westpa_scripts/. This script will give an initial progress-coordinate value for the basis 

state(s) (located in bstates/) to WESTPA.

Users will need to modify get_pcoord.sh to either read or calculate the progress coordinate 

for their particular simulation. For instance, in the Basic Tutorial, the distance between the 

Na+ and Cl− ions is used as the progress coordinate. The get_pcoord.sh file for that tutorial 

simply prints the contents of an already-existing file (pcoord.init, which already contains the 

calculated value) and passes that value to WESTPA. However, get_pcoord.sh can also 

perform the calculation for the basis state, as in the Intermediate Tutorial. However this is 

done, a value (or values) for that progress coordinate should be echoed into 

WEST_PCOORD_RETURN, a WESTPA variable containing all of the progress coordinate 

values for the entire simulation (see Section 6.2 for the added considerations if a two-

dimensional progress coordinate is used).

If errors appear while trying to initialize the simulation, the following troubleshooting 

methods are recommended. First, make sure that the command entered in get_pcoord.sh 

properly calculates the progress coordinate. Copy the initial structure from the bstates/ 

directory to another directory and run the command. If the command does not work, make 

sure the proper atoms and residues are selected and then try running the command again. If 

the command works, make sure that the calculated value is being successfully echoed into 

WEST_PCOORD_RETURN.

To make troubleshooting easier, turn on logging for the get_pcoord step in the west.cfg file. 

By setting the location of the standard output (stdout) and/or standard error (stderr) to 

$WEST_SIM_ROOT/get_pcoord.log, you can more closely monitor the output of the 

get_pcoord.sh script to try to find out where things are not working.

Go: Running the run.sh script will start a WESTPA simulation. If init.sh was just run, a new 

simulation will begin and continue until the number of WE iterations specified in west.cfg 

have been completed. If the simulation was stopped after previously running, run.sh will 

continue the simulation from the point at which it was stopped. If WESTPA is being run on 

a cluster, then this script will take the form of a Slurm or other submission script (such as 

runwe.slurm, see the Basic Tutorial in Section 6.1 for an example). WESTPA will propagate 

dynamics for one trajectory segment (of length τ) and calculate progress coordinate values 

(and all auxiliary data) for the propagated structure(s). After completing a trajectory 

segment, WESTPA will combine and replicate trajectories to maintain the target number of 
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trajectories per bin (as specified in the west.cfg file). One cycle of dynamics and 

combination/replication is referred to as a single WE iteration. The number of iterations is 

repeated until the observable of interest (e.g. rate constant) is reasonably converged.

Running run.sh will cause WESTPA to execute runseg.sh, which is a script similar to 

get_pcoord.sh, located in westpa_scripts/. Users will need to modify runseg.sh to call the 

dynamics engine and calculate the appropriate progress coordinate (and auxiliary data) 

value(s). Refer to the runseg.sh file in the Basic Tutorial as an example (Section 6.1). This 

particular simulation uses Amber’s pmemd program for dynamics propagation. Running this 

program requires a certain input/output syntax that is specific to the dynamics engine (such 

as Gromacs or OpenMM). The section of this file that calculates the progress coordinate will 

be identical to that in the get_pcoord.sh file. If a user is collecting auxiliary data (as 

specified in the west.cfg file), those values will need to be calculated after calculating the 

progress coordinate value (see Intermediate Tutorial in Section 6.2).

Since runseg.sh will cause many different files to be generated, it is important to consider 

how WESTPA is handling these files, especially when using a shared file space such as on a 

cluster. The methods used in the example runseg.sh files that have been provided in the 

tutorials below are sufficient in most cases, but please refer to Section 4 for a discussion on 

file management and network traffic.

If there are any errors in the WESTPA setup (e.g. incorrect number of elements in the 

pcoord array, misplaced input files), the simulation will not proceed past the first WE 

iteration. If this is the case, check the west.log file to see if there is a good reason for why 

the simulation is failing. Usually, however, detailed logging of any errors is available in the 

seg_logs/ directory for each segment of each iteration. View the segment log for a particular 

segment to see if the dynamics are completing successfully and that the progress coordinate 

(and auxdata) values are being calculated and passed to the appropriate variables (such as 

WEST_PCOORD_RETURN).

If the dynamics fail to start, copy all necessary input files into an empty directory and run 

the dynamics manually. If no errors appear, make sure that your progress coordinate consists 

of the proper number of datapoints (as specified in the west.cfg file). This is determined by 

the frequency at which the progress coordinate is being calculated. For example, if WESTPA 

expects 50 progress coordinate values per τ and only receives 10 values, the simulation will 

fail after the first WE iteration. Check the dynamics input file (md.in in the Basic and 

Intermediate tutorials) to make sure that the coordinates of your system are being saved at a 

frequency that matches the number of specified progress coordinate values.

If the simulation proceeds to the second iteration, there should not be any errors in the 

WESTPA setup. To monitor the progress of the WE simulation, use w_pdist to generate 

probability distributions as a function of your progress coordinate and WE iteration. 

WESTPA’s plothist command will allow you to visualize these probabity distributions with 

a few different visualization options (see Basic and Intermediate Tutorials).
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Analyze: All data generated from the simulation is contained in one place: the west.h5 file. 

From this data, users can track the evolution of progress coordinate values, calculate fluxes 

into certain bins or states (see the w_ipa analysis tutorial in Section 6.5.2) and view other 

statistics pertaining to the simulation. To visualize a completed trajectory, refer to the Basic 

Tutorial and the Advanced Tutorial involving the visualization of trajectories(Section 6.5.3).

To assess the convergence of the simulation, a user might want to monitor the evolution of 

the flux into a target state as a function of the number of WE iterations by using the hdfview 

program to plot the target_flux_evolution dataset in the direct.h5 file generated by w_ipa 

(see Basic Tutorial).

3 General Guidelines for Choosing WE Parameters

Suitable WE parameters such as the progress coordinate, binning scheme, and resampling 

interval τ depend on the particular system under investigation and the particular process of 

interest. Note that all of these WE parameters are tightly coupled to one another. Below are 

general recommendations that aim to assist in choosing these parameters. See Table 1 for 

examples from the literature. Currently, choosing WE parameters is something of an art, 

although the hope is to automate some aspects of parameter selection in the future. For now, 

we suggest what may be considered a semi-systematic, trial-and-error procedure:

1. Initially, choose the simplest 1D coordinate that would be expected to capture the 

slowest relevant motion along with initial bin spacings, τ value, and number of 

trajectories/bin. Choose these initial parameters following examples in the 

tutorials and/or literature, bearing in mind they likely will require modification.

2. The τ value should be sufficiently long such that at least one trajectory 

progresses to the next bin. In addition, a code scaling test (plot of the time 

required to complete a WE iteration vs. τ value) should be carried out for a range 

of potential τ values on the intended computer hardware to identify a τ value that 

yields reasonable linear scaling.

3. If your system stops advancing along your progress coordinate, consider 

reducing the τ value, increasing the number of trajectories/bin, and/or using a 

finer bin spacing in that region of the progress coordinate while combining bins 

from higher probability regions. Note that bin spacings are arbitrary in WESTPA 

and the most efficient bin sizes likely are not exactly equal. Details for 

combining and creating bins “on-the-fly” are provided below in the Intermediate 

Tutorial (Section 6.2).

4. If none of the above efforts in step 3 are effective based on a one-dimensional 

progress coordinate, your progress coordinate may be missing orthogonal and 

relevant slow degrees of freedom. To address this issue, consider using a two-

dimensional progress coordinate [[9, 10]; Section 6.2] or a “nested” coordinate in 

which the progress coordinate switches to monitoring another observable once a 

particular value for the initial observable is reached. Note that additional 

dimensions in the progress coordinate greatly increase the number of bins and 

hence the cost of the WE run, which is the motivation for nesting an additional 
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coordinate in only a subset of the initial bins. You might also consider binning 

strategies that are not based on user-defined coordinates, but instead employ 

Voronoi cells potentially in conjunction with a string method or the WExplore 

strategy ([7]; Sections 3.2 and 6.4). The WESTPA community will continue 

researching the important topic of self-adjusting adaptive bins. If all of your best 

efforts fail to generate transitions, consider simplifying your system (e.g. coarse-

graining the model) and/or applying methods that involve the introduction of 

external forces (e.g. umbrella sampling) to generate initial transitions that can 

further inform the choice of progress coordinate.

3.1 Choosing WExplore-Specific Parameters

WExplore is an algorithm that makes replicating and pruning decisions in a weighted 

ensemble framework. We often call this a “resampler”. WESTPA is a complete software 

package for running weighted ensemble simulations, including not only different resampling 

algorithms, but also scripts to setup, run and analyze weighted ensemble simulations. 

Advanced Tutorial 2 shows how one can use the WExplore resampler inside the WESTPA 

toolkit.

Regions in WExplore are hierarchically-organized Voronoi polyhedra, which are defined by 

a set of central points called “images” (Figure 2). To assign a trajectory to a given region, the 

distance from that trajectory to each image is measured, and the trajectory is assigned to the 

region with the lowest such distance. Key parameters in the WExplore method are the 

number of levels in the region hierarchy, the spacing between the images at each level of the 

hierarchy, the maximum branching factor of the hierarchy and the choice of distance metric. 

Each of these parameters is discussed below. In addition, factors affecting the optimal 

number of trajectories are discussed.

Choice of Distance Metric.—Similar to the choice of progress coordinate in 

conventional WE, the distance metric used in WExplore should capture the slow degrees of 

freedom that are relevant to the process of interest. The distance metric could for instance be 

an RMSD (root mean squared distance) measurement, but focusing only on a subset of the 

system atoms. For instance, a common distance metric used in ligand (un)binding 

simulations is calculated by aligning binding site atoms, and calculating the RMSD between 

the ligands, without any further alignment [28]. Alternatively, a series of N progress 

coordinates can be calculated as X = χ1, χ2, χ3, …, χN, and the Euclidean distance between 

two progress coordinate vectors can be used as the distance metric: dij = |Xi – Xj|. Many 

other examples are possible, and the researcher is only limited by their imagination. The 

distance used does not need to be differentiable or continuous.

Region Size, Number of Levels, Branching Factor.—Once the distance metric is 

defined, the best practice is to run a short, straightforward simulation and observe the scale 

of fluctuations. To be effective, the smallest region size (at the lowest level of the hierarchy) 

should be just outside the reach of the typical fluctuations observed in a time period τ.

This ensures that the first replication events will correspond to significant differences 

between trajectories. At the other end, the largest regions should be big enough that a set of 
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B regions can evenly tile the space of interest, where B is the branching factor. Typically, B 
is set to 10, which is low enough to offer a big efficiency boost in region assignment, and 

high enough that branch factor overflows (where the simulation attempts to create a region 

higher than the branch number) do not occur early on in the simulation. The optimal number 

of levels between the smallest and the largest region sizes is system dependent. If 

simulations are routinely getting stuck on one level for long time periods, this could indicate 

that the spacing between levels is too large. If simulations very easily proceed from one to 

the next then the spacing might be too small. It is difficult to know beforehand what the 

optimal spacing will be, but suitable parameters can be easily found using a little common 

sense and a bit of trial-and-error.

Number of Trajectories.—In contrast to conventional WE, WExplore does not employ a 

fixed number of trajectories (Nt) per region. This would be wildly impractical, as the typical 

total number of regions is very large (e.g. 10000 for a branching factor of 10 and a four-level 

hierarchy). Previous applications have aimed to choose Nt to be as small as possible, while 

still allowing for simultaneous sampling of all states of interest, with a convenient value 

being 48, which is nicely congruent with 4-, 6- and 8-GPU compute servers [29–31]. A 

larger value will result in more consistent runs, while a smaller value allows for longer runs 

and more replicates. In practice we have found that single WExplore runs show high 

autocorrelation regardless of the value of Nt, and that averaging over multiple replicates is a 

necessity, both to accurately compute observables and to estimate their uncertainty.

4 Cluster-Specific Considerations

To take full advantage of WESTPA’s scaling and parallelizability, users may seek to run the 

software on HPC clusters. The tutorials included herein are written with the goal of teaching 

new and relatively inexperienced users the basics of using the software and therefore do not 

focus on optimizations pertaining to the code. We recommend that users become familiar 

with running WESTPA on a cluster, especially the cluster-specific issues and considerations 

that may arise.

4.1 Minimizing the Number of Output Files

It is advisable to minimize the number of output files generated by your simulation as this 

reduces the I/O overhead and will therefore be less taxing on the filesystem of the computing 

cluster. We recommend saving only the restart files that are necessary for continuing 

trajectories and analysis of the simulation. If the user needs additional information (e.g. 

coordinates that have been saved at a greater frequency than the τ value) contained in certain 

output files, those files should of course be kept. To further reduce the number of files, we 

suggest separately tarring up the files for each WE iteration. The resulting tarballs will also 

facilitate any transferring of your simulation data to another location.

In some cases such as WE simulations that are run using GPUs, trajectory segments can 

complete too quickly, leading to a bottleneck where the transfer of files over the network to 

the local storage of the node is too slow or there are too many transfers over the network. In 

such cases, copy over the data of the entire previous WE iteration as a tarball to the local 

storage of the node, run the entire iteration from this local storage, and copy back the results 

Bogetti et al. Page 12

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the scratch space in a single tarball. While these transfers over the network will add some 

overhead to each WE iteration, they will avoid the network bottleneck.

4.2 Data Management

A single WE simulation may generate multiple terabytes of data, presenting a challenge for 

storage and retrieval of data. Moreover, using short trajectory segments in WE simulations 

commonly results in a large numbers of small files, which are managed more slowly on 

some file systems than a smaller number of large files with the same overall disk size. To 

alleviate these potential issues, we recommend the following:

1. Perform an initial run to monitor data storage and retrieval. Note that the initial 

number of trajectory segments may be a small fraction of the amount that would 

be generated in the eventual production run.

2. Delete unnecessary files as each trajectory segment is simulated (see example 

runseg.sh files in the Basic and Intermediate Tutorials). Unnecessary files may 

include input files, log files from analysis tools, and raw text output files from 

analysis tools. Often, useful data from log files (e.g., temperature from an MD 

simulation) may be extracted from the log files and saved as auxiliary data to the 

WESTPA data file (west.h5 file), which stores data more efficiently than raw 

text.

3. Tar and optionally compress data from each WE iteration. This strikes a balance 

between excessive file count and excessive file size, either of which is typically 

suboptimal for long term storage, especially on tape systems that may not 

guarantee the integrity of large files.

4. Consider saving coordinates for only the solute atoms of your system to an H5 

file.

4.3 Minimizing Network Traffic Across Multiple Computing Nodes

Given the large scale of a WESTPA simulation, it is advisable to limit the number and 

frequency of network operations (e.g. I/O operations and file transfers from the local disk to 

the global filesystem). We recommend the following strategies for reducing network traffic:

1. Perform a code scaling test to identify an appropriate τ value (see Section 3 

above).

2. Set environment variables to the full pathnames of repeatedly used programs 

(e.g. analysis tools used to calculate progress coordinates; see Basic Tutorial 

below).

3. Copy repeatedly accessed files (e.g. reference structures and analysis scripts) to 

local scratch space and temporarily write the output files to this scratch space. 

After each trajectory segment of length τ completes, tar the output files, and 

copy the tarred files to the globally accessible filesystem using rsync.
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4.4 Advice when Using GPUs

If your WE simulation has extremely frequent starting up of simulation segments, your 

simulation may overheat gaming GPUs and potentially damage the hardware. For example, 

folding simulations of the NTL9 protein in implicit solvent with a τ value of 15 ps resulted 

in such issues on gaming GPUs (i.e. NVIDIA GTX 1080Ti GPUs) while the same 

simulations have no such issues on professional-graphics-programming GPUs. Coarse-

grained simulations (residue-level models and coarse-grained) with high I/O are also 

problematic on gaming GPUs.

5 Uncertainty Quantification and Monitoring of Convergence

Although they can report on much longer timescales, WE calculations still have limitations 

analogous to those of conventional MD simulations – namely, force field inaccuracy and 

inadequate sampling. Assessing convergence requires care, as noted below. Even if sampling 

is adequate, as with any simulation result, error bars are required to set the results in context 

because there is always a finite range of results which are predicted in any stochastic 

calculation [25]. Error analysis is particularly challenging because WE results ultimately 

depend on a large number of trajectories which typically are significantly correlated with 

one another due to repeated replication (“splitting”) events. Over the years, different error 

analyses have been employed [9, 26, 32]. Here we give a brief overview of current practice.

The primary recommendation is to perform multiple, fully independent WE simulations 

when possible. To understand the variation intrinsic to WE sampling, we suggest performing 

these runs from identical starting states. The data from these runs will not go to waste, as it 

can be combined for estimating observables, convergence, and error bars. When multiple 

runs are not feasible for a large-scale application, a sufficiently large number of 

trajectories/bin (at least 4 trajectories/bin) should be used to increase the chances of 

obtaining a diverse ensemble of pathways. To further enhance the diversity of the pathways, 

we recommend starting the simulation from multiple starting states when that is physically 

appropriate such as in protein binding. We note that a single run with a large number of 

trajectories/bin (4–50 trajectories/bin) has been shown to be more efficient in calculating rate 

constants than multiple runs with a small number of trajectories/bin (i.e. < 4 trajectories/bin) 

for molecular association/dissociation systems [33].

We focus here on understanding uncertainty in rate-constant estimation. First, there is the 

issue of “convergence”: how much time is required to obtain a result without systematic bias 

that is governed only by statistical noise? In a typical simulation started in a single state (A), 

the rate constant into a target state B is estimated by the steady-state probability flux into B 

– i.e., the amount of probability arriving per unit time as sketched in Figure 3. However, 

there is a transient regime before the flux levels off to its steady value, and it is unknown in 

advance how long the transient will last. Of course, one should examine the time-

dependence of the average flux (averaged over all WE runs) by eye, but this is unlikely to be 

sufficient. In addition, one can plot the flux as a function of some continuous coordinate 

which progresses from A to B: in steady state, the flux will be constant along any such 

coordinate [23]. Finally, we recommend using a “history augmented” Markov state model 

(haMSM) employing very fine bins/microstates, which can be built from the WE data as a 
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different means for estimating steady-state flux values which can be compared to those 

measured directly in WE simulation [23]. Alternatively, the impact of transient effects on 

rate-constant estimation can be reduced by incorporating the distribution of event durations 

(excluding dwell time in the initial stable state) that correspond to pathways captured by the 

simulation. This strategy has been shown to yield rate constants using a fraction of the 

simulation time required by the original WE method [34].

Once the transient has completed, if multiple runs were performed, it is necessary to 

estimate the uncertainty in the rate constant based on the group of independent WE runs. 

The flux curves from the individual runs, plotted as a function of molecular time, may vary 

significantly as sketched in Figure 3. This large variation invalidates typical uncertainty 

estimation schemes based on the standard error of the mean, and we therefore recommend 

employing a Bayesian bootstrapping procedure [35]. This approach appears to be better than 

alternative approaches for handling estimates which vary over orders of magnitude, but we 

emphasize that the nominal 95% “credibility regions” produced are overly optimistic and 

only cover the true mean a much smaller percentage of the time [35].

6 Tutorials

6.1 Basic Tutorial: Na+/Cl− Association

6.1.1 Introduction—This tutorial involves carrying out a WE simulation of a molecular 

association process: Na+/Cl− association. After completing this tutorial, a user should be 

able to set up a simple WE simulation using the WESTPA software and develop an intuition 

for how changes in the WE parameters will influence the efficiency of sampling a process of 

interest, thus allowing the user to choose appropriate parameters for that process.

Learning Objectives.: Though we strive to make the WESTPA software as user-friendly as 

possible, there are many system-specific parameters that must be carefully specified. The 

purpose of this basic tutorial is to introduce a new user to WESTPA and have that user 

become familiar with the flow of setting up and running a WE simulation.

Specific learning objectives are:

1. Become familiar with the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

5. Monitor a simulation

6.1.2 Prerequisites—Users should install the latest version of the WESTPA software 

package through Conda. Installation instructions can be found on our Github wiki (https://

github.com/westpa/westpa/wiki/Installing-WESTPA). For analysis of simulation data, the 

hdfview software greatly facilitates the visualization of large datasets. We will make use of 

that program in the ‘Analysis’ section of this tutorial.
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Users should have basic knowledge of command line usage and the Python programming 

language. Since WESTPA is designed to conveniently interface with any external dynamics 

engine, users will also need to have experience using an MD engine (Amber, Gromacs, etc.). 

This tutorial will not provide instructions on how to use those engines; only how to interface 

the engines with WESTPA. In addition, a knowledge of analysis programs (such as Amber’s 

cpptraj program or the MDAnalysis software) is necessary and will not be covered here. 

This tutorial will go over examples of the various input files that are necessary for 

interfacing with WESTPA. This tutorial also assumes the user has some knowledge of the 

WE strategy, as its basic theory is not discussed herein.

Computational Requirements.: A user should set aside at least 18 GB of disk space. This 

simulation took ~50 hrs to complete using 1 Intel Xenon 3.50 GHz CPU core.

This tutorial uses OpenMM version 7.3 for dynamics propagation (http://openmm.org/) and 

MDTraj 1.9.3 for progress coordinate calculations (http://mdtraj.org/1.9.3/). System setup 

and equilibration was performed separately in OpenMM. A minimum version of 3.1.0 for 

HDFView is required for H5 file analysis.

6.1.3 Setting up a WE Simulation Using WESTPA

Overview.: WESTPA is run by calling the w_run program from the command line with the 

appropriate options. This is normally done by running the run.sh script from the main 

simulation directory. The simulation will then run until it has either completed the number of 

iterations specified by the user or has run out of time. Both of these parameters can be 

adjusted. Before a simulation can be run, however, the system must be initialized by calling 

the w_init program from the command line with the appropriate options. This is normally 

done by running the init.sh script from the main simulation directory.

Therefore, assuming the system is set up properly and all parameters have been properly 

specified, the WESTPA simulation can be run with the following at the command line 

(throughout our suite of tutorials, the command prompt is indicated with $, which itself is 

not part of the commands that should be entered by the user):

$ ./init.sh

$ ./run.sh

Data from a WESTPA simulation will be stored in a file called west.h5, which is an H5 file 

that can be opened with Python’s h5py package or with a graphical interface such as 

hdfview.

To monitor the simulation’s progress, we will use the w_pdist program of WESTPA. This 

will generate probability distributions (histograms) as a function of the progress coordinate 

and will enable the user to view those histograms with the plothist program.

A WESTPA simulation, even after the requested number of iterations, may not be 

“complete.” Completion is assessed by whether some observable has converged to an 
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expected or steady value. The choice of this observable is up to the user. To obtain these 

observables (such as the flux or rate constant), one will have to access the data in the H5 file 

and plot it using Python’s matplotlib package (or another equivalent package).

Once a simulation is deemed complete, users can make use of the WESTPA analysis tools 

suite of programs, specifi-cally w_ipa in order to extract relevant data from the H5 file.

The System.: To obtain a basic understanding of WESTPA’s parameters and learn how the 

software works, we will begin by studying the molecular association of Na+ and Cl− ions. 

Our system will consist of a single Na+ cation along with a single Cl− anion modeled with 

Joung and Cheatham parameters [36] and solvated in a box of TIP3P water molecules [37]. 

These ions are initially dissociated at a separation distance of 12 Å. The system was 

prepared using OpenMM and the appropriate input files are provided under 

“westpa_tutorials” on GitHub, where you will also find a copy of this tutorial’s simulation 

directory (basic_nacl). We will not cover how the input files were generated or the rationale 

behind choices made when setting up the system (e.g. force field, water model etc.).

Choosing an Initial State.: In looking at the association of two entities, especially thinking 

about how to extensively sample this process, there are some things we want to consider 

before we begin WE. The first is how our initial state should look. If we choose to place the 

ions too close together, we may only observe one “type” of binding pathway, since the ions 

will not have as much time to orient themselves before binding. In reality, ions are 

symmetrical and we will not need this consideration but this would be an issue when 

determining how far apart to space, say, a drug and protein system or two protein binding 

partners. We also do not want to space the ions too far apart, as that would unnecessarily 

increase the time needed to observe binding events. We will therefore choose a generous 

distance of 12 Å.

The coordinates (and velocities) of this starting structure, bstate.xml, are placed in the 

bstates/ directory. This is an OpenMM save-state file, which was saved after equilibration. 

This is the file needed to directly resume dynamics. Depending on the dynamics engine you 

are using, this file will be different but will have the same function (for instance, an Amber 

restart file would be placed here if one were using sander to run dynamics). Also in this 

directory is a file named bstates.txt. This file contains the name of our basis state structure 

and the probability of it being chosen if we want to sample a variety of initial structures 

(since we are preparing only one basis state, that probability is just 1). To more fully sample 

the configurational space of some process, it is often prudent to include more than one initial 

structure. In that case, all of those structure files can be placed in this directory with their file 

names and probabilities included in the bstates.txt file.

Files for Dynamic Propagation.: Also necessary for running an Amber simulation are the 

topology and simulation input files. Those two files (bstate.pdb and nacl_prod.py) are placed 

in the common_files/ directory. This is a catch-all folder for any files needed while running 

dynamics. Notice that our τ value is defined in the nacl_prod.py file, which is a Python 

script that runs OpenMM. This is the length of each WE iteration; so if the MD input script 

will run dynamics for, say, 10 ps then your τ value is 10 ps. This number needs to be 
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carefully chosen depending on your system of interest. For this simulation, we will use a τ 
value of 50 ps.

Preparing the System Environment.: Next, we will want to make sure that WESTPA can 

properly access the MD engine we want to use and set up our simulation environment 

properly. These variables are all defined in the env.sh file. You will need to open that in vim 

or another text editor and make sure that your WESTPA environment is being sourced 

correctly (only if you are not using the Conda environment) and that your dynamics 

environment is being sourced correctly. It is also advised to set the runtime command 

variables for more efficient system calls if applicable.

Equilibrium vs Steady State WE.: Now, let’s examine the init.sh file, which initializes the 

simulation. In this file, we can specify whether to run an equilibrium or steady state 

simulation. The file in the tutorial directory is set up to run a steady state simulation. This is 

specified with the definition of the TSTATE_ARGS variable and its use in the w_init 

command. To run an equilibrium simulation, simply delete those two lines.

The choice of whether to run an equilibrium vs steady state simulation will depend on the 

research question being asked. Where do we want the system to go? Equilibrium simulations 

can be efficient in exploring configurational space and sampling ensembles of 

conformations. On the other hand, steady state simulations, where trajectories that reach 

some target state are recycled back to the initial state (along with their trajectory weights), 

can be more efficient in generating rate constants, and for exploring pathways towards some 

known target state [33].

In our simulation, we do have a specific target state in mind and we know exactly what it 

looks like: Na+ and Cl−interacting ionically at a close distance. We will therefore prepare to 

run a steady state simulation.

Progress Coordinate, Binning Scheme and τ value.: For any WE simulation, we 

recommend choosing a progress coordinate that monitors the slowest relevant motion(s) 

such that faster motions will “go along for the ride.” The efficiency of generating pathways 

is tightly coupled to the choice of progress coordinate, along with how you choose to divide 

up that coordinate into bins. For the molecular association process involving the Na+ and Cl− 

ions, a logical choice of progress coordinate would simply be the distance between the two 

ions, assuming that the surrounding solvent molecules respond relatively quickly to the 

positions of the ions. In other words, we can measure the simulation’s “progress” by how 

close the ions are to each other in a particular trajectory. This will turn out to be a good 

choice for our system, but for systems in which the binding partners involve ensembles of 

conformations, a pure distance-based progress coordinate will not be adequate and must be 

combined with a second dimension of the progress coordinate that tracks some other motion 

of the system.

Now that we have chosen a progress coordinate, we will need to consider our binning 

scheme. Imagine a space that contains all of the possible values of our progress coordinate. 

A good place to start is to perhaps define our progress coordinate as ranging from your 
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initial state (basis state) to a preliminary definition of your target state and divide up this 

coordinate into 1-Å wide bins. One way to obtain a preliminary definition of the target state 

for the Na+/Cl− association process is to subject a model of the associated Na+ and Clions to 

energy minimization using the same force field that will be used during the WE simulation 

and calculate the resulting distance between the ions using cpptraj. This distance ended up 

being 2.6124 Å, so we will set 2.60 Å as our preliminary definition of the target state. We 

recommend choosing the most strict definition possible for the target state for the recycling 

of trajectories in a steady state WE simulation to enable the use of more lenient definitions 

after the completion of the simulation. Make sure to add this number to tstate.file in the main 

simulation directory, where your steady-state target state definition should always be placed.

Back to our bin definitions. If we choose to space our bins by ones from 2.6 to 12 Å by 1’s 

(or some similar increment), this can lead to your simulation stalling. If trajectories cannot 

move to the next bin before a round of combination and replication occurs, the bins may be 

too large with respect to the chosen τ value or progress coordinate. It is a good idea, 

therefore, to run a short (10–20 iterations) WESTPA equilibrium simulation to see how your 

trajectories are progressing with the WE parameters you have set. If necessary, adjust the 

binning or include an additional dimension to your progress coordinate.

Here is the preliminary binning scheme we will employ, which is defined in the west.cfg 

file:

[0.00, 2.60, 2.80, 3.00, 3.20, 3.40, 3.60, 3.80, 4.00, 4.50, 5.00, 5.50, 6.0, 7.0, 8.0, 9.0, 

10.0, 11.0, 12.0, 13.0, 14.0, 15.0, ‘inf’]

Notice how we start at 15 Å (a little bit beyond our initial value of 12 Å) and increment by 

ones, but as we get closer to our preliminary state of 2.60 Å, we start incrementing more 

finely. This finer binning will help to collect probability closer to our target state and 

promote more binding events.

Other WE Parameters.: The following WE parameters are discussed along with where 

they are specified in the parameter files. First, make sure you have chosen an appropriate τ 
value (see Section 3) and that it is properly specified in your dynamics input file. As 

mentioned above, the τ value, along with the number of trajectories per bin, is coupled to the 

choice of progress coordinate and binning scheme. We recommend starting with ~4–5 

trajectories/bin. This value is specified in the west.cfg file as bin_target_counts. Make sure 

that the frequency at which conformations are saved in your trajectories (as indicated in your 

dynamics input file, e.g. md.in for Amber) matches the number of elements in the pcoord 

array of the west.cfg file. We recommend running the simulation for a short time to test the 

effectiveness of the WE parameters, setting max_total_iterations to 10 in the west.cfg file 

before letting the simulation run to a full 100 iterations.

Trajectory Imaging.: Since the replication and combination of trajectories in a WE 

simulation depends on the values of the progress coordinate, trajectories that are carried out 

with periodic boundary conditions should be imaged before calculating the progress 

coordinate (e.g., after completing each trajectory segment of length τ). Otherwise, erroneous 

values of the progress coordinate may result from parts of the simulation system drifting 
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outside of the periodic box. MDTraj, which is used to calculate the distance in this tutorial, 

is able to only calculate distances for nearest-image ion pairs (essentially what Amber does 

with the autoimage command in AmberTools’ cpptraj program.)

6.1.4 Initializing the WE Simulation—To initialize the simulation, run the init.sh 

script as mentioned before. You will see a body of text output indicating that the 

initialization has completed successfully. We will briefly present the key features of this 

script.

As mentioned before, init.sh calls the w_init program, which in turn, runs a script in the 

westpa_scripts/ directory called get_pcoord.sh. This script, in this tutorial, is very simple. It 

prints the contents of a file, pcoord.init, and gives that to WEST_PCOORD_RETURN. The 

pcoord.init file contains the progress coordinate value of the basis state, and so this operation 

essentially tells WESTPA which bin your basis state falls into. The pcoord.init file is 

generated by running the get_distance.py script in common_files/ on bstate.xml and 

redirecting the output into a file named pcoord.init. Initializing your system this way is often 

a good idea, as it allows you to test out your particular method of progress coordinate 

calculation. However, get_pcoord.sh can calculate the progress coordinate directly (see 

Intermediate Tutorial), or run whatever script you need to do so. In fact, get_pcoord.sh can 

include any additional commands; this built-in flexibility allows you to perform operations 

on your basis states before beginning the WESTPA simulation.

6.1.5 Running the WE Simulation—To carry out the simulation, run the run.sh script 

as mentioned before. You will not see any output. What run.sh does is call w_run which, 

among other things, runs the runseg.sh script that is in the westpa_scripts/ directory. This 

script will run dynamics each iteration, calculate a progress-coordinate value for the updated 

structure and then return that value to WEST_PCOORD_RETURN.

In this tutorial, OpenMM is used to run dynamics (by running the nacl_prod.py script) and 

MDTraj is used to calculate the progress coordinate (by running the get_distance.py script). 

If a user wishes to change either the dynamics or analysis programs, these are the two 

locations where it will need to be done.

For an example script for using Slurm to run a job on a computing cluster, see runwe.slurm. 

You can adapt this template script to run WESTPA on your desired cluster.

6.1.6 Monitoring the WE Simulation—We recommend checking the progress of your 

WE simulation every 10 iterations or so. This can be done with the w_pdist program. To use 

this program, first stop the simulation (it can be started easily from the point it left off by 

running run.sh again) and then call w_pdist:

$ w_pdist

This will produce a new H5 file called pdist.h5. To see how our progress coordinate is 

evolving over time, we can use the plothist program with the evolution option:
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$ plothist evolution pdist.h5

This will produce a pdf file called hist.pdf. Open this file, the contents of which are 

displayed in Figure 4.

As expected, most of the probability at the start of our simulation is concentrated around the 

progress coordinate value for our initial state (10 Å). As our simulation progresses, the 

probabilities fan out in both directions, with most of the probabilities moving towards larger 

values and some of the probabilities nearing our target value of 2.6 Å. To see if your 

simulation has generated some successful binding events after only 10 iterations, run the 

following:

$ w_succ

The example simulation had its first successful event after 14 iterations. The output will 

show (if a successful event occured) the iteration and segment number in which the first 

event occurred (e.g. iteration 14, segment 2).

You can trace this successful trajectory back to the basis state to obtain a complete trajectory 

with the w_trace command. You will need to provide the iteration and segment of the 

successful trajectory as options separated by a colon:

$ w_trace 14:2

The output will be written to the file traj_14_2_trace.txt.

That file contains the parents of the successful trajectory all the way back to the basis state.

6.1.7 Analyzing the WE Simulation—One way to assess the convergence of our 

simulation is to determine when the primary observable of interest (i.e. the flux into the 

target state) levels off. To monitor the flux, we will first need to prepare our west.cfg file to 

analyze the simulation. This is normally done by adding an analysis module to the end, 

which is already present in this tutorial’s files. Use this as a template for future analyses.

You will see that we create an analysis instance called TEST and then define bins and states 

for this scheme. These bins are strictly for analysis and have nothing to do with our progress 

coordinate bins defined earlier. Since we only need to designate the bound and unbound 

states here, we define three bins:

[0.0, 2.6, 10.0, ‘inf’]

The way that state definitions work is that you provide a progress coordinate in the 

configurational space and whichever analysis bin that coordinate is in becomes that state. 

For instance, our bound state definition is given by [0], so whichever bin above that the 

value 0 falls into will be our “bound” state. This is the bin from 0 to 2.6. The same goes for 
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the unbound state (10.0 to infinity). The intermediate state (2.6 to 10.0) does not need to be 

defined.

With these states defined we can now analyze how much probability, in the form of 

trajectory weight, is entering or leaving each state using the w_ipa program, which will run 

two separate WESTPA tools, w_assign and w_direct. To generate the H5 files needed to 

analyze the fluxes, run the following from the main simulation directory:

$ w_ipa -ao

You will see that a new directory titled ANALYSIS has been created, inside of which is a 

subdirectory corresponding to our TEST analysis scheme that was defined in the west.cfg 

file. Inside of this subdirectory are our assign.h5 and direct.h5 files. The direct.h5 file is 

where the fluxes are stored. We can open it up with hdfview and view all of the datasets.

The target_flux_evolution dataset gives the flux over time (number of WE iterations) into 

each state we defined earlier. To view this dataset, double click on it. The 0th column 

corresponds to the flux into state 0, which we defined as our target state. The iter stop is at 

the beginning of that iteration, so if you had a binding event by iteration 10, observe the flux 

into our target state. Highlight the “expected” column and click the plotting button in the 

upper-left hand corner to view the flux evolution as a function of 0-indexed iteration.

By iteration 10, the flux has most likely not levelled off, so our simulation cannot be 

considered converged. Let’s continue the simulation for a total of 100 WE iterations and 

analyze the resulting dataset. A completed H5 file is included in the for_analysis/ directory 

for your convenience. Your plot should look something similar to Figure 5, which was 

generated in matplotlib.

While the flux into the target state has not completely levelled off, it is much more steady 

than previously, so we can stop the simulation here and consider how much longer we 

should extend the simulation. For other systems, you may want to run the simulation longer 

for better convergence. You may also want to have additional criteria for convergence.

To visualize a trajectory, one must first identify a continuous series of trajectory segments in 

each iteration from the basis state to the target state. This will be given in the w_succ output 

along with w_trace, as we have done previously. However, you will also need to retrieve the 

trajectory file from each of those segments and combine them using cpptraj. To automate 

this process, we have provided the amberTraj.sh script, which can be adapted for other 

systems. This script uses the cpptraj program available in AmberTools to extract the binding 

trajectory of a successful event. The resulting trajectory file can be loaded along with the 

system topology into the VMD visualization software to generate a movie of the association 

process.

6.1.8 Conclusion—Hopefully by this point you have gained a good idea of the work 

flow required to set up, run, and analyze a WESTPA simulation using a simple progress 

coordinate. If you desire more complex options for your simulations (e.g. multidimensional 
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progress coordinates) and further discussion of how to choose various simulation 

parameters, we highly suggest going through the other tutorials to get a sense of how that 

can be done.

6.2 Intermediate Tutorial: P53 Peptide Conformational Sampling

6.2.1 Introduction—Since the WE algorithm aims to fill empty bins in configurational 

space, WE simulations can be effective in the enhancement of conformational sampling [1, 

7] as well as the generation of pathways and rate constants for rare events. This tutorial will 

focus on the conformational sampling of a peptide and instruct users on how to set up and 

analyze a simulation involving a two-dimensional progress coordinate. In addition, we will 

go over how the binning scheme can be chosen and adjusted in order to balance efficiency 

and performance.

Learning Objectives.: This tutorial will help users develop a sense for which progress 

coordinates may be effective for conformational sampling of a peptide and how to bin along 

those progress coordinates.

Specific learning objectives include:

1. How to set up a two-dimensional progress coordinate

2. How to monitor this coordinate as the simulation progresses

3. How to evaluate whether the binning scheme is effective

4. Combining and creating bins “on-the-fly”

5. Storing and accessing auxiliary data

6.2.2 Prerequisites—Users should have completed the Basic Tutorial and have a 

potential progress coordinate in mind for their system of interest.

Computational Requirements.: This simulation required at least 10 GB of disk space and 

~36 hours to complete (40 iterations) on a 12-core, 2.6 GHz Intel Xeon node. This tutorial 

uses AmberTools19’s sander package for dynamics propagation and the cpptraj package for 

progress coordinate calculations (http://ambermd.org/AmberTools.php). AmberTools is 

available free of charge.

6.2.3 Adding Another Dimension to the Progress Coordinate—While a one-

dimensional progress coordinate can be effective for molecular association processes (e.g. 

Na+/Cl− in the Basic Tutorial), a two-dimensional coordinate may be necessary for more 

complex processes such as peptide/protein conformational transitions. To add another 

dimension to the progress coordinate, we first specify the progress coordinate dimensionality 

as “2” in the west.cfg file. Next, we calculate the values corresponding to each dimension of 

the progress coordinate and pass the resulting two values at the same time to 

WEST_PCOORD_RETURN in both the get_pcoord.sh and runseg.sh scripts. For example, 

if the first dimension of the progress coordinate has a value of 1 and the second dimension 

has a value of 5, (1 5) must be passed at the same time to WEST_PCOORD_RETURN 
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instead of sequentially as 1 and then 5. This can be done with the paste command in bash 

(see example get_pcoord.sh and runseg.sh files). In addition, the bins will need to be 

specified as two lists, one for each of the two dimensions. This is done by adding dashed 

entries (one underneath the other) in the west.cfg section for bin definitions. A user may 

alternatively choose to define a two-dimensional binning scheme in a system.py file.

6.2.4 Preparing the WE System

The System.: We will focus on the conformational sampling of a 15-residue, N-terminal 

peptide fragment of tumor suppressor p53 that has been thought to be disordered in its 

unbound state and adopts an α-helical conformation upon binding the MDM2 protein. 

Simulations were run at 275 K using the Amber ff14SBonlysc force field [38] and 

generalized Born implicit solvent [39]. As in the Basic Tutorial, we will not go into detail 

about how the files were generated in Amber or the decisions made in setting up the system 

with Amber.

Choosing an Initial State.: Our WE simulation will be started from the MDM2-bound 

conformation of the p53 peptide. In particular, coordinates for the peptide conformation will 

be extracted from the crystal structure of the MDM2-p53 peptide complex [40]. This α-

helical conformation of the peptide will then be energy-minimized and equilibrated before 

subjecting the resulting, solvated system to a WE simulation.

Files for Dynamics.: The topology file (P53.MDM2.prmtop) and dynamics input file 

(md.in) can be found in the common_files/ directory. In the md.in file, it should be specified 

that the trajectory segment will be run for a length that corresponds to a τ value of 50 ps.

Preparing the Simulation Environment.: See the corresponding subsection in the Basic 

Tutorial.

Equilibrium vs Steady State WE.: In the init.sh file, observe that all lines mentioning 

TSTATE_ARGS have been removed. This signals WESTPA to run an equilibrium WE 

simulation in which we do not have a set target state. This is a good option when the goal of 

your process is to generate as many configurations as possible and you have no set target 

state in mind.

Progress Coordinate, Binning Scheme and τ Value.: To extensively sample the 

conformations of the peptide, we might define a progress coordinate that monitors the extent 

of “unfoldedness” in the peptide using the RMSD of a given conformation from the initial 

structure. However, RMSD cannot differentiate among conformations that have the same 

large RMSD values. To further differentiate between such conformations, we can include 

another orthogonal measure of unfoldedness such as the end-to-end distance of the peptide.

To determine a suitable binning scheme, we will start with an upper limit of 10 Å for the 

heavy-atom RMSD dimension of the progress coordinate. Spacing the bins along this 

dimension by 1’s may be too large for any transitions to occur between bins so we opt for a 

finer bin spacing:
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[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 

‘inf’]

We will see how the trajectories progress and adjust accordingly. Notice that a bin spacing of 

0.2 is not maintained for the entire length, as 50 bins even along one dimension would result 

in a very large number of total trajectories (4 trajectories per bin would yield a total of 200 

trajectories if all of the bins are occupied). Furthermore, care must be exercised in the 

addition of bins along a second dimension as the total number of trajectories can “blow up” 

to an enormous number of trajectory segments (e.g. 10,000).

To get a feel for how the end-to-end distance evolves in the simulation, let’s expand out from 

the initial distance of 28.5 Å with 0.5-Å wide bins in either direction:

[0, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28, 

28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5, 36, ‘inf’]

Our τ value should allow for successful transitions between bins of this spacing.

Other WE Parameters.: Let’s run our WE simulation with 4 trajectories/bin for 40 

iterations. Since the goal here is the conformational sampling of a peptide and we are 

running an equilibrium WE simulation, we do not need to define a target state.

6.2.5 Tracking the Auxiliary Data—While it is possible to go back after a simulation 

has run and calculate some value you wish you had kept track of, it can be tricky to do so 

(though possible with a tool called w_crawl which is not discussed in this guide). We 

strongly recommend conducting all relevant analysis during the simulation and storing the 

resulting data as auxdata in the H5 file. In our case, we will calculate and store the ϕ/ψ 
backbone dihedral angles of the peptide as auxdata for each of the sampled conformations.

To signal for WESTPA to collect auxdata, you will need to add an auxiliary dataset into the 

west.cfg file and make sure it is enabled. See the west.cfg file in the tutorial directory for an 

example of how this might look. You can name the dataset whatever you would like.

Once you have specified the datasets and named them, you will need to add in commands to 

runseg.sh that calculate those values and pass them to WESTPA system variables. The 

variables will be named WEST_XYZ_RETURN where “xyz” is the name given to the 

dataset in the west.cfg file. This can be treated analogously to the pcoord value and 

WEST_PCORD_RETURN.

6.2.6 Initializing and Running the WE Simulation—Make sure that your 

get_pcoord.sh and runseg.sh files are calculating the RMSD and end-to-end distance and 

returning these values to WEST_PCOORD_RETURN. The get_pcoord.sh script will 

calculate the initial progress coordinates using AmberTools’ cpptraj program from within 

the script, as opposed to reading the value from an external file as in the Basic Tutorial. The 

runseg.sh uses AmberTools’ sander program for dynamics propagation and does so within 

the script.
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6.2.7 Monitoring the WE Simulation (10 Iterations)—Once the simulation has run 

for about 10–20 iterations, copy the H5 file and run w_pdist with the copied file. You can 

then use plothist to view each dimension of the progress coordinates separately as the values 

evolve over the course of those few iterations:

$ plothist evolution pdist.h5 0 -o hist_dim0.pdf

$ plothist evolution pdist.h5 1 -o hist_dim1.pdf

Where the “0” or “1” after the plothist command is the progress coordinate dimension (zero 

indexed). Observe the two probability distributions in Figure 6.

6.2.8 Adjusting Bin Spacings “On the Fly”—The RMSD has reached a value of 4–5 

Å and the end-to-end distance has reached ~10 Å, which is encouraging progress for only 10 

iterations. Note that most of the probability (and therefore most of the computation) is still 

stalled in the initial states of 1–2 RMSD and 20–25 end-to-end distance. We can help focus 

the computing power on the more interesting “edge” conformations by modifying the 

binning scheme before continuing the simulation.

In WESTPA, the binning scheme can be updated at any time since the trajectory weights are 

independent of the bins (and progress coordinate). To do so, first stop the simulation and 

then adjust the bins in your west.cfg file. Re-start your simulation by running the run.sh 

script again and the simulation will continue from where it left off. At the start of the next 

iteration, the new bins will have been implemented.

In our case, I would like to focus sampling on higher RMSD values (3–4 Å) instead of those 

~1–2 Å. To do this, I will collapse the bins from 0 to 1.8 Å and define some more bins past 

10 Å:

[0.0, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11, 12, 14, 16, 18, 20, 

‘inf’]

For the end-to-end distance, I will add more bins for the lower distances and collapse bins 

over 26 Å. We would normally want to keep these bins over 26 Å but having fewer will 

shorten the runtime of this tutorial.

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, ‘inf’]

The reason we eliminated the initial 0.5 Å spacings is that this degree of freedom is readily 

explored in the system.

6.2.9 Monitoring the WE Simulation (40 Iterations)—After running the simulation 

for another 30 iterations (for a total of 40), we obtained the following updated probability 

distributions displayed in Figure 7. The completed H5 file is included in for_analysis/ for 

your convenience.

The effects of the bin-modifications can clearly be seen in the case of the end-to-end 

distribution. No more trajectories with an end-to-end distance >30 Å can be seen after 

iteration 10, a result of the choice not to bin over 26 Å in that dimension.
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The end-to-end distance seems to have reached 2–3 Å around iteration 20. The RMSD 

plateaued a bit from iterations 20–30 but then proceeded to values around 7 Å.

Two lessons can be learned from these observations. First, if you do not have bins in a 

particular direction, you may not see sampling in that direction. Second, even though the 

RMSD coordinate appeared to have stalled around iteration 20–30, it eventually was able to 

surmount whatever barrier existed and attain some higher RMSD values. Patience is key, as 

a single trajectory may replicate to become many trajectories if it crosses into a new bin.

6.2.10 Accessing Auxiliary Data—To access the auxdata from the H5 file, you can 

open west.h5 in hdfview but this will not allow you really use the data. To plot all of the 

dihedrals as a Ramachandran plot in matplotlib as shown in Figure 8 (actually, we just did so 

for the second dihedral, but you could extend it to all if you so desire), you will need to 

utilize the h5py package in Python to extract the auxdata values from the H5 file and then 

plot them. The plotting script is included in the tutorial directory.

6.2.11 Conclusion—Users should now be familiar with setting up a two-dimensional 

progress coordinate and working with auxiliary data. These two “tools” will help to expand 

your repertoire of WESTPA simulation techniques and give you access to more complex and 

informative simulations. Users should also now be familiar with changing bin spacings “on-

the-fly” as well.

6.3 Advanced Tutorial 1: Folding of Chignolin Mini-Protein

6.3.1 Introduction—Protein folding processes have been challenging to simulate due to 

the relatively long time scales involved. In this tutorial, we will use WESTPA to simulate the 

folding and unfolding of the chignolin mini-protein and to calculate the corresponding rate 

constants. We will run steady-state WE simulations of chignolin folding and unfolding 

processes separately. We will also compare the results of these simulations with those from 

brute force MD simulations, demonstrating the correctness and potential usefulness of the 

WE strategy.

Learning Objectives.: This tutorial demonstrates how steady state WE simulations can be 

used to generate pathways and rate constants for both protein folding and unfolding 

processes.

Specific learning objectives include:

1. How to use brute force simulations to identify appropriate initial and/or a target 

states

2. How to obtain the probability flux into the target state of a WESTPA simulation, 

how to convert it to a mean rate constant, and how to interpret the results

Prerequisites.: Users should have completed the Basic Tutorial.

Computational Requirements.: We note that significantly more computing time is required 

for the folding simulations to yield converged rate constants and hence we suggest the user 
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should start with the unfolding simulations. In particular, the WE unfolding simulation 

required ~53 hours for 1000 iterations on 32 CPU cores of 2.6 GHz Intel Xeon processors 

(~5 GB of disk space) while the WE folding simulation required ~8 days for 10,000 

iterations (200 ns of molecular time) using the same resource (~50 GB of disk space). To 

become familiar with setting up and running the WE simulations, the users can carry out 

several iterations. Also, the brute-force simulation described below can be performed for 

tens of ns, as we benchmarked this system to produce ~150 ns per day on one of the above-

mentioned CPUs. Output files for 1000 iterations of the WE unfolding and 10000 iterations 

of the WE folding simulations (as well as for 4 us of the brute-force simulation) can be 

found in the corresponding subdirectories. These files should be used for the analysis 

procedures outlined below. This tutorial uses AmberTools19’s sander package for dynamics 

propagation and the cpptraj package for progress coordinate calculations (http://

ambermd.org/AmberTools.php). AmberTools is available free of charge.

The System.: The chignolin mini-protein with the sequence GYDPETGTWG forms a β-

hairpin and folds/unfolds on a timescale that is accessible to brute force simulations, which 

provide a reference data set for comparison with WESTPA results. The folded chignolin 

structure (PDB code: 1UAO, [41]), serves as the starting structure for both the brute-force 

and WE unfolding simulations. Both dynamics propagation and simulation analysis are 

carried out using the Amber software package. Simulations were run at 275 K using the 

Amber ff14SBonlysc force field [38] and generalized Born implicit solvent [39].

6.3.2 Brute Force Simulations

Overview.: As mentioned in Section 1.2.1, it is important to run multiple, short, brute force 

simulations prior to using WESTPA. In the case of chignolin, which both folds and unfolds 

on timescales accessible to brute force simulation, brute force simulations can provide 

information on defining the unfolded and folded states.

Running and Analyzing the Brute Force Simulation.: We perform a 4-μs brute force 

simulation of chignolin and write out coordinates every 20 ps. All files can be found in the 

brute_force/ directory. The user can change these parameters in the MD config file md.in. 

The simulation can be submitted with the following command:

$ ./run.sh This submission script may have to be adjusted to the user’s 

computing platform.

The chignolin Cα RMSD can be computed in the following way:

$ cpptraj chignolin.prmtop < get_rmsd.in

This command assumes the brute force simulation trajectory as well as the chignolin 

parameter topology and folded structure pdb files are all in the current directory.
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The output RMSD data file, rmsd.dat, lists the time evolution of the chignolin Cα RMSD 

over the course of the simulation (each line corresponds to a frame).

Figure 9 shows the Cα RMSD over simulation time for a brute-force simulation that started 

from the folded β-hairpin, revealing several unfolding and refolding events within 4 μs. The 

unfolded and folded states are defined by visual inspection of the RMSD plot and simulated 

conformations, which show a fully formed β-sheet and native hydrogen bonds at RMSD < 

0.5 Å and a disrupted β-sheet with broken native hydrogen bonds at RMSD > 4 Å (this pair 

of RMSD values will also be used later to define target states in WESTPA simulations). 

Note that the (un)folding rate constants will be sensitive to the state definitions, and defining 

states is a challenging process beyond the scope of this tutorial. Our state definitions are 

designed to avoid potential recrossing artifacts in rate calculations: once a trajectory reaches 

a state it should tend to remain there, rather than immediately returning to the previous state.

According to the Hill relation [42], the rate constant is exactly the inverse mean first-passage 

time (MFPT) of the underlying process, where, for instance, the FPT for unfolding is the 

time required to reach the unfolded state (RMSD > 4 Å) after first folding (RMSD < 0.5 Å). 

The user can run the following to obtain the MFPTs for both the folding and unfolding 

processes:

$ python get_mfpt.py rmsd.dat 20e-12 0.5 4.0

The command-line arguments are the RMSD data file, time interval at which the RMSD 

values are calculated in seconds, and threshold RMSD values for the folded and unfolded 

states in Angstroms. The rate constant of unfolding is estimated to be 0.13 × 108 s−1 

(confidence interval: 0.09 × 108 s−1 – 0.18 × 108 s−1) and that of folding is estimated to be 

0.71 × 107 s−1 (confidence interval: 0.44 × 107 s−1 – 1.24 × 107 s−1). Confidence intervals 

are derived from a Bayesian bootstrapping procedure [26].

6.3.3 Using WESTPA

Overview.: We will carry out separate steady-state WE simulations for the unfolding and 

folding processes. This strategy is not only more efficient than equilibrium WE simulations 

in estimating rate constants (see Section 6.1.3), but enables us to set WE parameters for each 

process (e.g. bin spacing) in a more process-specific way if needed. The target state of the 

folding simulation will be used as the initial state of the unfolding simulation and vice versa.

Choosing an I nitial State.: As done for the brute force simulations, WE simulations of the 

unfolding process will be started from the NMR structure of chignolin. WE simulations of 

the folding process will be started from an unfolded conformation of chignolin (RMSD > 4 

Å) that has been generated by the above brute force simulations.

Files for Dynamics.: All files are in the common_files/ subdirectory of either the 

WE_folding/ or the WE_unfolding/ directory.
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Preparing the Simulation Environment.: See the corresponding subsection in the Basic 

Tutorial.

Equilibrium vs Steady State WE.: Here we will run separate steady state WE simulations 

of the folding and unfolding processes, defining a target state (TSTATE_ARGS) in the 

init.sh files.

Progress Coordinate, Binning Scheme and τ value.: As mentioned above, we will use a 

one-dimensional progress coordinate consisting of the Cα RMSD from the folded structure 

of chignolin. Although the RMSD with respect to a single reference structure may not be an 

ideal coordinate for distinguishing between various conformation, it proves sufficient for our 

example. Folded and unfolded states are defined based on maximum and minimum RMSD 

values, respectively, that have been sampled by the above brute force simulations. We will 

use a bin spacing of 0.2 Å and a τ value of 20 ps. However, the very first bin for the 

unfolding simulations is larger than the regular bin width with RMSD = [0 Å, 0.5 Å] 

because any structure with RMSD < 0.5 Å is considered to be in the folded initial state. 

Analogously, for the folding simulations, the very last bin is larger than the regular bin width 

of 0.2 Å.

Other WE Parameters.: As done in the previous tutorials, our WE simulations were 

carried out using 4 trajectories/bin. The unfolding and folding simulations were run for 1000 

and 10,000 WE iterations, respectively, in order to reach a steady value of the corresponding 

rate constants.

Initializing and Running the WE simulations.: The init.sh and run.sh files can be found in 

the corresponding directories for both WESTPA simulations. The RMSD progress 

coordinate is calculated and its values returned to WEST_PCOORD_RETURN.

Monitoring and Analyzing the WE Simulations.: To compute the rate constant for the 

folding or unfolding process, we first calculate the mean probability flux into the target state 

by running the following WESTPA analysis tool:

$ w_fluxanl

The output is the H5 file fluxanl.h5, which contains the instantaneous probability flux into 

the target state for each iteration. The following Python script calculates, for any WE 

iteration, the average rate constant based on the corresponding probability flux arriving in 

the target state over a preceding window of molecular simulation times (e.g., over 1 ns):

$ python get_mean_rate.py 20e-12 1e-9

The command-line arguments are the τ value and the time width for window-averaging. 

Both arguments are in units of seconds.
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Figure 10 shows the evolution of the average unfolding rate constant of chignolin as a 

function of molecular time for three independent WE simulations. After a few ns, the 

average rate constants for all of these simulations have leveled off and are roughly 

comparable to that derived from brute force simulations. One difference between the WE 

and brute force simulations is that the former estimates the MFPT based on the chosen initial 

structure(s) which may not correspond precisely to the ensemble of starting structures 

implicit in extracting first-passage events from brute force simulations. Note that a three-fold 

difference in the rate constants among the three WE simulations amounts to only ~0.6 

kcal/mol difference in the effective free energy barrier to unfolding (at the simulation 

temperature of 275 K).

Figure 11 shows the evolution of the average folding rate constant for chignolin as a function 

of molecular time for three independent WE simulations. Compared with unfolding 

simulations, the folding simulations require much longer to reach a converged average rate 

constant that is in rough agreement with that from the brute force simulations; we note that 

the average rate constant is dominated by the largest flux. In addition, the folding rate 

constant exhibits significantly larger fluctuations, even after the apparent transient period of 

the first ~100 ns, indicating that the chosen bins are less suited for the folding process. 

During the folding process, distinct hydrogen bonds must be formed between the 

neighboring anti-parallel strands, and possibly in a specific order, to eventually reach an 

RMSD < 0.5 Å. In contrast, the unfolding process results in faster convergence of the 

corresponding rate constant and likely involves the simultaneous breaking of hydrogen 

bonds in order to reach an RMSD > 4 Å.

The resulting WE simulations consist of multiple continuous unfolding or folding pathways 

that may cover different regions of configurational space at any given time. To select for 

particular pathways (trajectories), we can run the following:

$ python get_target_trajs.py 1 10000

The command-line arguments indicate the first and last iteration number to be considered. 

The output file target_trajs.dat has two columns: one with the iteration number and one with 

the segment number of the trajectory that has reached the target state at that iteration. Thus, 

the number of rows indicates the total number of generated events. The iteration and 

segment numbers can be used by w_trace to obtain the full path of a particular folding or 

unfolding event (see Section 6.1.6).

6.3.4 Conclusion—In this tutorial, you have learned how to apply the WE strategy to 

simulate a protein folding process under steady state conditions. The recycling of trajectories 

at a target state allows the generation of a non-equilibrium steady state, to which the 

trajectory ensemble converges faster compared to an equilibrium ensemble of trajectories. 

Such steady states trajectories enable the direct computation of rate constants as described in 

this tutorial.
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6.4 Advanced Tutorial 2: K+/18-Crown-6 Ether Dissociation with the WExplore Plugin

6.4.1 Introduction—For many biomolecular systems, it can be difficult to capture all of 

the slow motions in one or two collective variables. This can hinder sampling of the events 

of interest. The WExplore algorithm was developed to perform WE sampling in a many-

dimensional space by using a hierarchical binning scheme of Voronoi polyhedra. This allows 

a user to broadly explore the dynamics of their system of interest along many dimensions, 

starting from only a single initial structure.

The key quantity to enable this is a distance metric: a way of measuring the distance 

between two trajectories at a given point in time. In order to assign a given trajectory, X, to a 

region, this metric is used to calculate the distance from X to a set of “images” that define 

the Voronoi polyhedra. The trajectory X is then assigned to the region whose image has the 

smallest such distance. To efficiently assign trajectories to regions in a high-dimensional 

space, a hierarchy of regions is employed: a small set of very large regions tile the full space, 

each of which are tiled by a set of smaller regions, which are themselves tiled by smaller 

regions, and so on. The WESTPA-WExplore plugin defines the hierarchical regions on-the-

fly; assigns trajectories to regions; and balances trajectories between the hierarchical 

regions. The user only needs to define the distance metric appropriate for their system and 

set a few parameters of the algorithm.

Learning Objectives.: This tutorial covers the installation and use of the WESTPA-

WExplore plugin for a simple system: the dissociation of a K+ ion from 18-crown-6 ether.

Specific learning objectives include:

1. How to install and use the WExplore-WESTPA plugin

2. How to define and implement a distance metric for use in WExplore simulation

3. Determining appropriate values for WExplore-specific parameters for a system 

of interest

4. Analyzing simulations by inspecting properties of the Voronoi “images”

Users with some WESTPA experience should be able to successfully apply WExplore to 

their system of interest using their own customized distance metric.

6.4.2 Prerequisites—Users should have completed the WESTPA tutorials above on Na
+/Cl− and the p53 peptide. Users should have an understanding of the WExplore algorithm: 

how the region hierarchy is defined; how it progressively discovers regions; and how the 

hierarchical balancing algorithm works. Details of the algorithm can be found in previous 

work [7].

Computational Requirements.: This tutorial requires 500 MB disk space. This simulation 

takes ~1.5 hours of wall clock time to complete (50 iterations) using 8 threads of a 4 GHz 

Intel Core i7 processor. This tutorial uses Gromacs 2016.2 for dynamics propagation and 

progress coordinate calculations (http://www.gromacs.org/). Gromacs is available free of 

charge.
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6.4.3 Installation and Configuration of the WESTPA-WExplore Plugin—It is 

necessary to install some other Python packages that you might not need for standard 

WESTPA simulations. We recommend using an Anaconda environment and installing the 

packages as follows:

$ conda create -n WESTPA-WExplore westpa scipy pandas networkx

$ conda activate WESTPA-WExplore

Note that if you are running your WESTPA simulations on remote nodes, you would have to 

include the conda activate command in your env.sh file. To install the plugin, clone the 

WESTPA-WExplore repository to a location on your computer:

$ git clone https://github.com/ADicksonLab/WESTPA-WExplore.git

This will copy files to your machine, located in the WESTPA-WExplore/ directory. Change 

to this directory and install the plugin as follows:

$ cd WESTPA-WExplore/

$ python setup.py install

To test this, go to another directory, and type:

$ python -c ‘import westpa_wexplore’

If this runs without an import error, then you are ready to proceed to the next step!

6.4.4 Preparing the Simulation

The System.: This tutorial will use a simple ligand-binding test system: the dissociation of a 

K+ ion from the 18-crown-6 ether molecule (Figure 12), as studied previously [8]. The goal 

is to efficiently sample the dissociation of the complex. This is reminiscent of applications of 

WExplore to more difficult ligand dissociation problems, such as the unbinding of the TPPU 

ligand from soluble epoxide hydrolase, a process with a mean first passage time of 11 

minutes [31].

Distance Metric.: Here we will use a common distance metric for ligand release processes: 

the root mean squared distance of the ligand atoms after alignment to the host binding site 

[29, 30, 43]. This captures ligand translation with respect to the binding site, and (for 

systems with more complicated ligands) captures ligand rotation as well as internal degrees 

of freedom. The information needed to calculate these distances is the x, y and z positions of 

the ligand atoms after alignment to the host molecule. The first step to assign a walker to a 

region, then, is to extract this data from the simulation. This is done by a familiar script: 

get_pcoord.sh.
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The get_pcoord.sh script included in the tutorial repository uses a series of bash commands 

to align a crown ether molecule to a reference structure (named bound_state.tpr), and then 

extracts only the lines that contain the ligand atoms, saving them in the file indicated by the 

WEST_PCOORD_RETURN environment variable. This data is then processed by the 

pcoord_loader function in the system.py file, where the x, y and z data are collected from 

columns 5, 6 and 7 of the PDB-formatted file.

This pipeline is rather crude, but effective. Note that any set of commands that can extract 

the output you need (typically, atomic positions) from your simulation output files will do, 

but it is necessary that changes that you make to get_pcoord.sh (which writes to 

WEST_PCOORD_RETURN) are compatible with any changes you make to pcoord_loader 

(which reads from WEST_PCOORD_RETURN). For instance, one could avoid PDB files 

all together, and load final structures into the pcoord_loader using the Python interface of 

Amber or Gromacs.

The next step is to define a function that returns the distance between two pcoord vectors. 

This is typically a Euclidean distance, but can be defined in an arbitrary fashion. It need not 

be differentiable, or even continuous, to be effective in a WExplore simulation. The distance 

function is defined by eucl_dist in system.py and is passed as an argument to the 

WExploreBinMapper function upon initialization of a system object.

Setting parameters.: The set of WExplore-specific parameters were discussed above in 

Section 3.1. Most of these are set in the system.py file. The sizes of the hierarchical Voronoi 

polyhedra are set using a list, passed to the d_cut argument of the WExploreBinMapper 

function. This list should go from largest to smallest, where the number of elements is the 

same as the number of levels to the hierarchy. Similarly, the branching factor is set by a list 

that is passed to the n_regions argument of WExploreBinMapper. The number of total 

trajectories is set by the max_replicas attribute of the system.

Choosing an Initial State.: It is also necessary, upon initializing the system object in 

system.py, to define the initial “image” that corresponds to the first structure used in the 

simulation. This is done in lines 35–37 of the initialize function in system.py and should be 

changed as necessary for a given system. The initial PDB file containing the aligned K+ 

coordinates was prepared from the basis state 0 (in bstates/0) using Gromacs in the init.sh 

script. As described in BASIS_STATES.single, we are initializing all trajectories from a 

single starting structure (“bound_0”) that has probability = 1.

Other parameters.: Other details of simulation parameters are given in the md.mdp file. 

For instance, the dynamics timestep (0.002 ps), the number of steps per cycle (1000) and the 

output frequency for coordinates, velocities and forces (100, 100 and 0, respectively) are 

specified here. Note that here we are outputting our coordinates 11 times per cycle (1000 / 

100, plus one extra for the endpoint). This must be consistent with the parameter pcoord_len 

in system.py, which is also set to 11 in our case.

Preparing the Simulation Environment.: As discussed previously, make sure to modify 

the env.sh file to reflect the installation locations of WESTPA, Gromacs, etc. on your 
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machine. Additionally, add the location of the WESTPA-WExplore package to your 

WEST_PYTHONPATH, e.g.:

export WEST_PYTHONPATH=/your/installation/location/WESTPA-WExplore/

westpa_wexplore: $WEST_PYTHONPATH

6.4.5 Running the Simulation—First we need to initialize the simulation:

$ ./init.sh

And then we can run a job. This can be submitted to a cluster (we will not go over that here), 

or run locally, as follows:

$ ./run.sh --parallel --n-workers 8

This is a good time to break for lunch. In our hands, this will take about 90 minutes on a 4 

GHz Intel Core i7 processor.

6.4.6 Analyzing the WExplore Simulations—Aside from the way that resampling is 

implemented, WExplore simulations can be treated just like other WE simulations in terms 

of analysis. All of the techniques discussed above regarding the definition of observables 

and plotting of probability distributions can be used for WExplore simulations as well. Here 

we will briefly go over how to analyze simulation properties that are unique to WExplore. 

Specifi-cally, the location of the “images” used to define the Voronoi polyhedra.

Firstly, during run time it can be helpful to keep an eye on the number of regions defined so 

far at each level of the hierarchy. A brief report is written, each cycle, in west.log:

--wexplore-stats--------------------

wallclock time: 0.221 s

Level 0: 10 cells (10 max)

Level 1: 69 cells (100 max)

Level 2: 193 cells (1000 max)

Iteration wallclock: 0:01:41.246056,

cputime: 0:12:40.570392

This is taken from the end of our simulation, where we have defined 10 regions at the largest 

level of the hierarchy (here, they are at least 5 Å apart), 69 total regions at the medium level 

(some of which are under the first large region, some under the second, and so on), and 193 

total regions at the smallest level. It is completely fine if these numbers do not approach 

their maximum values. In contrast, if regions are defined too quickly – especially at the 

smallest level – then this is a sign that they are too small. The log file also displays the wall 
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clock time for the WExplore resampler (0.221 s), which is negligible compared with the 

total wall clock for the cycle (1 minute, 41 s), as is typical.

The details about the WExplore regions are stored in west.h5, along with the positions and 

progress coordinates. The included Python script (WExplore_analysis.py) shows how the 

coordinates of the images can be accessed from the west.h5 file and analyzed using Python 

tools like numpy and MDTraj [44].

6.4.7 Conclusion—Users should now have everything they need to use the WExplore 

resampling algorithm on their own system of interest. WExplore is a powerful way to 

generate heterogeneous sampling on energy landscapes that are both rough and high-

dimensional. The ability to write your own distance metric using tools in Python opens up 

many possibilities. For example, a number of dimension reduction tools in sklearn could be 

easily imported and used to automatically identify a space of collective variables.

6.5 Advanced Tutorial 3: Analysis Tools

In this tutorial, we will go over how to calculate progress coordinates using external analysis 

suites, automate analysis of a WE simulation using the WESTPA w_ipa tool and visualize 

the evolution of WE datasets with time. We focus on the p53 peptide system described above 

in the Intermediate Tutorial (Section 6.2) in which the progress coordinate is the Cα RMSD 

of the peptide from its folded, β-helical conformation

6.5.1 Calculating Progress Coordinates Using External Analysis Suites

Introduction.: Here we will demonstrate how to write scripts for calculating custom 

progress coordinates for WESTPA simulations using the external analysis suites MDTraj 

and MDAnalysis [44–46]. A prerequisite to this tutorial is completion of the Basic Tutorial. 

You will also need to install the MDTraj or MDAnalysis analysis suites. Other required files 

are provided on GitHub.

Learning Objectives.: The specific learning objective of this tutorial is to calculate progress 

coordinates using an external analysis suite (MDAnalysis or MDTraj).

Explanation of Files and Scripts.: The master configuration file for the simulation, 

west.cfg, specifies the dimensionality of the progress coordinate (pcoord_ndim), as well as 

how many progress coordinate data points should be returned from each segment 

(pcoord_len) (it specifies many other things but these are of primary interest for this tutorial 

as they specify the shape of the progress coordinate).

The script rmsd.py is responsible for using MDTraj or MDAnalysis to calculate the RMSD 

values during the simulation. Read the comments in the script to understand its setup for 

each package (there is a unique version for both).

Two scripts are responsible for calling rmsd.py at different points in the simulation (both 

found in westpa_scripts/):
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• get_pcoord.sh calculates the progress coordinate during the initialization of the 

system. Because dynamics have not been run yet, WESTPA only needs a single 

point progress coordinate, rather than an array. This difference is controlled by 

the FORM argument, explained in the rmsd.py script.

• runseg.sh calculates the progress coordinate during dynamics propagation. It 

passes each segment’s trajectory file as input to the custom progress coordinate 

loader, rmsd.py.

There are slight differences in these files for the MDAnalysis and MDTraj setups, explained 

in the comments of each script.

Files in amber_config/ directory:

• P53.MDM2.prmtop - The topology file.

• md.in - The input file which specifies conditions for dynamics propagation.

The other files needed for the simulation are found in the bstates folder, and are explained in 

the MDAnalysis/MDTraj specific sections below.

Running the Simulation.: Before running the simulation, you may want to change the 

binning scheme, the number of iterations, or other parameters, which can be found in 

west.cfg.

To run the simulation, only two scripts must be executed. To initialize the system:

$ ./init.sh

To run the simulation in the background:

$ ./run.sh &

To monitor the progress of the simulation:

$ tail -f west.log

The rest of the tutorial is specific to the software package used. See below for specifics 

involving the MDAnalysis and MDTraj analysis suites.

Using the MDAnalysis Analysis Suite: Files in bstates/ directory:

• P53.MDM2.rst - Used as initial crystal structure to compare to the trajectory 

when calculating the RMSD and to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.rst.

Using the MDTraj Analysis Suite: Files in bstates/ directory:
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• P53.MDM2.nc - because MDTraj does not support restart files, this file is used in 

get_pcoord.sh to calculate the initial progress coordinate. It is also used by 

runseg.sh as an initial crystal structure to compare to the trajectory when 

calculating the RMSD.

• P53.MDM2.rst - Used to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.rst.

Conclusion.: You have learned in this tutorial the basic structure of a Python script to 

calculate progress coordinates for WESTPA using the MDAnalysis and MDTraj analysis 

suites. There are two scripts run by WESTPA which call pcoord_loader.py, triggering the 

calculation of progress coordinates. The bash script, get_pcoord.sh, triggers the calculation 

of only a single progress coordinate, while runseg.sh triggers the calculation of the progress 

coordinate at multiple points in a trajectory, as defined in west.cfg. It is important to include 

the last line of the Python scripts, setting segment.pcoord equal to the progress coordinate 

array, so that the progress coordinate may be used to further the simulation.

6.5.2 The w_ipa Analysis Tool

Introduction.: The w_ipa analysis tool is designed to facilitate analysis of WESTPA 

simulation datasets through a single interface (Jupyter Notebooks or the command line). In 

particular, w_ipa automates analysis routines, ensures data consistency through the use of 

automatically updated “analysis schemes”, enables a user to easily view a particular dataset 

or trajectory segment in the H5 file, and monitors the progress of the simulation (e.g. 

trajectory weights, progress coordinates, and other properties of interest).

Learning Objectives. The specific learning objectives of this tutorial are to use the w_ipa 

analysis tool to:

1. Calculate rate constants

2. Trace and analyze trajectory segments (weight, pcoord, auxdata)

3. Plot datasets

Setting Up.: Using w_ipa is straightforward. The west.cfg file, which specifies most of the 

simulation parameters, also specifies the analysis parameters under the Analysis heading.

The general format of the analysis section can be seen in the included west.cfg file. More 

detailed examples are available in the Basic and Intermediate Tutorials.

In order to run w_ipa, there must be at least a single analysis scheme specified. This scheme 

does not have to consist of the bins and/or state definitions used during the simulation. Less 

physically relevant schemes may be employed. Any changes made to analysis schemes in 

the west.cfg file will be actualized the next time w_ipa is run. The user is therefore 

guaranteed to never wonder whether the analysis files are up to date.

The assign.h5, reweight.h5, and direct.h5 files are stored under ANALYSIS/

SCHEME_NAME. The optional arguments that can be passed to w_assign, w_direct, and 
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w_reweight can be specified by creating a section with the tool name and using the value 

pairs argument.

The Interface.: To run w_ipa from the command line, enter the command w_ipa after 

having sourced westpa.sh (if not already sourced). To run w_ipa in a Jupyter notebook enter 

the command w_jupyter from the command line. When you create a new Jupyter notebook, 

there are some basic Python commands that must be executed:

import w_ipa

w = w_ipa.WIPI()

# At startup, it will load or run the analysis schemes specified in the 

configuration file (typically west.cfg)

w.main()

w.interface = ‘matplotlib’

The Python kernel must be launched with the use of w_jupyter, or otherwise, the 

$PYTHON_PATH variable must be set to include the WESTPA directories. The command 

w_env, which ships with WESTPA, is responsible for setting environment variables and can 

be used with the Jupyter notebook command to ensure w_ipa is importable.

All commands are applicable from both the command line and Jupyter notebook interface; if 

plotting functions are called from the command line, the plot will appear within the console 

(it can be configured to use matplotlib if desired; this requires an active, available X 

session).

All of the variables are now accessible from the w object.

Changing Schemes and Accessing Datasets.: A typical analysis routine begins by 

selecting an appropriate analysis scheme that may consist of multiple state definitions, 

averaging options, or reweighting parameters that are appropriate for the simulation. Most of 

the datasets are presented from the current, “active” state, although access to other datasets 

is conveniently available. All numerical datasets are given as numpy arrays, allowing for 

easy analysis of data.

To see what schemes are available, run the following command:

$ w.list_schemes

To change schemes, you may set the w.scheme variable to a string or integer value 

(corresponding to the index of the scheme). For instance, suppose you have the following 

two schemes: “EXAMPLE”, and “ALTERNATE”, and the current scheme is “EXAMPLE”. 

To access the properties of the current iteration in the current scheme (explained in more 

detail below), you would type the following:
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$ w.current

However, to access the alternate scheme, you would run the following command:

$ w.schemes.ALTERNATE.current

Where “ALTERNATE” corresponds to the scheme name written in the west.cfg file.

The w_ipa tool works by presenting an iteration and all its data as a single object. Each 

iteration object contains numerous datasets and helper functions designed to ease analysis. 

After loading, w_ipa defaults to the final iteration. You can change the iteration by using the 

following command:

$ w.iteration = 39

At any time, we have three iteration objects available in the object w: current, past, future. 

The past and future datasets are keyed to the parents and children of the segments in the 

current dataset. For instance, if you are analyzing segment 200 in the current iteration and 

wish to analyze the parent segment it came from, you could access the two datasets using the 

following iteration objects:

$ w.current[200] $ w.past[200]

Even though it is very unlikely that the actual segment ID of the parent of segment 200 is 

200, it is mapped correctly to enable convenient analysis. To obtain the actual segment ID, 

just run:

$ w.past[200].seg_id OR w.past[200][‘seg_id’]

As indicated above, objects in w_ipa can be called either as Python dictionaries or as 

attributes on the object. These can be listed by calling the print method on the parent object. 

In addition, as w_ipa is using iPython under the hood, tab completion works as when using 

the command-line interface (CLI).

To access the main datasets of interest, pcoord and auxdata, type the following:

$ w.current.pcoord $ w.current.auxdata

These commands will output the full datasets, which can be useful for calculating properties 

on all trajectory segments at once. But what if we are only interested in looking at the 

properties of particular segments?
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You could manually find a segment of interest, but w_ipa includes a few convenient 

properties that return certain segments. In particular, w.current provides the following:

maxweight

minweight

successful_trajectories

The maxweight and minweight properties return objects which contain data about the 

segments that carry the highest and lowest weights in the current iteration, respectively. The 

successful_trajectories property returns the IDs of the segments that successfully 

transitioned between states (the states are defined in your west.cfg). Calling these functions 

on an iteration object yields all datasets pertaining to the segment with the desired property. 

In this WE simulation, each trajectory contains 101 timepoints. Therefore, the maxweight 

segment (seg_id 177) in iteration 49 has (101,2) pcoord values, 101 auxdata values, and it 

can switch bins and states 101 times. You can see this by running w.current.maxweight.

The auxdata dataset is unique in that the simulations can contain any number of auxiliary 

datasets with any unique name. Here, they are returned as a dictionary where the key is the 

dataset name defined in west.cfg and the value is a numpy array containing the actual 

dataset.

Segment 177 above was in state 1 during the entire iteration. But what is state 1? It is 

defined in west.cfg, but we do not have to go back to west.cfg to look it up. Simply run:

$ w.state_labels

It is also in bin 0 the entire time (note that these are the bins defined in west.cfg for this 

analysis scheme and not the bins used in the simulation). What is the pcoord value of that 

bin? Run:

$ w.bin_labels

To track the immediate parent and children of a segment, we can use w.past and w.future. 

These iteration objects are similar to w.current, but keyed to give information about the 

segments in w.current. For instance, to look up the weight of segment 177’s parent, run the 

following:

$ w.past[177].weights

Likewise, to see whether the same segment had any children, run:

$ w.future[177]
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Segments always have a past, but do not always have a future. They may also produce 

multiple children, so the values returned by w.future[seg_id] are usually more complicated. 

Rather than being given the datasets directly, w.future returns a list of the datasets.

To determine the properties of a complete trajectory (that is, the string of segments going 

back to the first iteration), w_ipa includes a fast trace function. To trace segment 177 in 

iteration 39 (current iteration), run the following:

$ s = w.trace(177)

It returns an object similar to w.current[177], except that it also contains all historical 

information. The auxdata, bins, pcoord, and states datasets are all going to be very large; 

their shape should be the product of the number of time-points per iteration and the 

trajectory length. As we are at iteration 39, and have 101 time points per τ value, we should 

have 3939 values in each dataset!

Plotting.: Rather than visually inspecting each value, let us just plot it. Run the following:

$ clear

$ s.weights.plot() $ clear

$ s.pcoord.plot() $ clear

Many datasets, such as weight, default to a logscale; others, such as pcoord, use a linear 

scale. By default, the 0th dimension of pcoord is plotted. When the plotting function is 

called via the CLI, a rough estimate of how the trajectory’s pcoord has evolved is plotted in 

the terminal.

The w.current iteration object contains information about the rate constants that were 

calculated in the active analysis scheme. To view an array containing the rate constants 

along with the upper and lower confidence intervals, run the following (do not forget about 

tab completion):

$ w.current.direct.rate_evolution OR $ w.current.rate_evolution.direct

To view a plot of their evolution, run the following:

$ w.current.direct.rate_evolution.plot()

The w_ipa tool displays the upper and lower confidence intervals on the plot as well.

6.5.3 Visualization of WE Datasets—In addition to generating probability 

distributions as a function of the progress coordinate (or other observables of interest), it can 

be helpful to examine movies of how the distributions evolve with time. Such movies can be 
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used to determine the optimal number of trajectories per bin in a particular region of the 

progress coordinate by tracking how the probability distribution evolves with the number of 

trajectories that region.

Learning Objectives.: The specific learning objectives of this tutorial are:

1. Create a movie of how a probability distribution evolves with time.

2. Trace representative trajectories over this probability distribution.

Here, we will create a movie of how a two-dimensional probability distribution (Figure 13) 

evolves with time. This movie-making feature is currently carried out using a bash script 

(pdist_evol.sh) and will eventually be added to the WESTPA plothist tool.

The bash script involves the following three steps: (1) run the w_pdist tool on the west.h5 

file to generate probability distributions in a specified folder that will also contain the 

eventual movie of how the distributions evolve with time, (2) generate a plot of a two-

dimensional probability distribution for each iteration as a cumulative moving average from 

iteration 1 to 40 and (3) create the movie from the 40 generated frames of the probability 

distributions. The most important part of this script is the --postprocess-function option of 

plothist that is defined in postprocess.py. This function requires a basic knowledge of Python 

and matplotlib, and can be used to modify features of the plot (e.g. adjustment of axis labels, 

tick marks, titles, and lines) via the matplotlib interface. In addition, external files from 

various analyses can be uploaded and overlaid on the plot as demonstrated in this example.

Here, we will select two trajectories from the last WE iteration and overlay their pathways 

on the probability distribution of the overall simulation as a function of progress coordinate. 

First, we will use the trace_walker function to determine the segment number of the selected 

trajectories in each WE iteration going all the way back to the corresponding conformation 

of the initial state ensemble. This process of tracing can also be accomplished by using 

WESTPA tools w_ipa and w_trace. After the segment numbers are obtained, the 

get_pcoords function loads in 10 progress coordinate values per iteration for the trajectories. 

Finally, a movie-making tool (here, we use mencoder) creates a movie from the 40 frames of 

probability distributions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Weighted ensemble MD simulations. Trajectory segments (blue) are fairly evenly distributed 

in configuration space, and hence enhance sampling of normally undersampled regions of 

configuration space, such as free energy barriers. In this schematic, the free energy or 

potential of mean force is shown as a function of an arbitrary progress coordinate. Darker 

color denotes higher weight trajectories, which will occur at free energy minima and regions 

initially seeded with trajectories and probability.
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Figure 2. 
Hierarchical Voronoi polyhedra for the ring potential model system [6, 27]. The blue colors 

show potential energy minima on the left and right and shallower minima on the top and 

bottom. Heavy lines show the Voronoi boundaries between the largest regions; one region is 

defined per local energy minimum. Each of these is broken up by medium regions (shown 

with medium-weight lines), which are themselves broken up by smaller regions (shown with 

light-weight lines).

Bogetti et al. Page 48

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Convergence assessment and error analysis in the face of large run-to-run variation. The flux 

of probability into the target state B computed as a function of continuous molecular time, 

tmol, is shown for several independent WE runs (grey). The large variation among individual 

runs makes it challenging both to assess whether the transient period has ended and to 

construct reliable error bars (see text). The history augmented Markov State Model 

(haMSM) analysis (green lines) provides an estimate of the long-time behavior, and the 

Bayesian bootstrap credibility region (red lines) estimates the average transient behavior.
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Figure 4. 
Probabiity evolution of Na+/Cl− association as a function of interatomic distance and WE 

iteration. The distribution from your particular simulation may look slightly different. 

Observe that at the beginning of the simulation, the probability is centered around 12 Å (the 

initial distance).
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Figure 5. 
Mean flux evolution of Na+/Cl− association as a function of WE iteration. The mean flux 

alternatively rises sharply and then relaxes. These “peaks” correspond to probability 

crossing into the target state. Your plot may still not be completely converged after 100 WE 

iterations.
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Figure 6. 
Probability distributions for each of the two progress coordinate dimensions versus WE 

iteration. The simulation was analyzed after 10 WE iterations.
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Figure 7. 
Probability distributions for each of the two progress coordinate dimensions versus WE 

iteration. The simulation was re-analyzed after 40 WE iterations
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Figure 8. 
Ramachandran plot showing the occurance of ϕ/ψ angles of the second peptide bond for 

each segment throughtout the course of the simiulation.
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Figure 9. 
Cα RMSD vs simulation time for the brute force simulation of chignolin.
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Figure 10. 
Estimating the unfolding rate constant of chignolin. The 1 ns window-averaged unfolding 

rate constant is shown in a semi-logarithmic plot for three independent WE simulations 

(black, red, and green) that were started from the same folded starting structure (see lower 

left). The corresponding unfolding rate constant from the brute force simulation is indicated 

by the horizontal blue line and its confidence interval by the shaded region. The molecular 

time is the time elapsed, Nτ where N is the number of WE iterations that each have a length 

of τ. The aggregate simulation time was on average, ~1.3 μs for each simulation.
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Figure 11. 
Estimating the folding rate constant of chignolin. The 20-ns window-averaged folding rate 

constant is shown in a semi-logarithmic plot for three independent WESTPA simulations 

(black, red, and green profiles) with the same unfolded starting structure (see lower left). 

Note the significantly longer molecular and aggregate simulation times for each simulation 

to obtain converged rate constants of folding compared to unfolding (see Figure 11). The 

corresponding rate constant from the brute force simulation is indicated by the horizontal 

blue line and its confidence interval by the shaded region.
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Figure 12. 
The K+/18-Crown-6 ether system. The K+ ion is shown as a pink sphere. Left: top view. 

Right: side view.
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Figure 13. 
Two-dimensional probability distribution as a function of the progress coordinate. Two 

representative, continuous trajectories that originate from distinct initial states are traced in 

cyan and white, respectively.
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Table 2.

WEST_SIM_ROOT organization and file explanations

bstates/ directory containing basis states

env.sh set environment variables

init.sh initialize the WESTPA simulation

common_files/ directory containing files for dynamics (i.e. topologies)

run.sh run the WESTPA simulation

tstate.file define the target state (for steady state simulations only)

west.cfg specify main WE simulation parameters

westpa_scripts/ directory containing essential scripts

system.py a separate script to define functions or parameters (optional)

reference/ directory containing reference files for calculations (optional)
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