
A Suite of Tutorials for the WESTPA Rare-Events Sampling
Software [Article v1.0]

Anthony T. Bogetti1,*, Barmak Mostofian2,*, Alex Dickson3,*, AJ Pratt1,*, Ali S. Saglam1,*,
Page O. Harrison1,*, Joshua L. Adelman4, Max Dudek1, Paul A. Torrillo1, Alex J. DeGrave1,5,
Upendra Adhikari2,6, Matthew C. Zwier7, Daniel M. Zuckerman2, Lillian T. Chong1

1Department of Chemistry, University of Pittsburgh, Pittsburgh, PA;

2Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR;

3Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI;

4Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA; currently unaffiliated;

5Current address: Paul G. Allen School of Computer Science and Engineering, University of
Washington, Seattle, WA;

6Current address: Department of Chemistry, Missouri Valley College, Marshall, MO;

7Department of Chemistry, Drake University, Des Moines, IA

Abstract

The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating

pathways and rate constants for rare events such as protein folding and protein binding using

atomistic molecular dynamics simulations. Here we present five tutorials instructing users in the

best practices for preparing, carrying out, and analyzing WE simulations for various applications

using the WESTPA software. Users are expected to already have significant experience with

running standard molecular dynamics simulations using the underlying dynamics engine of

interest (e.g. Amber, Gromacs, OpenMM). The tutorials range from a molecular association

For correspondence: ltchong@pitt.edu (LTC); zuckermd@ohsu.edu (DMZ).
*These authors contributed equally to this work
7Author Contributions
AT Bogetti, B Mostofian, A Dickson, AJ Pratt, AS Saglam, PO Harrison, JL Adelman, M Dudek, PA Torrillo, AJ DeGrave, and U
Adhikari developed and wrote the tutorials; the primary author of each tutorial is designated as a co-first author of the overall
manuscript and listed in the order in which the tutorials appear in the manuscript. LT Chong and DM Zuckerman provided guidance
for tutorial development. AT Bogetti, LT Chong, DM Zuckerman, AJ Pratt, AS Saglam, B Mostofian, and MC Zwier wrote the
introductory sections leading up to the tutorials.
8Other Contributions
We thank the many users of the WESTPA software who have provided important feedback for improving our tutorials and
documentation over the past several years. We are also grateful to Samuel Lotz (Dickson Lab) for his contributions to the WESTPA-
WExplore plugin.

This LiveCoMS document is maintained online on GitHub at https://github.com/westpa/westpa_tutorials; to provide feedback,
suggestions, or help improve it, please visit the GitHub repository and participate via the issue tracker.
9Potentially Conflicting Interests
The authors declare no conflicting interests.
11Content and links
All files needed for the tutorials can be found at https://github.com/westpa/westpa_tutorials

HHS Public Access
Author manuscript
Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

Published in final edited form as:
Living J Comput Mol Sci. 2019 ; 1(2): . doi:10.33011/livecoms.1.2.10607.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/westpa/westpa_tutorials
https://github.com/westpa/westpa_tutorials

process in explicit solvent to more complex processes such as host-guest association, peptide

conformational sampling, and protein folding.

1 Introduction and Scope of Tutorials

WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis;

https://westpa.github.io/westpa) [1] is an open-source, highly scalable software framework

for carrying out extended-timescale simulations of rare events with rigorous kinetics using

the weighted ensemble (WE) strategy [2]. Key features of WESTPA, written in Python,

include (i) a general interface that enables interoperability with any dynamics engine (e.g.

Gromacs [3], Amber [4], OpenMM [5]); (ii) an optimized, parallel implementation of the

WE strategy that exhibits perfect scaling out to >4000 CPU cores; (iii) an effective suite of

tools for analysis of the millions of files created by each simulation; (iv) full extensibility for

enhancements to simulation protocols and analysis tools; and (v) portability of the software

on any Unix-like computing resource, including typical computing clusters and

supercomputers. The WESTPA software also includes plugins for using a WE-based string

method [6] and a WE strategy utilizing hierarchical Voronoi bins (WExplore) [7]. The

WESTPA software package has enabled efficient atomistic simulations of host-guest

associations [8], protein binding processes [9, 10], and protein folding [11]. This efficiency

(relative to standard “brute force” simulations) has been demonstrated to increase

exponentially with the effective free energy barrier of the rare event [12].

Here we present a suite of five tutorials for the WESTPA software in order of difficulty from

basic to advanced, including a tutorial involving the suite of analysis tools. These tutorials

can also be found online in the WESTPA GitHub repository (https://github.com/westpa/

westpa_tutorials/wiki). Learning objectives and expected outcomes are outlined for each

tutorial. This set of tutorials is restricted to applications in molecular dynamics (MD)

simulations, but WE and WESTPA are applicable to arbitrary stochastic simulations [13–

15].

After completing the Basic Tutorial involving the simulation of Na+/Cl− association, the user

should be able to:

1. Understand the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

5. Monitor a simulation

After completing the Intermediate Tutorial involving the conformation sampling of a p53

peptide fragment, the user should be able to:

1. Set up a two-dimensional progress coordinate

2. Monitor this coordinate as the simulation progresses

Bogetti et al. Page 2

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://westpa.github.io/westpa
https://github.com/westpa/westpa_tutorials/wiki
https://github.com/westpa/westpa_tutorials/wiki

3. Evaluate whether the binning scheme is effective

4. Combine and create bins “on-the-fly”

5. Store and access auxiliary data

After completing Advanced Tutorial 1 involving the folding/unfolding of the chignolin mini-

protein the user should be able to:

1. Use brute force simulations to identify appropriate initial and/or target states

2. Obtain the probability flux into the target state of a WESTPA simulation, convert

it to a mean rate constant, and interpret the results

3. Approach larger, more biologically relevant events (like protein folding) with a

WE-oriented mindset

After completing Advanced Tutorial 2 involving K+/18-crown-6 ether association and

WExplore plugin, the user should be able to:

1. Install and use the WExplore-WESTPA plugin

2. Define and implement their own distance metric for use in a WExplore

simulation

3. Determine appropriate values for WExplore-specific parameters for their system

of interest

4. Analyze simulations by inspecting properties of the Voronoi “images”

After completing the Analysis Tutorials, the user should be able to:

1. Calculate progress coordinates using an external analysis suite (MDTraj or

MDAnalysis)

2. Automate analysis and interactively explore WE simulation data using the w_ipa

tool

3. Create a movie of how a probability distribution evolves with time

The tutorials will use an array of different dynamics packages to showcase WESTPA’s

interoperability. In each tutorial, all of the required packages and auxiliary programs (for

analysis etc.) are freely available and documentation can be readily found online. The

version of each software package is also provided in each tutorial’s “computational

requirements” section.

1.1 Using WE Concepts in MD Simulation

The WE strategy organizes an array of MD trajectories strategically in configuration space

to target quantities of interest which would not be calculable via standard MD. Typical

examples are the calculation of pathways and rate constants for conformational and binding

processes. The overall WE strategy can be embodied in a wide variety of specific

algorithms. The WESTPA software can be considered a direct descendent of the Huber and

Kim algorithm [2], although the idea to use trajectory “splitting” and reweighting had been

devised decades earlier for research at Los Alamos [16].

Bogetti et al. Page 3

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As sketched in Figure 1, the essence of WE is to use a statistically unbiased, weighted

sample of MD trajectories in such a way that a higher density of trajectories is deployed in

regions of configuration space where sampling would otherwise be rare in standard MD.

These rare regions might be (free) energetic barriers or merely distant regions of

configuration space. The trajectory weights, which are fundamental to WE, result from the

statistical resampling procedures which either prune or replicate trajectories according to

rules implemented in WESTPA [1, 2, 17]. The rules typically generate trajectory replicates

—which will diverge upon additional simulation using a stochastic thermostat or dynamics

—in under-sampled regions while pruning trajectories that occur in over-sampled regions.

Procedurally, WE runs a large number of ordinary, unbiased MD trajectory segments in

parallel, with each segment halted and examined after a short interval of time (e.g. 1–100 ps,

see Table 1) called τ. After each interval, some trajectories are replicated and some are

pruned according to user-specified parameters - see below. This in turn triggers automated

adjustment of the weights to complete the resampling process. The remaining trajectories are

then continued for another τ interval.

The rules for resampling trajectories without bias are extremely flexible [17] and numerous

possibilities are implemented within the WESTPA software. Typically, WE simulations rely

on “bins,” which are defined regions of configuration space for which the user defines a

target number of trajectories [2]. In WESTPA, bins can be constructed from simple one or

two-dimensional “progress coordinates”, a hierarchical nesting of bins inside of other bins,

Voronoi cells, or the WExplore hierarchical Voronoi strategy [1, 7]. Strictly speaking, it is

worth noting that bins are not required to perform WE-like resampling [18].

Each WE simulation ultimately yields an ensemble of trajectories, from which different

types of information can be extracted. Each trajectory which makes a full transition between

states of interest, say from A to B, yields an ordered set of configurations which can be

analyzed for structural changes and for the sequence of events. The full weighted ensemble

of trajectories, if clustered into pathway groups, can provide information on the relative

importance of different pathways [19]. If WE was performed with a “recycling” condition

where trajectories reaching B are fed back to A, then the rate constant for the process can be

estimated from the probability flux arriving to state B if the simulation achieves steady state

and hence constant flux [20, 21]. If a WE simulation does not achieve steady state, it is still

possible in principle to estimate rate constants using a non-Markovian analysis, also called a

history-augmented Markov State Model [11, 22, 23].

1.2 Prerequisites

1.2.1 Background Knowledge and Experience—The WESTPA software is not

intended for total beginners in molecular simulation. A prerequisite for all of WESTPA

tutorials presented here is that users already have extensive experience with running standard

molecular dynamics (MD) simulations using the underlying dynamics engine of interest

(Amber, Gromacs, OpenMM, etc.). In fact, we recommend running multiple short, standard

simulations prior to applying the WE strategy in order to (i) ensure that the system is

prepared and the dynamics are propagated according to best practices (e.g., see [24]), (ii)

identify potential progress coordinates and other observables that may be worth monitoring

Bogetti et al. Page 4

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

during the WE simulation, (iii) determine an initial definition of the target state, and (iv)

estimate storage needs for your eventual WE simulation and the ns/day that can be generated

for your system. It is also important to identify sources of validation for your simulation

(e.g., from experiment and/or standard simulations) and to be familiar with the estimation of

statistical uncertainty in the computed observables, including those used for validation

([25]). We highly recommend that new users read the WE overview (https://

www.csb.pitt.edu/Faculty/zuckerman/we-overview.pdf) as well as a recent review article

[21]. In addition, new users are encouraged to search the WESTPA mailing list (https://

groups.google.com/forum/#!forum/westpa-users) for possible solutions or to submit

questions/issues to the mailing list.

1.2.2 Software Requirements—The WESTPA software requires Python and a number

of standard Python scientific computing packages. All required software is available through

the Anaconda Python distribution, which also provides the preferred mechanism for

obtaining and installing WESTPA itself. The software can be used on any Unix operating

system, including academic clusters and supercomputers. The installation of WESTPA is

streamlined by an Anaconda conda install recipe that enables WESTPA and all software

dependencies to be installed at the same time.

In addition, WESTPA will require interfacing with an external dynamics engine in order to

run WE simulations. Examples of dynamics engines that can be used (all free of charge),

and the versions used are included before each tutorial in this manuscript.

1.2.3 Hardware Requirements—The highly scalable WESTPA software is particularly

well-suited for high-performance computing (HPC) clusters, including those at academic

institutions or supercomputing centers. Much of the computing effort is independent (i.e.

highly parallelizable) with only a small amount of data being transferred to a central process

at the end of each WE iteration. Furthermore, the amount of memory per computing node

need only be sufficient for the underlying dynamics engine, e.g., ~1 GB per CPU core for

atomistic MD simulations.

The two major computing hardware considerations for large-scale WESTPA simulations are

(i) the number of available processors, and (ii) the amount of disk storage in the scratch

(working) space. Further details about these requirements are provided below.

Number of Processors.: WESTPA can be run on even a single processor, but the ideal

scenario is to use the same number of processors — all with the same processor speed — as

the number of trajectories you are simultaneously running at any point in time; in this way,

all trajectories that are being run can be completed at the same time. If the ideal number of

processors is not available, we suggest requesting a number by which the number of

trajectories at any point in time is divisible. These are not strict requirements, but following

these guidelines will ensure the most economical use of computer time possible.

Storage Requirements.: To estimate the storage requirement for your WE simulation, we

suggest running a single MD simulation for length τ, estimating the maximum number of

trajectories you will generate for any WE iteration (number of bins multiplied by number of

Bogetti et al. Page 5

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.csb.pitt.edu/Faculty/zuckerman/we-overview.pdf
https://www.csb.pitt.edu/Faculty/zuckerman/we-overview.pdf
https://groups.google.com/forum/#!forum/westpa-users
https://groups.google.com/forum/#!forum/westpa-users

trajectories per bin), and estimating the number of WE iterations you will need to converge

the observable of interest. This results in the maximum total number of trajectories per

simulation, which can be used to estimate the total storage requirements (both number of

files and aggregate storage space). Ideally, the scratch space of your computing cluster

should be sufficiently large to temporarily store the entire simulation, which makes the

analysis easier in the not-unlikely event you need to reanalyze each trajectory. Regardless of

your estimate, having an off-cluster storage option that can store the simulation in case you

need to extend the simulation further on the cluster would be ideal. Also, make sure that you

are not exceeding any limits on the total number of files a user can have on your computing

cluster.

As an example, we present the hardware requirements of our largest-scale WESTPA

simulation to date, which involved a protein-protein binding process in explicit solvent. To

enable convenient analysis of this simulation, the scratch directory of a computing cluster

would ideally allow for 15 TB of disk space to store trajectory coordinates for the entire

system, including explicit water molecules, checkpoint files for continuing trajectories, and

other files required for analysis. If the scratch space is much less than this amount (e.g. 2

TB), we recommend separately tarring and archiving each WE iteration, keeping the last five

WE iterations untarred, and moving the archived files to local storage. This strategy enables

one to restart a WE simulation from the last few iterations if necessary. We realize that this

protein-protein binding simulation is an extreme use case, but nonetheless, this scenario

highlights the importance of allocating the necessary storage space for more typical use

cases.

We note that most distributed storage filesystems used on large clusters (e.g. Lustre or

GPFS) do not distribute metadata (file size, modification time, etc.) processing, and this

centralized treatment of metadata can become a “choke point” for WESTPA simulations. In

the worst case, a poorly-configured WESTPA simulation can result in denial of service to

other users. There are no viable alternative file systems at this time. Fortunately, a simple

remedy exists. The burden of running WESTPA simulations on these distributed filesystems

can be substantially reduced by using the full pathnames to all executables called by any

WESTPA process (for example, writing/usr/bin/awk instead of simply awk).

1.2.4 Running WESTPA on a Computing Cluster—Prior to running full-blown

WESTPA simulations on your desired computing cluster, it is advisable to consult with the

system administrator about how best to run your simulation on the cluster. In addition, test

simulations consisting of a few WE iterations should be run using the development queue to

gauge if the I/O is too frequent for the cluster and to optimize the execution of your

simulation (see Table 1 for examples of computing resources that have been suitable for

various WE applications). Sample shell scripts for executing WESTPA simulations on

various computing resources have been provided for the Intermediate Tutorial (Section 6.2)

on GitHub.

Bogetti et al. Page 6

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2 Workflow of Running a WE Simulation

An overview of the workflow for running a WE simulation using WESTPA is detailed

below. This workflow is only meant to give a sense of the mechanics and flow of using

WESTPA once your system and WE parameters have already been carefully chosen. See

Table 2 for a summary of all files mentioned in this workflow.

Overall Flow

Ready: The purpose of this step is to ensure that the chosen WE parameters are correctly

specified in the proper places and that all environment variables are correctly set. Most of

the WE parameters (such as the number of WE iterations, binning scheme etc.) and auxiliary

datasets (auxdata; see Section 6.2) are specified in the west.cfg file. You can view an

example of this file in any of the tutorials below; labels exist directing where to specify each

parameter. More complex binning schemes (such as recursive schemes or schemes involving

functional bin mappers) can be specified in an external file called system.py. A user may

also choose to write functions to this file. Usually, these functions will calculate progress

coordinate or auxiliary data and are more complex than usual.

The environment is set up in the env.sh file. The location of the main WESTPA simulation

directory (WEST_SIM_ROOT) and the location of dynamics/analysis programs are placed

in your system path. When setting up WESTPA on a cluster, program modules will be

loaded in the runwe.slurm file instead of the env.sh file (see Section 6.1 and view the cluster-

specific runwe.slurm file). It is a best practice to define variables in env.sh for each program

that will be called. These variables should contain the full path to that program (such as

CPPTRAJ=$(which cpptraj), see Section 4.3 for more information). Always source env.sh

before trying to run WESTPA just to see if any errors appear relating to programs not being

found. If errors are present, edit env.sh to specify the proper locations of programs and try to

source it again. The goal of this action is to make sure that any issues with your environment

are fixed before continuing so that troubleshooting becomes much easier later on.

Set: After setting up the system environment and specifying the WE parameters, users will

need to initialize the simulation. This involves running the init.sh script, which will take an

initial structure (or structures), calculate a progress coordinate (pcoord for short, this is also

the name used in WESTPA datasets pertaining to the progress coordinate) value for that

structure and then place that structure in the appropriate bin. The init.sh file is also the

location where users can specify whether the simulation will be run under equilibrium or

steady-state conditions.

Place the starting structure(s) in the bstates/ directory. The structure should be a coordinate

file giving the starting configuration of your system (e.g. Amber restart file). The bstate.file

tells WESTPA which structure to use as the initial structure for the simulation. If you have

only one structure, this file will contain the name of that structure only; if you have more

than one structure, bstate.file should list each structure along with its associated statistical

weight. An example of the latter is a representative ensemble of unbound protein

conformations in a binding process that could be generated using a prior equilibrium WE

simulation [9, 10].

Bogetti et al. Page 7

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Next, specify whether the simulation will be run under equilibrium or steady-state

conditions. This specification is made in the init.sh file. Including a TSTATE_ARGS

argument for w_init will signal for WESTPA to run under steady state conditions. The

tstate.txt file in the main simulation directory is where the progress coordinate value of the

target state is specified. If the TSTATE_ARGS argument is absent, the simulation will be run

under equilibrium conditions. See the tutorials in Sections 6.1 and 6.2 below for examples of

how init.sh will change from running a steady-state simulation versus an equilibrium

simulation (respectively).

Running init.sh will cause WESTPA to execute get_pcoord.sh, which is a script located in

westpa_scripts/. This script will give an initial progress-coordinate value for the basis

state(s) (located in bstates/) to WESTPA.

Users will need to modify get_pcoord.sh to either read or calculate the progress coordinate

for their particular simulation. For instance, in the Basic Tutorial, the distance between the

Na+ and Cl− ions is used as the progress coordinate. The get_pcoord.sh file for that tutorial

simply prints the contents of an already-existing file (pcoord.init, which already contains the

calculated value) and passes that value to WESTPA. However, get_pcoord.sh can also

perform the calculation for the basis state, as in the Intermediate Tutorial. However this is

done, a value (or values) for that progress coordinate should be echoed into

WEST_PCOORD_RETURN, a WESTPA variable containing all of the progress coordinate

values for the entire simulation (see Section 6.2 for the added considerations if a two-

dimensional progress coordinate is used).

If errors appear while trying to initialize the simulation, the following troubleshooting

methods are recommended. First, make sure that the command entered in get_pcoord.sh

properly calculates the progress coordinate. Copy the initial structure from the bstates/

directory to another directory and run the command. If the command does not work, make

sure the proper atoms and residues are selected and then try running the command again. If

the command works, make sure that the calculated value is being successfully echoed into

WEST_PCOORD_RETURN.

To make troubleshooting easier, turn on logging for the get_pcoord step in the west.cfg file.

By setting the location of the standard output (stdout) and/or standard error (stderr) to

$WEST_SIM_ROOT/get_pcoord.log, you can more closely monitor the output of the

get_pcoord.sh script to try to find out where things are not working.

Go: Running the run.sh script will start a WESTPA simulation. If init.sh was just run, a new

simulation will begin and continue until the number of WE iterations specified in west.cfg

have been completed. If the simulation was stopped after previously running, run.sh will

continue the simulation from the point at which it was stopped. If WESTPA is being run on

a cluster, then this script will take the form of a Slurm or other submission script (such as

runwe.slurm, see the Basic Tutorial in Section 6.1 for an example). WESTPA will propagate

dynamics for one trajectory segment (of length τ) and calculate progress coordinate values

(and all auxiliary data) for the propagated structure(s). After completing a trajectory

segment, WESTPA will combine and replicate trajectories to maintain the target number of

Bogetti et al. Page 8

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

trajectories per bin (as specified in the west.cfg file). One cycle of dynamics and

combination/replication is referred to as a single WE iteration. The number of iterations is

repeated until the observable of interest (e.g. rate constant) is reasonably converged.

Running run.sh will cause WESTPA to execute runseg.sh, which is a script similar to

get_pcoord.sh, located in westpa_scripts/. Users will need to modify runseg.sh to call the

dynamics engine and calculate the appropriate progress coordinate (and auxiliary data)

value(s). Refer to the runseg.sh file in the Basic Tutorial as an example (Section 6.1). This

particular simulation uses Amber’s pmemd program for dynamics propagation. Running this

program requires a certain input/output syntax that is specific to the dynamics engine (such

as Gromacs or OpenMM). The section of this file that calculates the progress coordinate will

be identical to that in the get_pcoord.sh file. If a user is collecting auxiliary data (as

specified in the west.cfg file), those values will need to be calculated after calculating the

progress coordinate value (see Intermediate Tutorial in Section 6.2).

Since runseg.sh will cause many different files to be generated, it is important to consider

how WESTPA is handling these files, especially when using a shared file space such as on a

cluster. The methods used in the example runseg.sh files that have been provided in the

tutorials below are sufficient in most cases, but please refer to Section 4 for a discussion on

file management and network traffic.

If there are any errors in the WESTPA setup (e.g. incorrect number of elements in the

pcoord array, misplaced input files), the simulation will not proceed past the first WE

iteration. If this is the case, check the west.log file to see if there is a good reason for why

the simulation is failing. Usually, however, detailed logging of any errors is available in the

seg_logs/ directory for each segment of each iteration. View the segment log for a particular

segment to see if the dynamics are completing successfully and that the progress coordinate

(and auxdata) values are being calculated and passed to the appropriate variables (such as

WEST_PCOORD_RETURN).

If the dynamics fail to start, copy all necessary input files into an empty directory and run

the dynamics manually. If no errors appear, make sure that your progress coordinate consists

of the proper number of datapoints (as specified in the west.cfg file). This is determined by

the frequency at which the progress coordinate is being calculated. For example, if WESTPA

expects 50 progress coordinate values per τ and only receives 10 values, the simulation will

fail after the first WE iteration. Check the dynamics input file (md.in in the Basic and

Intermediate tutorials) to make sure that the coordinates of your system are being saved at a

frequency that matches the number of specified progress coordinate values.

If the simulation proceeds to the second iteration, there should not be any errors in the

WESTPA setup. To monitor the progress of the WE simulation, use w_pdist to generate

probability distributions as a function of your progress coordinate and WE iteration.

WESTPA’s plothist command will allow you to visualize these probabity distributions with

a few different visualization options (see Basic and Intermediate Tutorials).

Bogetti et al. Page 9

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Analyze: All data generated from the simulation is contained in one place: the west.h5 file.

From this data, users can track the evolution of progress coordinate values, calculate fluxes

into certain bins or states (see the w_ipa analysis tutorial in Section 6.5.2) and view other

statistics pertaining to the simulation. To visualize a completed trajectory, refer to the Basic

Tutorial and the Advanced Tutorial involving the visualization of trajectories(Section 6.5.3).

To assess the convergence of the simulation, a user might want to monitor the evolution of

the flux into a target state as a function of the number of WE iterations by using the hdfview

program to plot the target_flux_evolution dataset in the direct.h5 file generated by w_ipa

(see Basic Tutorial).

3 General Guidelines for Choosing WE Parameters

Suitable WE parameters such as the progress coordinate, binning scheme, and resampling

interval τ depend on the particular system under investigation and the particular process of

interest. Note that all of these WE parameters are tightly coupled to one another. Below are

general recommendations that aim to assist in choosing these parameters. See Table 1 for

examples from the literature. Currently, choosing WE parameters is something of an art,

although the hope is to automate some aspects of parameter selection in the future. For now,

we suggest what may be considered a semi-systematic, trial-and-error procedure:

1. Initially, choose the simplest 1D coordinate that would be expected to capture the

slowest relevant motion along with initial bin spacings, τ value, and number of

trajectories/bin. Choose these initial parameters following examples in the

tutorials and/or literature, bearing in mind they likely will require modification.

2. The τ value should be sufficiently long such that at least one trajectory

progresses to the next bin. In addition, a code scaling test (plot of the time

required to complete a WE iteration vs. τ value) should be carried out for a range

of potential τ values on the intended computer hardware to identify a τ value that

yields reasonable linear scaling.

3. If your system stops advancing along your progress coordinate, consider

reducing the τ value, increasing the number of trajectories/bin, and/or using a

finer bin spacing in that region of the progress coordinate while combining bins

from higher probability regions. Note that bin spacings are arbitrary in WESTPA

and the most efficient bin sizes likely are not exactly equal. Details for

combining and creating bins “on-the-fly” are provided below in the Intermediate

Tutorial (Section 6.2).

4. If none of the above efforts in step 3 are effective based on a one-dimensional

progress coordinate, your progress coordinate may be missing orthogonal and

relevant slow degrees of freedom. To address this issue, consider using a two-

dimensional progress coordinate [[9, 10]; Section 6.2] or a “nested” coordinate in

which the progress coordinate switches to monitoring another observable once a

particular value for the initial observable is reached. Note that additional

dimensions in the progress coordinate greatly increase the number of bins and

hence the cost of the WE run, which is the motivation for nesting an additional

Bogetti et al. Page 10

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

coordinate in only a subset of the initial bins. You might also consider binning

strategies that are not based on user-defined coordinates, but instead employ

Voronoi cells potentially in conjunction with a string method or the WExplore

strategy ([7]; Sections 3.2 and 6.4). The WESTPA community will continue

researching the important topic of self-adjusting adaptive bins. If all of your best

efforts fail to generate transitions, consider simplifying your system (e.g. coarse-

graining the model) and/or applying methods that involve the introduction of

external forces (e.g. umbrella sampling) to generate initial transitions that can

further inform the choice of progress coordinate.

3.1 Choosing WExplore-Specific Parameters

WExplore is an algorithm that makes replicating and pruning decisions in a weighted

ensemble framework. We often call this a “resampler”. WESTPA is a complete software

package for running weighted ensemble simulations, including not only different resampling

algorithms, but also scripts to setup, run and analyze weighted ensemble simulations.

Advanced Tutorial 2 shows how one can use the WExplore resampler inside the WESTPA

toolkit.

Regions in WExplore are hierarchically-organized Voronoi polyhedra, which are defined by

a set of central points called “images” (Figure 2). To assign a trajectory to a given region, the

distance from that trajectory to each image is measured, and the trajectory is assigned to the

region with the lowest such distance. Key parameters in the WExplore method are the

number of levels in the region hierarchy, the spacing between the images at each level of the

hierarchy, the maximum branching factor of the hierarchy and the choice of distance metric.

Each of these parameters is discussed below. In addition, factors affecting the optimal

number of trajectories are discussed.

Choice of Distance Metric.—Similar to the choice of progress coordinate in

conventional WE, the distance metric used in WExplore should capture the slow degrees of

freedom that are relevant to the process of interest. The distance metric could for instance be

an RMSD (root mean squared distance) measurement, but focusing only on a subset of the

system atoms. For instance, a common distance metric used in ligand (un)binding

simulations is calculated by aligning binding site atoms, and calculating the RMSD between

the ligands, without any further alignment [28]. Alternatively, a series of N progress

coordinates can be calculated as X = χ1, χ2, χ3, …, χN, and the Euclidean distance between

two progress coordinate vectors can be used as the distance metric: dij = |Xi – Xj|. Many

other examples are possible, and the researcher is only limited by their imagination. The

distance used does not need to be differentiable or continuous.

Region Size, Number of Levels, Branching Factor.—Once the distance metric is

defined, the best practice is to run a short, straightforward simulation and observe the scale

of fluctuations. To be effective, the smallest region size (at the lowest level of the hierarchy)

should be just outside the reach of the typical fluctuations observed in a time period τ.

This ensures that the first replication events will correspond to significant differences

between trajectories. At the other end, the largest regions should be big enough that a set of

Bogetti et al. Page 11

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B regions can evenly tile the space of interest, where B is the branching factor. Typically, B
is set to 10, which is low enough to offer a big efficiency boost in region assignment, and

high enough that branch factor overflows (where the simulation attempts to create a region

higher than the branch number) do not occur early on in the simulation. The optimal number

of levels between the smallest and the largest region sizes is system dependent. If

simulations are routinely getting stuck on one level for long time periods, this could indicate

that the spacing between levels is too large. If simulations very easily proceed from one to

the next then the spacing might be too small. It is difficult to know beforehand what the

optimal spacing will be, but suitable parameters can be easily found using a little common

sense and a bit of trial-and-error.

Number of Trajectories.—In contrast to conventional WE, WExplore does not employ a

fixed number of trajectories (Nt) per region. This would be wildly impractical, as the typical

total number of regions is very large (e.g. 10000 for a branching factor of 10 and a four-level

hierarchy). Previous applications have aimed to choose Nt to be as small as possible, while

still allowing for simultaneous sampling of all states of interest, with a convenient value

being 48, which is nicely congruent with 4-, 6- and 8-GPU compute servers [29–31]. A

larger value will result in more consistent runs, while a smaller value allows for longer runs

and more replicates. In practice we have found that single WExplore runs show high

autocorrelation regardless of the value of Nt, and that averaging over multiple replicates is a

necessity, both to accurately compute observables and to estimate their uncertainty.

4 Cluster-Specific Considerations

To take full advantage of WESTPA’s scaling and parallelizability, users may seek to run the

software on HPC clusters. The tutorials included herein are written with the goal of teaching

new and relatively inexperienced users the basics of using the software and therefore do not

focus on optimizations pertaining to the code. We recommend that users become familiar

with running WESTPA on a cluster, especially the cluster-specific issues and considerations

that may arise.

4.1 Minimizing the Number of Output Files

It is advisable to minimize the number of output files generated by your simulation as this

reduces the I/O overhead and will therefore be less taxing on the filesystem of the computing

cluster. We recommend saving only the restart files that are necessary for continuing

trajectories and analysis of the simulation. If the user needs additional information (e.g.

coordinates that have been saved at a greater frequency than the τ value) contained in certain

output files, those files should of course be kept. To further reduce the number of files, we

suggest separately tarring up the files for each WE iteration. The resulting tarballs will also

facilitate any transferring of your simulation data to another location.

In some cases such as WE simulations that are run using GPUs, trajectory segments can

complete too quickly, leading to a bottleneck where the transfer of files over the network to

the local storage of the node is too slow or there are too many transfers over the network. In

such cases, copy over the data of the entire previous WE iteration as a tarball to the local

storage of the node, run the entire iteration from this local storage, and copy back the results

Bogetti et al. Page 12

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to the scratch space in a single tarball. While these transfers over the network will add some

overhead to each WE iteration, they will avoid the network bottleneck.

4.2 Data Management

A single WE simulation may generate multiple terabytes of data, presenting a challenge for

storage and retrieval of data. Moreover, using short trajectory segments in WE simulations

commonly results in a large numbers of small files, which are managed more slowly on

some file systems than a smaller number of large files with the same overall disk size. To

alleviate these potential issues, we recommend the following:

1. Perform an initial run to monitor data storage and retrieval. Note that the initial

number of trajectory segments may be a small fraction of the amount that would

be generated in the eventual production run.

2. Delete unnecessary files as each trajectory segment is simulated (see example

runseg.sh files in the Basic and Intermediate Tutorials). Unnecessary files may

include input files, log files from analysis tools, and raw text output files from

analysis tools. Often, useful data from log files (e.g., temperature from an MD

simulation) may be extracted from the log files and saved as auxiliary data to the

WESTPA data file (west.h5 file), which stores data more efficiently than raw

text.

3. Tar and optionally compress data from each WE iteration. This strikes a balance

between excessive file count and excessive file size, either of which is typically

suboptimal for long term storage, especially on tape systems that may not

guarantee the integrity of large files.

4. Consider saving coordinates for only the solute atoms of your system to an H5

file.

4.3 Minimizing Network Traffic Across Multiple Computing Nodes

Given the large scale of a WESTPA simulation, it is advisable to limit the number and

frequency of network operations (e.g. I/O operations and file transfers from the local disk to

the global filesystem). We recommend the following strategies for reducing network traffic:

1. Perform a code scaling test to identify an appropriate τ value (see Section 3

above).

2. Set environment variables to the full pathnames of repeatedly used programs

(e.g. analysis tools used to calculate progress coordinates; see Basic Tutorial

below).

3. Copy repeatedly accessed files (e.g. reference structures and analysis scripts) to

local scratch space and temporarily write the output files to this scratch space.

After each trajectory segment of length τ completes, tar the output files, and

copy the tarred files to the globally accessible filesystem using rsync.

Bogetti et al. Page 13

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.4 Advice when Using GPUs

If your WE simulation has extremely frequent starting up of simulation segments, your

simulation may overheat gaming GPUs and potentially damage the hardware. For example,

folding simulations of the NTL9 protein in implicit solvent with a τ value of 15 ps resulted

in such issues on gaming GPUs (i.e. NVIDIA GTX 1080Ti GPUs) while the same

simulations have no such issues on professional-graphics-programming GPUs. Coarse-

grained simulations (residue-level models and coarse-grained) with high I/O are also

problematic on gaming GPUs.

5 Uncertainty Quantification and Monitoring of Convergence

Although they can report on much longer timescales, WE calculations still have limitations

analogous to those of conventional MD simulations – namely, force field inaccuracy and

inadequate sampling. Assessing convergence requires care, as noted below. Even if sampling

is adequate, as with any simulation result, error bars are required to set the results in context

because there is always a finite range of results which are predicted in any stochastic

calculation [25]. Error analysis is particularly challenging because WE results ultimately

depend on a large number of trajectories which typically are significantly correlated with

one another due to repeated replication (“splitting”) events. Over the years, different error

analyses have been employed [9, 26, 32]. Here we give a brief overview of current practice.

The primary recommendation is to perform multiple, fully independent WE simulations

when possible. To understand the variation intrinsic to WE sampling, we suggest performing

these runs from identical starting states. The data from these runs will not go to waste, as it

can be combined for estimating observables, convergence, and error bars. When multiple

runs are not feasible for a large-scale application, a sufficiently large number of

trajectories/bin (at least 4 trajectories/bin) should be used to increase the chances of

obtaining a diverse ensemble of pathways. To further enhance the diversity of the pathways,

we recommend starting the simulation from multiple starting states when that is physically

appropriate such as in protein binding. We note that a single run with a large number of

trajectories/bin (4–50 trajectories/bin) has been shown to be more efficient in calculating rate

constants than multiple runs with a small number of trajectories/bin (i.e. < 4 trajectories/bin)

for molecular association/dissociation systems [33].

We focus here on understanding uncertainty in rate-constant estimation. First, there is the

issue of “convergence”: how much time is required to obtain a result without systematic bias

that is governed only by statistical noise? In a typical simulation started in a single state (A),

the rate constant into a target state B is estimated by the steady-state probability flux into B

– i.e., the amount of probability arriving per unit time as sketched in Figure 3. However,

there is a transient regime before the flux levels off to its steady value, and it is unknown in

advance how long the transient will last. Of course, one should examine the time-

dependence of the average flux (averaged over all WE runs) by eye, but this is unlikely to be

sufficient. In addition, one can plot the flux as a function of some continuous coordinate

which progresses from A to B: in steady state, the flux will be constant along any such

coordinate [23]. Finally, we recommend using a “history augmented” Markov state model

(haMSM) employing very fine bins/microstates, which can be built from the WE data as a

Bogetti et al. Page 14

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

different means for estimating steady-state flux values which can be compared to those

measured directly in WE simulation [23]. Alternatively, the impact of transient effects on

rate-constant estimation can be reduced by incorporating the distribution of event durations

(excluding dwell time in the initial stable state) that correspond to pathways captured by the

simulation. This strategy has been shown to yield rate constants using a fraction of the

simulation time required by the original WE method [34].

Once the transient has completed, if multiple runs were performed, it is necessary to

estimate the uncertainty in the rate constant based on the group of independent WE runs.

The flux curves from the individual runs, plotted as a function of molecular time, may vary

significantly as sketched in Figure 3. This large variation invalidates typical uncertainty

estimation schemes based on the standard error of the mean, and we therefore recommend

employing a Bayesian bootstrapping procedure [35]. This approach appears to be better than

alternative approaches for handling estimates which vary over orders of magnitude, but we

emphasize that the nominal 95% “credibility regions” produced are overly optimistic and

only cover the true mean a much smaller percentage of the time [35].

6 Tutorials

6.1 Basic Tutorial: Na+/Cl− Association

6.1.1 Introduction—This tutorial involves carrying out a WE simulation of a molecular

association process: Na+/Cl− association. After completing this tutorial, a user should be

able to set up a simple WE simulation using the WESTPA software and develop an intuition

for how changes in the WE parameters will influence the efficiency of sampling a process of

interest, thus allowing the user to choose appropriate parameters for that process.

Learning Objectives.: Though we strive to make the WESTPA software as user-friendly as

possible, there are many system-specific parameters that must be carefully specified. The

purpose of this basic tutorial is to introduce a new user to WESTPA and have that user

become familiar with the flow of setting up and running a WE simulation.

Specific learning objectives are:

1. Become familiar with the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

5. Monitor a simulation

6.1.2 Prerequisites—Users should install the latest version of the WESTPA software

package through Conda. Installation instructions can be found on our Github wiki (https://

github.com/westpa/westpa/wiki/Installing-WESTPA). For analysis of simulation data, the

hdfview software greatly facilitates the visualization of large datasets. We will make use of

that program in the ‘Analysis’ section of this tutorial.

Bogetti et al. Page 15

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/westpa/westpa/
https://github.com/westpa/westpa/

Users should have basic knowledge of command line usage and the Python programming

language. Since WESTPA is designed to conveniently interface with any external dynamics

engine, users will also need to have experience using an MD engine (Amber, Gromacs, etc.).

This tutorial will not provide instructions on how to use those engines; only how to interface

the engines with WESTPA. In addition, a knowledge of analysis programs (such as Amber’s

cpptraj program or the MDAnalysis software) is necessary and will not be covered here.

This tutorial will go over examples of the various input files that are necessary for

interfacing with WESTPA. This tutorial also assumes the user has some knowledge of the

WE strategy, as its basic theory is not discussed herein.

Computational Requirements.: A user should set aside at least 18 GB of disk space. This

simulation took ~50 hrs to complete using 1 Intel Xenon 3.50 GHz CPU core.

This tutorial uses OpenMM version 7.3 for dynamics propagation (http://openmm.org/) and

MDTraj 1.9.3 for progress coordinate calculations (http://mdtraj.org/1.9.3/). System setup

and equilibration was performed separately in OpenMM. A minimum version of 3.1.0 for

HDFView is required for H5 file analysis.

6.1.3 Setting up a WE Simulation Using WESTPA

Overview.: WESTPA is run by calling the w_run program from the command line with the

appropriate options. This is normally done by running the run.sh script from the main

simulation directory. The simulation will then run until it has either completed the number of

iterations specified by the user or has run out of time. Both of these parameters can be

adjusted. Before a simulation can be run, however, the system must be initialized by calling

the w_init program from the command line with the appropriate options. This is normally

done by running the init.sh script from the main simulation directory.

Therefore, assuming the system is set up properly and all parameters have been properly

specified, the WESTPA simulation can be run with the following at the command line

(throughout our suite of tutorials, the command prompt is indicated with $, which itself is

not part of the commands that should be entered by the user):

$./init.sh

$./run.sh

Data from a WESTPA simulation will be stored in a file called west.h5, which is an H5 file

that can be opened with Python’s h5py package or with a graphical interface such as

hdfview.

To monitor the simulation’s progress, we will use the w_pdist program of WESTPA. This

will generate probability distributions (histograms) as a function of the progress coordinate

and will enable the user to view those histograms with the plothist program.

A WESTPA simulation, even after the requested number of iterations, may not be

“complete.” Completion is assessed by whether some observable has converged to an

Bogetti et al. Page 16

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://openmm.org/
http://mdtraj.org/1.9.3/

expected or steady value. The choice of this observable is up to the user. To obtain these

observables (such as the flux or rate constant), one will have to access the data in the H5 file

and plot it using Python’s matplotlib package (or another equivalent package).

Once a simulation is deemed complete, users can make use of the WESTPA analysis tools

suite of programs, specifi-cally w_ipa in order to extract relevant data from the H5 file.

The System.: To obtain a basic understanding of WESTPA’s parameters and learn how the

software works, we will begin by studying the molecular association of Na+ and Cl− ions.

Our system will consist of a single Na+ cation along with a single Cl− anion modeled with

Joung and Cheatham parameters [36] and solvated in a box of TIP3P water molecules [37].

These ions are initially dissociated at a separation distance of 12 Å. The system was

prepared using OpenMM and the appropriate input files are provided under

“westpa_tutorials” on GitHub, where you will also find a copy of this tutorial’s simulation

directory (basic_nacl). We will not cover how the input files were generated or the rationale

behind choices made when setting up the system (e.g. force field, water model etc.).

Choosing an Initial State.: In looking at the association of two entities, especially thinking

about how to extensively sample this process, there are some things we want to consider

before we begin WE. The first is how our initial state should look. If we choose to place the

ions too close together, we may only observe one “type” of binding pathway, since the ions

will not have as much time to orient themselves before binding. In reality, ions are

symmetrical and we will not need this consideration but this would be an issue when

determining how far apart to space, say, a drug and protein system or two protein binding

partners. We also do not want to space the ions too far apart, as that would unnecessarily

increase the time needed to observe binding events. We will therefore choose a generous

distance of 12 Å.

The coordinates (and velocities) of this starting structure, bstate.xml, are placed in the

bstates/ directory. This is an OpenMM save-state file, which was saved after equilibration.

This is the file needed to directly resume dynamics. Depending on the dynamics engine you

are using, this file will be different but will have the same function (for instance, an Amber

restart file would be placed here if one were using sander to run dynamics). Also in this

directory is a file named bstates.txt. This file contains the name of our basis state structure

and the probability of it being chosen if we want to sample a variety of initial structures

(since we are preparing only one basis state, that probability is just 1). To more fully sample

the configurational space of some process, it is often prudent to include more than one initial

structure. In that case, all of those structure files can be placed in this directory with their file

names and probabilities included in the bstates.txt file.

Files for Dynamic Propagation.: Also necessary for running an Amber simulation are the

topology and simulation input files. Those two files (bstate.pdb and nacl_prod.py) are placed

in the common_files/ directory. This is a catch-all folder for any files needed while running

dynamics. Notice that our τ value is defined in the nacl_prod.py file, which is a Python

script that runs OpenMM. This is the length of each WE iteration; so if the MD input script

will run dynamics for, say, 10 ps then your τ value is 10 ps. This number needs to be

Bogetti et al. Page 17

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

carefully chosen depending on your system of interest. For this simulation, we will use a τ
value of 50 ps.

Preparing the System Environment.: Next, we will want to make sure that WESTPA can

properly access the MD engine we want to use and set up our simulation environment

properly. These variables are all defined in the env.sh file. You will need to open that in vim

or another text editor and make sure that your WESTPA environment is being sourced

correctly (only if you are not using the Conda environment) and that your dynamics

environment is being sourced correctly. It is also advised to set the runtime command

variables for more efficient system calls if applicable.

Equilibrium vs Steady State WE.: Now, let’s examine the init.sh file, which initializes the

simulation. In this file, we can specify whether to run an equilibrium or steady state

simulation. The file in the tutorial directory is set up to run a steady state simulation. This is

specified with the definition of the TSTATE_ARGS variable and its use in the w_init

command. To run an equilibrium simulation, simply delete those two lines.

The choice of whether to run an equilibrium vs steady state simulation will depend on the

research question being asked. Where do we want the system to go? Equilibrium simulations

can be efficient in exploring configurational space and sampling ensembles of

conformations. On the other hand, steady state simulations, where trajectories that reach

some target state are recycled back to the initial state (along with their trajectory weights),

can be more efficient in generating rate constants, and for exploring pathways towards some

known target state [33].

In our simulation, we do have a specific target state in mind and we know exactly what it

looks like: Na+ and Cl−interacting ionically at a close distance. We will therefore prepare to

run a steady state simulation.

Progress Coordinate, Binning Scheme and τ value.: For any WE simulation, we

recommend choosing a progress coordinate that monitors the slowest relevant motion(s)

such that faster motions will “go along for the ride.” The efficiency of generating pathways

is tightly coupled to the choice of progress coordinate, along with how you choose to divide

up that coordinate into bins. For the molecular association process involving the Na+ and Cl−

ions, a logical choice of progress coordinate would simply be the distance between the two

ions, assuming that the surrounding solvent molecules respond relatively quickly to the

positions of the ions. In other words, we can measure the simulation’s “progress” by how

close the ions are to each other in a particular trajectory. This will turn out to be a good

choice for our system, but for systems in which the binding partners involve ensembles of

conformations, a pure distance-based progress coordinate will not be adequate and must be

combined with a second dimension of the progress coordinate that tracks some other motion

of the system.

Now that we have chosen a progress coordinate, we will need to consider our binning

scheme. Imagine a space that contains all of the possible values of our progress coordinate.

A good place to start is to perhaps define our progress coordinate as ranging from your

Bogetti et al. Page 18

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

initial state (basis state) to a preliminary definition of your target state and divide up this

coordinate into 1-Å wide bins. One way to obtain a preliminary definition of the target state

for the Na+/Cl− association process is to subject a model of the associated Na+ and Clions to

energy minimization using the same force field that will be used during the WE simulation

and calculate the resulting distance between the ions using cpptraj. This distance ended up

being 2.6124 Å, so we will set 2.60 Å as our preliminary definition of the target state. We

recommend choosing the most strict definition possible for the target state for the recycling

of trajectories in a steady state WE simulation to enable the use of more lenient definitions

after the completion of the simulation. Make sure to add this number to tstate.file in the main

simulation directory, where your steady-state target state definition should always be placed.

Back to our bin definitions. If we choose to space our bins by ones from 2.6 to 12 Å by 1’s

(or some similar increment), this can lead to your simulation stalling. If trajectories cannot

move to the next bin before a round of combination and replication occurs, the bins may be

too large with respect to the chosen τ value or progress coordinate. It is a good idea,

therefore, to run a short (10–20 iterations) WESTPA equilibrium simulation to see how your

trajectories are progressing with the WE parameters you have set. If necessary, adjust the

binning or include an additional dimension to your progress coordinate.

Here is the preliminary binning scheme we will employ, which is defined in the west.cfg

file:

[0.00, 2.60, 2.80, 3.00, 3.20, 3.40, 3.60, 3.80, 4.00, 4.50, 5.00, 5.50, 6.0, 7.0, 8.0, 9.0,

10.0, 11.0, 12.0, 13.0, 14.0, 15.0, ‘inf’]

Notice how we start at 15 Å (a little bit beyond our initial value of 12 Å) and increment by

ones, but as we get closer to our preliminary state of 2.60 Å, we start incrementing more

finely. This finer binning will help to collect probability closer to our target state and

promote more binding events.

Other WE Parameters.: The following WE parameters are discussed along with where

they are specified in the parameter files. First, make sure you have chosen an appropriate τ
value (see Section 3) and that it is properly specified in your dynamics input file. As

mentioned above, the τ value, along with the number of trajectories per bin, is coupled to the

choice of progress coordinate and binning scheme. We recommend starting with ~4–5

trajectories/bin. This value is specified in the west.cfg file as bin_target_counts. Make sure

that the frequency at which conformations are saved in your trajectories (as indicated in your

dynamics input file, e.g. md.in for Amber) matches the number of elements in the pcoord

array of the west.cfg file. We recommend running the simulation for a short time to test the

effectiveness of the WE parameters, setting max_total_iterations to 10 in the west.cfg file

before letting the simulation run to a full 100 iterations.

Trajectory Imaging.: Since the replication and combination of trajectories in a WE

simulation depends on the values of the progress coordinate, trajectories that are carried out

with periodic boundary conditions should be imaged before calculating the progress

coordinate (e.g., after completing each trajectory segment of length τ). Otherwise, erroneous

values of the progress coordinate may result from parts of the simulation system drifting

Bogetti et al. Page 19

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

outside of the periodic box. MDTraj, which is used to calculate the distance in this tutorial,

is able to only calculate distances for nearest-image ion pairs (essentially what Amber does

with the autoimage command in AmberTools’ cpptraj program.)

6.1.4 Initializing the WE Simulation—To initialize the simulation, run the init.sh

script as mentioned before. You will see a body of text output indicating that the

initialization has completed successfully. We will briefly present the key features of this

script.

As mentioned before, init.sh calls the w_init program, which in turn, runs a script in the

westpa_scripts/ directory called get_pcoord.sh. This script, in this tutorial, is very simple. It

prints the contents of a file, pcoord.init, and gives that to WEST_PCOORD_RETURN. The

pcoord.init file contains the progress coordinate value of the basis state, and so this operation

essentially tells WESTPA which bin your basis state falls into. The pcoord.init file is

generated by running the get_distance.py script in common_files/ on bstate.xml and

redirecting the output into a file named pcoord.init. Initializing your system this way is often

a good idea, as it allows you to test out your particular method of progress coordinate

calculation. However, get_pcoord.sh can calculate the progress coordinate directly (see

Intermediate Tutorial), or run whatever script you need to do so. In fact, get_pcoord.sh can

include any additional commands; this built-in flexibility allows you to perform operations

on your basis states before beginning the WESTPA simulation.

6.1.5 Running the WE Simulation—To carry out the simulation, run the run.sh script

as mentioned before. You will not see any output. What run.sh does is call w_run which,

among other things, runs the runseg.sh script that is in the westpa_scripts/ directory. This

script will run dynamics each iteration, calculate a progress-coordinate value for the updated

structure and then return that value to WEST_PCOORD_RETURN.

In this tutorial, OpenMM is used to run dynamics (by running the nacl_prod.py script) and

MDTraj is used to calculate the progress coordinate (by running the get_distance.py script).

If a user wishes to change either the dynamics or analysis programs, these are the two

locations where it will need to be done.

For an example script for using Slurm to run a job on a computing cluster, see runwe.slurm.

You can adapt this template script to run WESTPA on your desired cluster.

6.1.6 Monitoring the WE Simulation—We recommend checking the progress of your

WE simulation every 10 iterations or so. This can be done with the w_pdist program. To use

this program, first stop the simulation (it can be started easily from the point it left off by

running run.sh again) and then call w_pdist:

$ w_pdist

This will produce a new H5 file called pdist.h5. To see how our progress coordinate is

evolving over time, we can use the plothist program with the evolution option:

Bogetti et al. Page 20

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

$ plothist evolution pdist.h5

This will produce a pdf file called hist.pdf. Open this file, the contents of which are

displayed in Figure 4.

As expected, most of the probability at the start of our simulation is concentrated around the

progress coordinate value for our initial state (10 Å). As our simulation progresses, the

probabilities fan out in both directions, with most of the probabilities moving towards larger

values and some of the probabilities nearing our target value of 2.6 Å. To see if your

simulation has generated some successful binding events after only 10 iterations, run the

following:

$ w_succ

The example simulation had its first successful event after 14 iterations. The output will

show (if a successful event occured) the iteration and segment number in which the first

event occurred (e.g. iteration 14, segment 2).

You can trace this successful trajectory back to the basis state to obtain a complete trajectory

with the w_trace command. You will need to provide the iteration and segment of the

successful trajectory as options separated by a colon:

$ w_trace 14:2

The output will be written to the file traj_14_2_trace.txt.

That file contains the parents of the successful trajectory all the way back to the basis state.

6.1.7 Analyzing the WE Simulation—One way to assess the convergence of our

simulation is to determine when the primary observable of interest (i.e. the flux into the

target state) levels off. To monitor the flux, we will first need to prepare our west.cfg file to

analyze the simulation. This is normally done by adding an analysis module to the end,

which is already present in this tutorial’s files. Use this as a template for future analyses.

You will see that we create an analysis instance called TEST and then define bins and states

for this scheme. These bins are strictly for analysis and have nothing to do with our progress

coordinate bins defined earlier. Since we only need to designate the bound and unbound

states here, we define three bins:

[0.0, 2.6, 10.0, ‘inf’]

The way that state definitions work is that you provide a progress coordinate in the

configurational space and whichever analysis bin that coordinate is in becomes that state.

For instance, our bound state definition is given by [0], so whichever bin above that the

value 0 falls into will be our “bound” state. This is the bin from 0 to 2.6. The same goes for

Bogetti et al. Page 21

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the unbound state (10.0 to infinity). The intermediate state (2.6 to 10.0) does not need to be

defined.

With these states defined we can now analyze how much probability, in the form of

trajectory weight, is entering or leaving each state using the w_ipa program, which will run

two separate WESTPA tools, w_assign and w_direct. To generate the H5 files needed to

analyze the fluxes, run the following from the main simulation directory:

$ w_ipa -ao

You will see that a new directory titled ANALYSIS has been created, inside of which is a

subdirectory corresponding to our TEST analysis scheme that was defined in the west.cfg

file. Inside of this subdirectory are our assign.h5 and direct.h5 files. The direct.h5 file is

where the fluxes are stored. We can open it up with hdfview and view all of the datasets.

The target_flux_evolution dataset gives the flux over time (number of WE iterations) into

each state we defined earlier. To view this dataset, double click on it. The 0th column

corresponds to the flux into state 0, which we defined as our target state. The iter stop is at

the beginning of that iteration, so if you had a binding event by iteration 10, observe the flux

into our target state. Highlight the “expected” column and click the plotting button in the

upper-left hand corner to view the flux evolution as a function of 0-indexed iteration.

By iteration 10, the flux has most likely not levelled off, so our simulation cannot be

considered converged. Let’s continue the simulation for a total of 100 WE iterations and

analyze the resulting dataset. A completed H5 file is included in the for_analysis/ directory

for your convenience. Your plot should look something similar to Figure 5, which was

generated in matplotlib.

While the flux into the target state has not completely levelled off, it is much more steady

than previously, so we can stop the simulation here and consider how much longer we

should extend the simulation. For other systems, you may want to run the simulation longer

for better convergence. You may also want to have additional criteria for convergence.

To visualize a trajectory, one must first identify a continuous series of trajectory segments in

each iteration from the basis state to the target state. This will be given in the w_succ output

along with w_trace, as we have done previously. However, you will also need to retrieve the

trajectory file from each of those segments and combine them using cpptraj. To automate

this process, we have provided the amberTraj.sh script, which can be adapted for other

systems. This script uses the cpptraj program available in AmberTools to extract the binding

trajectory of a successful event. The resulting trajectory file can be loaded along with the

system topology into the VMD visualization software to generate a movie of the association

process.

6.1.8 Conclusion—Hopefully by this point you have gained a good idea of the work

flow required to set up, run, and analyze a WESTPA simulation using a simple progress

coordinate. If you desire more complex options for your simulations (e.g. multidimensional

Bogetti et al. Page 22

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

progress coordinates) and further discussion of how to choose various simulation

parameters, we highly suggest going through the other tutorials to get a sense of how that

can be done.

6.2 Intermediate Tutorial: P53 Peptide Conformational Sampling

6.2.1 Introduction—Since the WE algorithm aims to fill empty bins in configurational

space, WE simulations can be effective in the enhancement of conformational sampling [1,

7] as well as the generation of pathways and rate constants for rare events. This tutorial will

focus on the conformational sampling of a peptide and instruct users on how to set up and

analyze a simulation involving a two-dimensional progress coordinate. In addition, we will

go over how the binning scheme can be chosen and adjusted in order to balance efficiency

and performance.

Learning Objectives.: This tutorial will help users develop a sense for which progress

coordinates may be effective for conformational sampling of a peptide and how to bin along

those progress coordinates.

Specific learning objectives include:

1. How to set up a two-dimensional progress coordinate

2. How to monitor this coordinate as the simulation progresses

3. How to evaluate whether the binning scheme is effective

4. Combining and creating bins “on-the-fly”

5. Storing and accessing auxiliary data

6.2.2 Prerequisites—Users should have completed the Basic Tutorial and have a

potential progress coordinate in mind for their system of interest.

Computational Requirements.: This simulation required at least 10 GB of disk space and

~36 hours to complete (40 iterations) on a 12-core, 2.6 GHz Intel Xeon node. This tutorial

uses AmberTools19’s sander package for dynamics propagation and the cpptraj package for

progress coordinate calculations (http://ambermd.org/AmberTools.php). AmberTools is

available free of charge.

6.2.3 Adding Another Dimension to the Progress Coordinate—While a one-

dimensional progress coordinate can be effective for molecular association processes (e.g.

Na+/Cl− in the Basic Tutorial), a two-dimensional coordinate may be necessary for more

complex processes such as peptide/protein conformational transitions. To add another

dimension to the progress coordinate, we first specify the progress coordinate dimensionality

as “2” in the west.cfg file. Next, we calculate the values corresponding to each dimension of

the progress coordinate and pass the resulting two values at the same time to

WEST_PCOORD_RETURN in both the get_pcoord.sh and runseg.sh scripts. For example,

if the first dimension of the progress coordinate has a value of 1 and the second dimension

has a value of 5, (1 5) must be passed at the same time to WEST_PCOORD_RETURN

Bogetti et al. Page 23

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ambermd.org/AmberTools.php

instead of sequentially as 1 and then 5. This can be done with the paste command in bash

(see example get_pcoord.sh and runseg.sh files). In addition, the bins will need to be

specified as two lists, one for each of the two dimensions. This is done by adding dashed

entries (one underneath the other) in the west.cfg section for bin definitions. A user may

alternatively choose to define a two-dimensional binning scheme in a system.py file.

6.2.4 Preparing the WE System

The System.: We will focus on the conformational sampling of a 15-residue, N-terminal

peptide fragment of tumor suppressor p53 that has been thought to be disordered in its

unbound state and adopts an α-helical conformation upon binding the MDM2 protein.

Simulations were run at 275 K using the Amber ff14SBonlysc force field [38] and

generalized Born implicit solvent [39]. As in the Basic Tutorial, we will not go into detail

about how the files were generated in Amber or the decisions made in setting up the system

with Amber.

Choosing an Initial State.: Our WE simulation will be started from the MDM2-bound

conformation of the p53 peptide. In particular, coordinates for the peptide conformation will

be extracted from the crystal structure of the MDM2-p53 peptide complex [40]. This α-

helical conformation of the peptide will then be energy-minimized and equilibrated before

subjecting the resulting, solvated system to a WE simulation.

Files for Dynamics.: The topology file (P53.MDM2.prmtop) and dynamics input file

(md.in) can be found in the common_files/ directory. In the md.in file, it should be specified

that the trajectory segment will be run for a length that corresponds to a τ value of 50 ps.

Preparing the Simulation Environment.: See the corresponding subsection in the Basic

Tutorial.

Equilibrium vs Steady State WE.: In the init.sh file, observe that all lines mentioning

TSTATE_ARGS have been removed. This signals WESTPA to run an equilibrium WE

simulation in which we do not have a set target state. This is a good option when the goal of

your process is to generate as many configurations as possible and you have no set target

state in mind.

Progress Coordinate, Binning Scheme and τ Value.: To extensively sample the

conformations of the peptide, we might define a progress coordinate that monitors the extent

of “unfoldedness” in the peptide using the RMSD of a given conformation from the initial

structure. However, RMSD cannot differentiate among conformations that have the same

large RMSD values. To further differentiate between such conformations, we can include

another orthogonal measure of unfoldedness such as the end-to-end distance of the peptide.

To determine a suitable binning scheme, we will start with an upper limit of 10 Å for the

heavy-atom RMSD dimension of the progress coordinate. Spacing the bins along this

dimension by 1’s may be too large for any transitions to occur between bins so we opt for a

finer bin spacing:

Bogetti et al. Page 24

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,

‘inf’]

We will see how the trajectories progress and adjust accordingly. Notice that a bin spacing of

0.2 is not maintained for the entire length, as 50 bins even along one dimension would result

in a very large number of total trajectories (4 trajectories per bin would yield a total of 200

trajectories if all of the bins are occupied). Furthermore, care must be exercised in the

addition of bins along a second dimension as the total number of trajectories can “blow up”

to an enormous number of trajectory segments (e.g. 10,000).

To get a feel for how the end-to-end distance evolves in the simulation, let’s expand out from

the initial distance of 28.5 Å with 0.5-Å wide bins in either direction:

[0, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28,

28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5, 36, ‘inf’]

Our τ value should allow for successful transitions between bins of this spacing.

Other WE Parameters.: Let’s run our WE simulation with 4 trajectories/bin for 40

iterations. Since the goal here is the conformational sampling of a peptide and we are

running an equilibrium WE simulation, we do not need to define a target state.

6.2.5 Tracking the Auxiliary Data—While it is possible to go back after a simulation

has run and calculate some value you wish you had kept track of, it can be tricky to do so

(though possible with a tool called w_crawl which is not discussed in this guide). We

strongly recommend conducting all relevant analysis during the simulation and storing the

resulting data as auxdata in the H5 file. In our case, we will calculate and store the ϕ/ψ
backbone dihedral angles of the peptide as auxdata for each of the sampled conformations.

To signal for WESTPA to collect auxdata, you will need to add an auxiliary dataset into the

west.cfg file and make sure it is enabled. See the west.cfg file in the tutorial directory for an

example of how this might look. You can name the dataset whatever you would like.

Once you have specified the datasets and named them, you will need to add in commands to

runseg.sh that calculate those values and pass them to WESTPA system variables. The

variables will be named WEST_XYZ_RETURN where “xyz” is the name given to the

dataset in the west.cfg file. This can be treated analogously to the pcoord value and

WEST_PCORD_RETURN.

6.2.6 Initializing and Running the WE Simulation—Make sure that your

get_pcoord.sh and runseg.sh files are calculating the RMSD and end-to-end distance and

returning these values to WEST_PCOORD_RETURN. The get_pcoord.sh script will

calculate the initial progress coordinates using AmberTools’ cpptraj program from within

the script, as opposed to reading the value from an external file as in the Basic Tutorial. The

runseg.sh uses AmberTools’ sander program for dynamics propagation and does so within

the script.

Bogetti et al. Page 25

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.2.7 Monitoring the WE Simulation (10 Iterations)—Once the simulation has run

for about 10–20 iterations, copy the H5 file and run w_pdist with the copied file. You can

then use plothist to view each dimension of the progress coordinates separately as the values

evolve over the course of those few iterations:

$ plothist evolution pdist.h5 0 -o hist_dim0.pdf

$ plothist evolution pdist.h5 1 -o hist_dim1.pdf

Where the “0” or “1” after the plothist command is the progress coordinate dimension (zero

indexed). Observe the two probability distributions in Figure 6.

6.2.8 Adjusting Bin Spacings “On the Fly”—The RMSD has reached a value of 4–5

Å and the end-to-end distance has reached ~10 Å, which is encouraging progress for only 10

iterations. Note that most of the probability (and therefore most of the computation) is still

stalled in the initial states of 1–2 RMSD and 20–25 end-to-end distance. We can help focus

the computing power on the more interesting “edge” conformations by modifying the

binning scheme before continuing the simulation.

In WESTPA, the binning scheme can be updated at any time since the trajectory weights are

independent of the bins (and progress coordinate). To do so, first stop the simulation and

then adjust the bins in your west.cfg file. Re-start your simulation by running the run.sh

script again and the simulation will continue from where it left off. At the start of the next

iteration, the new bins will have been implemented.

In our case, I would like to focus sampling on higher RMSD values (3–4 Å) instead of those

~1–2 Å. To do this, I will collapse the bins from 0 to 1.8 Å and define some more bins past

10 Å:

[0.0, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11, 12, 14, 16, 18, 20,

‘inf’]

For the end-to-end distance, I will add more bins for the lower distances and collapse bins

over 26 Å. We would normally want to keep these bins over 26 Å but having fewer will

shorten the runtime of this tutorial.

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, ‘inf’]

The reason we eliminated the initial 0.5 Å spacings is that this degree of freedom is readily

explored in the system.

6.2.9 Monitoring the WE Simulation (40 Iterations)—After running the simulation

for another 30 iterations (for a total of 40), we obtained the following updated probability

distributions displayed in Figure 7. The completed H5 file is included in for_analysis/ for

your convenience.

The effects of the bin-modifications can clearly be seen in the case of the end-to-end

distribution. No more trajectories with an end-to-end distance >30 Å can be seen after

iteration 10, a result of the choice not to bin over 26 Å in that dimension.

Bogetti et al. Page 26

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The end-to-end distance seems to have reached 2–3 Å around iteration 20. The RMSD

plateaued a bit from iterations 20–30 but then proceeded to values around 7 Å.

Two lessons can be learned from these observations. First, if you do not have bins in a

particular direction, you may not see sampling in that direction. Second, even though the

RMSD coordinate appeared to have stalled around iteration 20–30, it eventually was able to

surmount whatever barrier existed and attain some higher RMSD values. Patience is key, as

a single trajectory may replicate to become many trajectories if it crosses into a new bin.

6.2.10 Accessing Auxiliary Data—To access the auxdata from the H5 file, you can

open west.h5 in hdfview but this will not allow you really use the data. To plot all of the

dihedrals as a Ramachandran plot in matplotlib as shown in Figure 8 (actually, we just did so

for the second dihedral, but you could extend it to all if you so desire), you will need to

utilize the h5py package in Python to extract the auxdata values from the H5 file and then

plot them. The plotting script is included in the tutorial directory.

6.2.11 Conclusion—Users should now be familiar with setting up a two-dimensional

progress coordinate and working with auxiliary data. These two “tools” will help to expand

your repertoire of WESTPA simulation techniques and give you access to more complex and

informative simulations. Users should also now be familiar with changing bin spacings “on-

the-fly” as well.

6.3 Advanced Tutorial 1: Folding of Chignolin Mini-Protein

6.3.1 Introduction—Protein folding processes have been challenging to simulate due to

the relatively long time scales involved. In this tutorial, we will use WESTPA to simulate the

folding and unfolding of the chignolin mini-protein and to calculate the corresponding rate

constants. We will run steady-state WE simulations of chignolin folding and unfolding

processes separately. We will also compare the results of these simulations with those from

brute force MD simulations, demonstrating the correctness and potential usefulness of the

WE strategy.

Learning Objectives.: This tutorial demonstrates how steady state WE simulations can be

used to generate pathways and rate constants for both protein folding and unfolding

processes.

Specific learning objectives include:

1. How to use brute force simulations to identify appropriate initial and/or a target

states

2. How to obtain the probability flux into the target state of a WESTPA simulation,

how to convert it to a mean rate constant, and how to interpret the results

Prerequisites.: Users should have completed the Basic Tutorial.

Computational Requirements.: We note that significantly more computing time is required

for the folding simulations to yield converged rate constants and hence we suggest the user

Bogetti et al. Page 27

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

should start with the unfolding simulations. In particular, the WE unfolding simulation

required ~53 hours for 1000 iterations on 32 CPU cores of 2.6 GHz Intel Xeon processors

(~5 GB of disk space) while the WE folding simulation required ~8 days for 10,000

iterations (200 ns of molecular time) using the same resource (~50 GB of disk space). To

become familiar with setting up and running the WE simulations, the users can carry out

several iterations. Also, the brute-force simulation described below can be performed for

tens of ns, as we benchmarked this system to produce ~150 ns per day on one of the above-

mentioned CPUs. Output files for 1000 iterations of the WE unfolding and 10000 iterations

of the WE folding simulations (as well as for 4 us of the brute-force simulation) can be

found in the corresponding subdirectories. These files should be used for the analysis

procedures outlined below. This tutorial uses AmberTools19’s sander package for dynamics

propagation and the cpptraj package for progress coordinate calculations (http://

ambermd.org/AmberTools.php). AmberTools is available free of charge.

The System.: The chignolin mini-protein with the sequence GYDPETGTWG forms a β-

hairpin and folds/unfolds on a timescale that is accessible to brute force simulations, which

provide a reference data set for comparison with WESTPA results. The folded chignolin

structure (PDB code: 1UAO, [41]), serves as the starting structure for both the brute-force

and WE unfolding simulations. Both dynamics propagation and simulation analysis are

carried out using the Amber software package. Simulations were run at 275 K using the

Amber ff14SBonlysc force field [38] and generalized Born implicit solvent [39].

6.3.2 Brute Force Simulations

Overview.: As mentioned in Section 1.2.1, it is important to run multiple, short, brute force

simulations prior to using WESTPA. In the case of chignolin, which both folds and unfolds

on timescales accessible to brute force simulation, brute force simulations can provide

information on defining the unfolded and folded states.

Running and Analyzing the Brute Force Simulation.: We perform a 4-μs brute force

simulation of chignolin and write out coordinates every 20 ps. All files can be found in the

brute_force/ directory. The user can change these parameters in the MD config file md.in.

The simulation can be submitted with the following command:

$./run.sh This submission script may have to be adjusted to the user’s

computing platform.

The chignolin Cα RMSD can be computed in the following way:

$ cpptraj chignolin.prmtop < get_rmsd.in

This command assumes the brute force simulation trajectory as well as the chignolin

parameter topology and folded structure pdb files are all in the current directory.

Bogetti et al. Page 28

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ambermd.org/AmberTools.php
http://ambermd.org/AmberTools.php

The output RMSD data file, rmsd.dat, lists the time evolution of the chignolin Cα RMSD

over the course of the simulation (each line corresponds to a frame).

Figure 9 shows the Cα RMSD over simulation time for a brute-force simulation that started

from the folded β-hairpin, revealing several unfolding and refolding events within 4 μs. The

unfolded and folded states are defined by visual inspection of the RMSD plot and simulated

conformations, which show a fully formed β-sheet and native hydrogen bonds at RMSD <

0.5 Å and a disrupted β-sheet with broken native hydrogen bonds at RMSD > 4 Å (this pair

of RMSD values will also be used later to define target states in WESTPA simulations).

Note that the (un)folding rate constants will be sensitive to the state definitions, and defining

states is a challenging process beyond the scope of this tutorial. Our state definitions are

designed to avoid potential recrossing artifacts in rate calculations: once a trajectory reaches

a state it should tend to remain there, rather than immediately returning to the previous state.

According to the Hill relation [42], the rate constant is exactly the inverse mean first-passage

time (MFPT) of the underlying process, where, for instance, the FPT for unfolding is the

time required to reach the unfolded state (RMSD > 4 Å) after first folding (RMSD < 0.5 Å).

The user can run the following to obtain the MFPTs for both the folding and unfolding

processes:

$ python get_mfpt.py rmsd.dat 20e-12 0.5 4.0

The command-line arguments are the RMSD data file, time interval at which the RMSD

values are calculated in seconds, and threshold RMSD values for the folded and unfolded

states in Angstroms. The rate constant of unfolding is estimated to be 0.13 × 108 s−1

(confidence interval: 0.09 × 108 s−1 – 0.18 × 108 s−1) and that of folding is estimated to be

0.71 × 107 s−1 (confidence interval: 0.44 × 107 s−1 – 1.24 × 107 s−1). Confidence intervals

are derived from a Bayesian bootstrapping procedure [26].

6.3.3 Using WESTPA

Overview.: We will carry out separate steady-state WE simulations for the unfolding and

folding processes. This strategy is not only more efficient than equilibrium WE simulations

in estimating rate constants (see Section 6.1.3), but enables us to set WE parameters for each

process (e.g. bin spacing) in a more process-specific way if needed. The target state of the

folding simulation will be used as the initial state of the unfolding simulation and vice versa.

Choosing an I nitial State.: As done for the brute force simulations, WE simulations of the

unfolding process will be started from the NMR structure of chignolin. WE simulations of

the folding process will be started from an unfolded conformation of chignolin (RMSD > 4

Å) that has been generated by the above brute force simulations.

Files for Dynamics.: All files are in the common_files/ subdirectory of either the

WE_folding/ or the WE_unfolding/ directory.

Bogetti et al. Page 29

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Preparing the Simulation Environment.: See the corresponding subsection in the Basic

Tutorial.

Equilibrium vs Steady State WE.: Here we will run separate steady state WE simulations

of the folding and unfolding processes, defining a target state (TSTATE_ARGS) in the

init.sh files.

Progress Coordinate, Binning Scheme and τ value.: As mentioned above, we will use a

one-dimensional progress coordinate consisting of the Cα RMSD from the folded structure

of chignolin. Although the RMSD with respect to a single reference structure may not be an

ideal coordinate for distinguishing between various conformation, it proves sufficient for our

example. Folded and unfolded states are defined based on maximum and minimum RMSD

values, respectively, that have been sampled by the above brute force simulations. We will

use a bin spacing of 0.2 Å and a τ value of 20 ps. However, the very first bin for the

unfolding simulations is larger than the regular bin width with RMSD = [0 Å, 0.5 Å]

because any structure with RMSD < 0.5 Å is considered to be in the folded initial state.

Analogously, for the folding simulations, the very last bin is larger than the regular bin width

of 0.2 Å.

Other WE Parameters.: As done in the previous tutorials, our WE simulations were

carried out using 4 trajectories/bin. The unfolding and folding simulations were run for 1000

and 10,000 WE iterations, respectively, in order to reach a steady value of the corresponding

rate constants.

Initializing and Running the WE simulations.: The init.sh and run.sh files can be found in

the corresponding directories for both WESTPA simulations. The RMSD progress

coordinate is calculated and its values returned to WEST_PCOORD_RETURN.

Monitoring and Analyzing the WE Simulations.: To compute the rate constant for the

folding or unfolding process, we first calculate the mean probability flux into the target state

by running the following WESTPA analysis tool:

$ w_fluxanl

The output is the H5 file fluxanl.h5, which contains the instantaneous probability flux into

the target state for each iteration. The following Python script calculates, for any WE

iteration, the average rate constant based on the corresponding probability flux arriving in

the target state over a preceding window of molecular simulation times (e.g., over 1 ns):

$ python get_mean_rate.py 20e-12 1e-9

The command-line arguments are the τ value and the time width for window-averaging.

Both arguments are in units of seconds.

Bogetti et al. Page 30

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10 shows the evolution of the average unfolding rate constant of chignolin as a

function of molecular time for three independent WE simulations. After a few ns, the

average rate constants for all of these simulations have leveled off and are roughly

comparable to that derived from brute force simulations. One difference between the WE

and brute force simulations is that the former estimates the MFPT based on the chosen initial

structure(s) which may not correspond precisely to the ensemble of starting structures

implicit in extracting first-passage events from brute force simulations. Note that a three-fold

difference in the rate constants among the three WE simulations amounts to only ~0.6

kcal/mol difference in the effective free energy barrier to unfolding (at the simulation

temperature of 275 K).

Figure 11 shows the evolution of the average folding rate constant for chignolin as a function

of molecular time for three independent WE simulations. Compared with unfolding

simulations, the folding simulations require much longer to reach a converged average rate

constant that is in rough agreement with that from the brute force simulations; we note that

the average rate constant is dominated by the largest flux. In addition, the folding rate

constant exhibits significantly larger fluctuations, even after the apparent transient period of

the first ~100 ns, indicating that the chosen bins are less suited for the folding process.

During the folding process, distinct hydrogen bonds must be formed between the

neighboring anti-parallel strands, and possibly in a specific order, to eventually reach an

RMSD < 0.5 Å. In contrast, the unfolding process results in faster convergence of the

corresponding rate constant and likely involves the simultaneous breaking of hydrogen

bonds in order to reach an RMSD > 4 Å.

The resulting WE simulations consist of multiple continuous unfolding or folding pathways

that may cover different regions of configurational space at any given time. To select for

particular pathways (trajectories), we can run the following:

$ python get_target_trajs.py 1 10000

The command-line arguments indicate the first and last iteration number to be considered.

The output file target_trajs.dat has two columns: one with the iteration number and one with

the segment number of the trajectory that has reached the target state at that iteration. Thus,

the number of rows indicates the total number of generated events. The iteration and

segment numbers can be used by w_trace to obtain the full path of a particular folding or

unfolding event (see Section 6.1.6).

6.3.4 Conclusion—In this tutorial, you have learned how to apply the WE strategy to

simulate a protein folding process under steady state conditions. The recycling of trajectories

at a target state allows the generation of a non-equilibrium steady state, to which the

trajectory ensemble converges faster compared to an equilibrium ensemble of trajectories.

Such steady states trajectories enable the direct computation of rate constants as described in

this tutorial.

Bogetti et al. Page 31

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.4 Advanced Tutorial 2: K+/18-Crown-6 Ether Dissociation with the WExplore Plugin

6.4.1 Introduction—For many biomolecular systems, it can be difficult to capture all of

the slow motions in one or two collective variables. This can hinder sampling of the events

of interest. The WExplore algorithm was developed to perform WE sampling in a many-

dimensional space by using a hierarchical binning scheme of Voronoi polyhedra. This allows

a user to broadly explore the dynamics of their system of interest along many dimensions,

starting from only a single initial structure.

The key quantity to enable this is a distance metric: a way of measuring the distance

between two trajectories at a given point in time. In order to assign a given trajectory, X, to a

region, this metric is used to calculate the distance from X to a set of “images” that define

the Voronoi polyhedra. The trajectory X is then assigned to the region whose image has the

smallest such distance. To efficiently assign trajectories to regions in a high-dimensional

space, a hierarchy of regions is employed: a small set of very large regions tile the full space,

each of which are tiled by a set of smaller regions, which are themselves tiled by smaller

regions, and so on. The WESTPA-WExplore plugin defines the hierarchical regions on-the-

fly; assigns trajectories to regions; and balances trajectories between the hierarchical

regions. The user only needs to define the distance metric appropriate for their system and

set a few parameters of the algorithm.

Learning Objectives.: This tutorial covers the installation and use of the WESTPA-

WExplore plugin for a simple system: the dissociation of a K+ ion from 18-crown-6 ether.

Specific learning objectives include:

1. How to install and use the WExplore-WESTPA plugin

2. How to define and implement a distance metric for use in WExplore simulation

3. Determining appropriate values for WExplore-specific parameters for a system

of interest

4. Analyzing simulations by inspecting properties of the Voronoi “images”

Users with some WESTPA experience should be able to successfully apply WExplore to

their system of interest using their own customized distance metric.

6.4.2 Prerequisites—Users should have completed the WESTPA tutorials above on Na
+/Cl− and the p53 peptide. Users should have an understanding of the WExplore algorithm:

how the region hierarchy is defined; how it progressively discovers regions; and how the

hierarchical balancing algorithm works. Details of the algorithm can be found in previous

work [7].

Computational Requirements.: This tutorial requires 500 MB disk space. This simulation

takes ~1.5 hours of wall clock time to complete (50 iterations) using 8 threads of a 4 GHz

Intel Core i7 processor. This tutorial uses Gromacs 2016.2 for dynamics propagation and

progress coordinate calculations (http://www.gromacs.org/). Gromacs is available free of

charge.

Bogetti et al. Page 32

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.gromacs.org/

6.4.3 Installation and Configuration of the WESTPA-WExplore Plugin—It is

necessary to install some other Python packages that you might not need for standard

WESTPA simulations. We recommend using an Anaconda environment and installing the

packages as follows:

$ conda create -n WESTPA-WExplore westpa scipy pandas networkx

$ conda activate WESTPA-WExplore

Note that if you are running your WESTPA simulations on remote nodes, you would have to

include the conda activate command in your env.sh file. To install the plugin, clone the

WESTPA-WExplore repository to a location on your computer:

$ git clone https://github.com/ADicksonLab/WESTPA-WExplore.git

This will copy files to your machine, located in the WESTPA-WExplore/ directory. Change

to this directory and install the plugin as follows:

$ cd WESTPA-WExplore/

$ python setup.py install

To test this, go to another directory, and type:

$ python -c ‘import westpa_wexplore’

If this runs without an import error, then you are ready to proceed to the next step!

6.4.4 Preparing the Simulation

The System.: This tutorial will use a simple ligand-binding test system: the dissociation of a

K+ ion from the 18-crown-6 ether molecule (Figure 12), as studied previously [8]. The goal

is to efficiently sample the dissociation of the complex. This is reminiscent of applications of

WExplore to more difficult ligand dissociation problems, such as the unbinding of the TPPU

ligand from soluble epoxide hydrolase, a process with a mean first passage time of 11

minutes [31].

Distance Metric.: Here we will use a common distance metric for ligand release processes:

the root mean squared distance of the ligand atoms after alignment to the host binding site

[29, 30, 43]. This captures ligand translation with respect to the binding site, and (for

systems with more complicated ligands) captures ligand rotation as well as internal degrees

of freedom. The information needed to calculate these distances is the x, y and z positions of

the ligand atoms after alignment to the host molecule. The first step to assign a walker to a

region, then, is to extract this data from the simulation. This is done by a familiar script:

get_pcoord.sh.

Bogetti et al. Page 33

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ADicksonLab/WESTPA-WExplore.git

The get_pcoord.sh script included in the tutorial repository uses a series of bash commands

to align a crown ether molecule to a reference structure (named bound_state.tpr), and then

extracts only the lines that contain the ligand atoms, saving them in the file indicated by the

WEST_PCOORD_RETURN environment variable. This data is then processed by the

pcoord_loader function in the system.py file, where the x, y and z data are collected from

columns 5, 6 and 7 of the PDB-formatted file.

This pipeline is rather crude, but effective. Note that any set of commands that can extract

the output you need (typically, atomic positions) from your simulation output files will do,

but it is necessary that changes that you make to get_pcoord.sh (which writes to

WEST_PCOORD_RETURN) are compatible with any changes you make to pcoord_loader

(which reads from WEST_PCOORD_RETURN). For instance, one could avoid PDB files

all together, and load final structures into the pcoord_loader using the Python interface of

Amber or Gromacs.

The next step is to define a function that returns the distance between two pcoord vectors.

This is typically a Euclidean distance, but can be defined in an arbitrary fashion. It need not

be differentiable, or even continuous, to be effective in a WExplore simulation. The distance

function is defined by eucl_dist in system.py and is passed as an argument to the

WExploreBinMapper function upon initialization of a system object.

Setting parameters.: The set of WExplore-specific parameters were discussed above in

Section 3.1. Most of these are set in the system.py file. The sizes of the hierarchical Voronoi

polyhedra are set using a list, passed to the d_cut argument of the WExploreBinMapper

function. This list should go from largest to smallest, where the number of elements is the

same as the number of levels to the hierarchy. Similarly, the branching factor is set by a list

that is passed to the n_regions argument of WExploreBinMapper. The number of total

trajectories is set by the max_replicas attribute of the system.

Choosing an Initial State.: It is also necessary, upon initializing the system object in

system.py, to define the initial “image” that corresponds to the first structure used in the

simulation. This is done in lines 35–37 of the initialize function in system.py and should be

changed as necessary for a given system. The initial PDB file containing the aligned K+

coordinates was prepared from the basis state 0 (in bstates/0) using Gromacs in the init.sh

script. As described in BASIS_STATES.single, we are initializing all trajectories from a

single starting structure (“bound_0”) that has probability = 1.

Other parameters.: Other details of simulation parameters are given in the md.mdp file.

For instance, the dynamics timestep (0.002 ps), the number of steps per cycle (1000) and the

output frequency for coordinates, velocities and forces (100, 100 and 0, respectively) are

specified here. Note that here we are outputting our coordinates 11 times per cycle (1000 /

100, plus one extra for the endpoint). This must be consistent with the parameter pcoord_len

in system.py, which is also set to 11 in our case.

Preparing the Simulation Environment.: As discussed previously, make sure to modify

the env.sh file to reflect the installation locations of WESTPA, Gromacs, etc. on your

Bogetti et al. Page 34

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

machine. Additionally, add the location of the WESTPA-WExplore package to your

WEST_PYTHONPATH, e.g.:

export WEST_PYTHONPATH=/your/installation/location/WESTPA-WExplore/

westpa_wexplore: $WEST_PYTHONPATH

6.4.5 Running the Simulation—First we need to initialize the simulation:

$./init.sh

And then we can run a job. This can be submitted to a cluster (we will not go over that here),

or run locally, as follows:

$./run.sh --parallel --n-workers 8

This is a good time to break for lunch. In our hands, this will take about 90 minutes on a 4

GHz Intel Core i7 processor.

6.4.6 Analyzing the WExplore Simulations—Aside from the way that resampling is

implemented, WExplore simulations can be treated just like other WE simulations in terms

of analysis. All of the techniques discussed above regarding the definition of observables

and plotting of probability distributions can be used for WExplore simulations as well. Here

we will briefly go over how to analyze simulation properties that are unique to WExplore.

Specifi-cally, the location of the “images” used to define the Voronoi polyhedra.

Firstly, during run time it can be helpful to keep an eye on the number of regions defined so

far at each level of the hierarchy. A brief report is written, each cycle, in west.log:

--wexplore-stats--------------------

wallclock time: 0.221 s

Level 0: 10 cells (10 max)

Level 1: 69 cells (100 max)

Level 2: 193 cells (1000 max)

Iteration wallclock: 0:01:41.246056,

cputime: 0:12:40.570392

This is taken from the end of our simulation, where we have defined 10 regions at the largest

level of the hierarchy (here, they are at least 5 Å apart), 69 total regions at the medium level

(some of which are under the first large region, some under the second, and so on), and 193

total regions at the smallest level. It is completely fine if these numbers do not approach

their maximum values. In contrast, if regions are defined too quickly – especially at the

smallest level – then this is a sign that they are too small. The log file also displays the wall

Bogetti et al. Page 35

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

clock time for the WExplore resampler (0.221 s), which is negligible compared with the

total wall clock for the cycle (1 minute, 41 s), as is typical.

The details about the WExplore regions are stored in west.h5, along with the positions and

progress coordinates. The included Python script (WExplore_analysis.py) shows how the

coordinates of the images can be accessed from the west.h5 file and analyzed using Python

tools like numpy and MDTraj [44].

6.4.7 Conclusion—Users should now have everything they need to use the WExplore

resampling algorithm on their own system of interest. WExplore is a powerful way to

generate heterogeneous sampling on energy landscapes that are both rough and high-

dimensional. The ability to write your own distance metric using tools in Python opens up

many possibilities. For example, a number of dimension reduction tools in sklearn could be

easily imported and used to automatically identify a space of collective variables.

6.5 Advanced Tutorial 3: Analysis Tools

In this tutorial, we will go over how to calculate progress coordinates using external analysis

suites, automate analysis of a WE simulation using the WESTPA w_ipa tool and visualize

the evolution of WE datasets with time. We focus on the p53 peptide system described above

in the Intermediate Tutorial (Section 6.2) in which the progress coordinate is the Cα RMSD

of the peptide from its folded, β-helical conformation

6.5.1 Calculating Progress Coordinates Using External Analysis Suites

Introduction.: Here we will demonstrate how to write scripts for calculating custom

progress coordinates for WESTPA simulations using the external analysis suites MDTraj

and MDAnalysis [44–46]. A prerequisite to this tutorial is completion of the Basic Tutorial.

You will also need to install the MDTraj or MDAnalysis analysis suites. Other required files

are provided on GitHub.

Learning Objectives.: The specific learning objective of this tutorial is to calculate progress

coordinates using an external analysis suite (MDAnalysis or MDTraj).

Explanation of Files and Scripts.: The master configuration file for the simulation,

west.cfg, specifies the dimensionality of the progress coordinate (pcoord_ndim), as well as

how many progress coordinate data points should be returned from each segment

(pcoord_len) (it specifies many other things but these are of primary interest for this tutorial

as they specify the shape of the progress coordinate).

The script rmsd.py is responsible for using MDTraj or MDAnalysis to calculate the RMSD

values during the simulation. Read the comments in the script to understand its setup for

each package (there is a unique version for both).

Two scripts are responsible for calling rmsd.py at different points in the simulation (both

found in westpa_scripts/):

Bogetti et al. Page 36

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• get_pcoord.sh calculates the progress coordinate during the initialization of the

system. Because dynamics have not been run yet, WESTPA only needs a single

point progress coordinate, rather than an array. This difference is controlled by

the FORM argument, explained in the rmsd.py script.

• runseg.sh calculates the progress coordinate during dynamics propagation. It

passes each segment’s trajectory file as input to the custom progress coordinate

loader, rmsd.py.

There are slight differences in these files for the MDAnalysis and MDTraj setups, explained

in the comments of each script.

Files in amber_config/ directory:

• P53.MDM2.prmtop - The topology file.

• md.in - The input file which specifies conditions for dynamics propagation.

The other files needed for the simulation are found in the bstates folder, and are explained in

the MDAnalysis/MDTraj specific sections below.

Running the Simulation.: Before running the simulation, you may want to change the

binning scheme, the number of iterations, or other parameters, which can be found in

west.cfg.

To run the simulation, only two scripts must be executed. To initialize the system:

$./init.sh

To run the simulation in the background:

$./run.sh &

To monitor the progress of the simulation:

$ tail -f west.log

The rest of the tutorial is specific to the software package used. See below for specifics

involving the MDAnalysis and MDTraj analysis suites.

Using the MDAnalysis Analysis Suite: Files in bstates/ directory:

• P53.MDM2.rst - Used as initial crystal structure to compare to the trajectory

when calculating the RMSD and to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.rst.

Using the MDTraj Analysis Suite: Files in bstates/ directory:

Bogetti et al. Page 37

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• P53.MDM2.nc - because MDTraj does not support restart files, this file is used in

get_pcoord.sh to calculate the initial progress coordinate. It is also used by

runseg.sh as an initial crystal structure to compare to the trajectory when

calculating the RMSD.

• P53.MDM2.rst - Used to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.rst.

Conclusion.: You have learned in this tutorial the basic structure of a Python script to

calculate progress coordinates for WESTPA using the MDAnalysis and MDTraj analysis

suites. There are two scripts run by WESTPA which call pcoord_loader.py, triggering the

calculation of progress coordinates. The bash script, get_pcoord.sh, triggers the calculation

of only a single progress coordinate, while runseg.sh triggers the calculation of the progress

coordinate at multiple points in a trajectory, as defined in west.cfg. It is important to include

the last line of the Python scripts, setting segment.pcoord equal to the progress coordinate

array, so that the progress coordinate may be used to further the simulation.

6.5.2 The w_ipa Analysis Tool

Introduction.: The w_ipa analysis tool is designed to facilitate analysis of WESTPA

simulation datasets through a single interface (Jupyter Notebooks or the command line). In

particular, w_ipa automates analysis routines, ensures data consistency through the use of

automatically updated “analysis schemes”, enables a user to easily view a particular dataset

or trajectory segment in the H5 file, and monitors the progress of the simulation (e.g.

trajectory weights, progress coordinates, and other properties of interest).

Learning Objectives. The specific learning objectives of this tutorial are to use the w_ipa

analysis tool to:

1. Calculate rate constants

2. Trace and analyze trajectory segments (weight, pcoord, auxdata)

3. Plot datasets

Setting Up.: Using w_ipa is straightforward. The west.cfg file, which specifies most of the

simulation parameters, also specifies the analysis parameters under the Analysis heading.

The general format of the analysis section can be seen in the included west.cfg file. More

detailed examples are available in the Basic and Intermediate Tutorials.

In order to run w_ipa, there must be at least a single analysis scheme specified. This scheme

does not have to consist of the bins and/or state definitions used during the simulation. Less

physically relevant schemes may be employed. Any changes made to analysis schemes in

the west.cfg file will be actualized the next time w_ipa is run. The user is therefore

guaranteed to never wonder whether the analysis files are up to date.

The assign.h5, reweight.h5, and direct.h5 files are stored under ANALYSIS/

SCHEME_NAME. The optional arguments that can be passed to w_assign, w_direct, and

Bogetti et al. Page 38

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

w_reweight can be specified by creating a section with the tool name and using the value

pairs argument.

The Interface.: To run w_ipa from the command line, enter the command w_ipa after

having sourced westpa.sh (if not already sourced). To run w_ipa in a Jupyter notebook enter

the command w_jupyter from the command line. When you create a new Jupyter notebook,

there are some basic Python commands that must be executed:

import w_ipa

w = w_ipa.WIPI()

At startup, it will load or run the analysis schemes specified in the

configuration file (typically west.cfg)

w.main()

w.interface = ‘matplotlib’

The Python kernel must be launched with the use of w_jupyter, or otherwise, the

$PYTHON_PATH variable must be set to include the WESTPA directories. The command

w_env, which ships with WESTPA, is responsible for setting environment variables and can

be used with the Jupyter notebook command to ensure w_ipa is importable.

All commands are applicable from both the command line and Jupyter notebook interface; if

plotting functions are called from the command line, the plot will appear within the console

(it can be configured to use matplotlib if desired; this requires an active, available X

session).

All of the variables are now accessible from the w object.

Changing Schemes and Accessing Datasets.: A typical analysis routine begins by

selecting an appropriate analysis scheme that may consist of multiple state definitions,

averaging options, or reweighting parameters that are appropriate for the simulation. Most of

the datasets are presented from the current, “active” state, although access to other datasets

is conveniently available. All numerical datasets are given as numpy arrays, allowing for

easy analysis of data.

To see what schemes are available, run the following command:

$ w.list_schemes

To change schemes, you may set the w.scheme variable to a string or integer value

(corresponding to the index of the scheme). For instance, suppose you have the following

two schemes: “EXAMPLE”, and “ALTERNATE”, and the current scheme is “EXAMPLE”.

To access the properties of the current iteration in the current scheme (explained in more

detail below), you would type the following:

Bogetti et al. Page 39

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

$ w.current

However, to access the alternate scheme, you would run the following command:

$ w.schemes.ALTERNATE.current

Where “ALTERNATE” corresponds to the scheme name written in the west.cfg file.

The w_ipa tool works by presenting an iteration and all its data as a single object. Each

iteration object contains numerous datasets and helper functions designed to ease analysis.

After loading, w_ipa defaults to the final iteration. You can change the iteration by using the

following command:

$ w.iteration = 39

At any time, we have three iteration objects available in the object w: current, past, future.

The past and future datasets are keyed to the parents and children of the segments in the

current dataset. For instance, if you are analyzing segment 200 in the current iteration and

wish to analyze the parent segment it came from, you could access the two datasets using the

following iteration objects:

$ w.current[200] $ w.past[200]

Even though it is very unlikely that the actual segment ID of the parent of segment 200 is

200, it is mapped correctly to enable convenient analysis. To obtain the actual segment ID,

just run:

$ w.past[200].seg_id OR w.past[200][‘seg_id’]

As indicated above, objects in w_ipa can be called either as Python dictionaries or as

attributes on the object. These can be listed by calling the print method on the parent object.

In addition, as w_ipa is using iPython under the hood, tab completion works as when using

the command-line interface (CLI).

To access the main datasets of interest, pcoord and auxdata, type the following:

$ w.current.pcoord $ w.current.auxdata

These commands will output the full datasets, which can be useful for calculating properties

on all trajectory segments at once. But what if we are only interested in looking at the

properties of particular segments?

Bogetti et al. Page 40

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

You could manually find a segment of interest, but w_ipa includes a few convenient

properties that return certain segments. In particular, w.current provides the following:

maxweight

minweight

successful_trajectories

The maxweight and minweight properties return objects which contain data about the

segments that carry the highest and lowest weights in the current iteration, respectively. The

successful_trajectories property returns the IDs of the segments that successfully

transitioned between states (the states are defined in your west.cfg). Calling these functions

on an iteration object yields all datasets pertaining to the segment with the desired property.

In this WE simulation, each trajectory contains 101 timepoints. Therefore, the maxweight

segment (seg_id 177) in iteration 49 has (101,2) pcoord values, 101 auxdata values, and it

can switch bins and states 101 times. You can see this by running w.current.maxweight.

The auxdata dataset is unique in that the simulations can contain any number of auxiliary

datasets with any unique name. Here, they are returned as a dictionary where the key is the

dataset name defined in west.cfg and the value is a numpy array containing the actual

dataset.

Segment 177 above was in state 1 during the entire iteration. But what is state 1? It is

defined in west.cfg, but we do not have to go back to west.cfg to look it up. Simply run:

$ w.state_labels

It is also in bin 0 the entire time (note that these are the bins defined in west.cfg for this

analysis scheme and not the bins used in the simulation). What is the pcoord value of that

bin? Run:

$ w.bin_labels

To track the immediate parent and children of a segment, we can use w.past and w.future.

These iteration objects are similar to w.current, but keyed to give information about the

segments in w.current. For instance, to look up the weight of segment 177’s parent, run the

following:

$ w.past[177].weights

Likewise, to see whether the same segment had any children, run:

$ w.future[177]

Bogetti et al. Page 41

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Segments always have a past, but do not always have a future. They may also produce

multiple children, so the values returned by w.future[seg_id] are usually more complicated.

Rather than being given the datasets directly, w.future returns a list of the datasets.

To determine the properties of a complete trajectory (that is, the string of segments going

back to the first iteration), w_ipa includes a fast trace function. To trace segment 177 in

iteration 39 (current iteration), run the following:

$ s = w.trace(177)

It returns an object similar to w.current[177], except that it also contains all historical

information. The auxdata, bins, pcoord, and states datasets are all going to be very large;

their shape should be the product of the number of time-points per iteration and the

trajectory length. As we are at iteration 39, and have 101 time points per τ value, we should

have 3939 values in each dataset!

Plotting.: Rather than visually inspecting each value, let us just plot it. Run the following:

$ clear

$ s.weights.plot() $ clear

$ s.pcoord.plot() $ clear

Many datasets, such as weight, default to a logscale; others, such as pcoord, use a linear

scale. By default, the 0th dimension of pcoord is plotted. When the plotting function is

called via the CLI, a rough estimate of how the trajectory’s pcoord has evolved is plotted in

the terminal.

The w.current iteration object contains information about the rate constants that were

calculated in the active analysis scheme. To view an array containing the rate constants

along with the upper and lower confidence intervals, run the following (do not forget about

tab completion):

$ w.current.direct.rate_evolution OR $ w.current.rate_evolution.direct

To view a plot of their evolution, run the following:

$ w.current.direct.rate_evolution.plot()

The w_ipa tool displays the upper and lower confidence intervals on the plot as well.

6.5.3 Visualization of WE Datasets—In addition to generating probability

distributions as a function of the progress coordinate (or other observables of interest), it can

be helpful to examine movies of how the distributions evolve with time. Such movies can be

Bogetti et al. Page 42

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

used to determine the optimal number of trajectories per bin in a particular region of the

progress coordinate by tracking how the probability distribution evolves with the number of

trajectories that region.

Learning Objectives.: The specific learning objectives of this tutorial are:

1. Create a movie of how a probability distribution evolves with time.

2. Trace representative trajectories over this probability distribution.

Here, we will create a movie of how a two-dimensional probability distribution (Figure 13)

evolves with time. This movie-making feature is currently carried out using a bash script

(pdist_evol.sh) and will eventually be added to the WESTPA plothist tool.

The bash script involves the following three steps: (1) run the w_pdist tool on the west.h5

file to generate probability distributions in a specified folder that will also contain the

eventual movie of how the distributions evolve with time, (2) generate a plot of a two-

dimensional probability distribution for each iteration as a cumulative moving average from

iteration 1 to 40 and (3) create the movie from the 40 generated frames of the probability

distributions. The most important part of this script is the --postprocess-function option of

plothist that is defined in postprocess.py. This function requires a basic knowledge of Python

and matplotlib, and can be used to modify features of the plot (e.g. adjustment of axis labels,

tick marks, titles, and lines) via the matplotlib interface. In addition, external files from

various analyses can be uploaded and overlaid on the plot as demonstrated in this example.

Here, we will select two trajectories from the last WE iteration and overlay their pathways

on the probability distribution of the overall simulation as a function of progress coordinate.

First, we will use the trace_walker function to determine the segment number of the selected

trajectories in each WE iteration going all the way back to the corresponding conformation

of the initial state ensemble. This process of tracing can also be accomplished by using

WESTPA tools w_ipa and w_trace. After the segment numbers are obtained, the

get_pcoords function loads in 10 progress coordinate values per iteration for the trajectories.

Finally, a movie-making tool (here, we use mencoder) creates a movie from the 40 frames of

probability distributions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding Information

This work was supported by NIH R01 GM1151805-01 to LT Chong, DM Zuckerman, and MC Zwier; NSF
CHE-1807301 and NIH R01 GM1115762 to LT Chong; a University of Pittsburgh Dietrich School of Arts and
Sciences Graduate Fellowship to AT Bogetti; NIH R01GM130794 to A Dickson; NIH T32-DK061296 to JL
Adelman; and a University of Pittsburgh Brackenridge Summer Undergraduate Fellowship to PA Torrillo.

References

[1]. Zwier MC, Adelman JL, Kaus JW, Pratt AJ, Wong KF, Rego NB, Suárez E, Lettieri S, Wang DW,
Grabe M, Zuckerman DM, Chong LT. WESTPA: An Interoperable, Highly Scalable Software

Bogetti et al. Page 43

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Package for Weighted Ensemble Simulation and Analysis. Journal of Chemical Theory and
Computation. 2015; 11(2):800–809. 10.1021/ct5010615. [PubMed: 26392815]

[2]. Huber GA, Kim S. Weighted-ensemble Brownian dynamics simulations for protein association
reactions. Biophysical Journal. 1996; 70(1):97–110. 10.1016/S0006-3495(96)79552-8. [PubMed:
8770190]

[3]. Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel
molecular dynamics implementation. Computer Physics Communications. 1995; 91(1):43–56.
10.1016/0010-4655(95)00042-E.

[4]. Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation
package: Amber biomolecular simulation package. Wiley Interdisciplinary Reviews:
Computational Molecular Science. 2013; 3(2):198–210. 10.1002/wcms.1121.

[5]. Eastman P, Pande V. OpenMM: A Hardware-Independent Framework for Molecular Simulations.
Computing in Science & Engineering. 2010; 12(4):34–39. 10.1109/MCSE.2010.27.

[6]. Adelman JL, Grabe M. Simulating rare events using a weighted ensemble-based string method.
The Journal of Chemical Physics. 2013; 138(4):044105 10.1063/1.4773892. [PubMed:
23387566]

[7]. Dickson A, Brooks CL. WExplore: Hierarchical Exploration of High-Dimensional Spaces Using
the Weighted Ensemble Algorithm. The Journal of Physical Chemistry B. 2014; 118(13):3532–
3542. 10.1021/jp411479c. [PubMed: 24490961]

[8]. Zwier MC, Kaus JW, Chong LT. Efficient Explicit-Solvent Molecular Dynamics Simulations of
Molecular Association Kinetics: Methane/Methane, Na + /Cl , Methane/Benzene, and K + /18-
Crown-6 Ether. Journal of Chemical Theory and Computation. 2011; 7(4):1189–1197. 10.1021/
ct100626x. [PubMed: 26606365]

[9]. Zwier MC, Pratt AJ, Adelman JL, Kaus JW, Zuckerman DM, Chong LT. Efficient Atomistic
Simulation of Pathways and Calculation of Rate Constants for a Protein–Peptide Binding
Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide. The
Journal of Physical Chemistry Letters. 2016; 7(17):3440–3445. 10.1021/acs.jpclett.6b01502.
[PubMed: 27532687]

[10]. Saglam AS, Chong LT. Protein–protein binding pathways and calculations of rate constants using
fully-continuous, explicit-solvent simulations. Chemical Science. 2019; 10(8):2360–2372.
10.1039/C8SC04811H. [PubMed: 30881664]

[11]. Adhikari U, Mostofian B, Copperman J, Subramanian SR, Petersen AA, Zuckerman DM.
Computational Estimation of Microsecond to Second Atomistic Folding Times. Journal of the
American Chemical Society. 2019; 141(16):6519–6526. 10.1021/jacs.8b10735. [PubMed:
30892023]

[12]. DeGrave AJ, Ha JH, Loh SN, Chong LT. Large enhancement of response times of a protein
conformational switch by computational design. Nature Communications. 2018–12; 9(1).
10.1038/s41467-018-03228-6.

[13]. Donovan RM, Sedgewick AJ, Faeder JR, Zuckerman DM. Efficient stochastic simulation of
chemical kinetics networks using a weighted ensemble of trajectories. The Journal of Chemical
Physics. 2013; 139(11):115105 10.1063/1.4821167. [PubMed: 24070313]

[14]. Donovan RM, Tapia JJ, Sullivan DP, Faeder JR, Murphy RF, Dittrich M, Zuckerman DM.
Unbiased Rare Event Sampling in Spatial Stochastic Systems Biology Models Using a Weighted
Ensemble of Trajectories. PLOS Computational Biology. 2016; 12(2):e1004611 10.1371/
journal.pcbi.1004611. [PubMed: 26845334]

[15]. Tse MJ, Chu BK, Gallivan CP, Read EL. Rare-event sampling of epigenetic landscapes and
phenotype transitions. PLOS Computational Biology. 2018-08-03; 14(8):e1006336 10.1371/
journal.pcbi.1006336. [PubMed: 30074987]

[16]. Kahn H, Harris TE. Estimation of particle transmission by random sampling. National Bureau of
Standards Applied Math Series. 1951; 12:27–30.

[17]. Zhang BW, Jasnow D, Zuckerman DM. The “weighted ensemble” path sampling method is
statistically exact for a broad class of stochastic processes and binning procedures. The Journal of
Chemical Physics. 2010; 132(5):054107 10.1063/1.3306345. [PubMed: 20136305]

Bogetti et al. Page 44

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[18]. Donyapour N, Roussey N, Dickson A. REVO: Resampling of Ensembles by Variation
Optimization. chemRxiv. 2019; 10.26434/chemrxiv.7973759.

[19]. Suárez E, Zuckerman DM. Pathway Histogram Analysis of Trajectories: A general strategy for
quantification of molecular mechanisms. arXiv:181010514 [physics]. 2018; http://arxiv.org/abs/
1810.10514.

[20]. Bhatt D, Zhang BW, Zuckerman DM. Steady-state simulations using weighted ensemble path
sampling. The Journal of Chemical Physics. 2010; 133(1):014110 10.1063/1.3456985. [PubMed:
20614962]

[21]. Zuckerman DM, Chong LT. Weighted Ensemble Simulation: Review of Methodology,
Applications, and Software. Annual Review of Biophysics. 2017; 46(1):43–57. 10.1146/annurev-
biophys-070816-033834.

[22]. Suárez E, Lettieri S, Zwier MC, Stringer CA, Subramanian SR, Chong LT, Zuckerman DM.
Simultaneous Computation of Dynamical and Equilibrium Information Using a Weighted
Ensemble of Trajectories. Journal of Chemical Theory and Computation. 2014; 10(7):2658–
2667. 10.1021/ct401065r. [PubMed: 25246856]

[23]. Copperman J, Zuckerman D. Accelerated estimation of long-timescale kinetics by combining
weighted ensemble simulation with Markov model “microstates” using non-Markovian theory.
arXiv:190304673 [cond-mat, physics:physics]. 2019; http://arxiv.org/abs/1903.04673.

[24]. Braun E, Gilmer J, Mayes HB, Mobley DL, Monroe JI, Prasad S, Zuckerman DM. Best Practices
for Foundations in Molecular Simulations [Article v1.0]. Living Journal of Computational
Molecular Science. 2019; 1(1). 10.33011/livecoms.1.1.5957.

[25]. Grossfield A, Patrone PN, Roe DR, Schultz AJ, Siderius D, Zuckerman DM. Best Practices for
Quantification of Uncertainty and Sampling Quality in Molecular Simulations [Article v1.0].
Living Journal of Computational Molecular Science. 2019; 1(1). 10.33011/livecoms.1.1.5067.

[26]. Mostofian B, Zuckerman DM. Error Analysis for Small-Sample, High-Variance Data: Cautions
for Bootstrapping and Bayesian Bootstrapping. Biophysical Journal. 2019–02; 116(3):140a
10.1016/j.bpj.2018.11.779.

[27]. Dickson A, Warmflash A, Dinner AR. Separating forward and backward pathways in
nonequilibrium umbrella sampling. Journal of Chemical Physics. 2009; 131(15).
10.1063/1.3244561.

[28]. Dickson A, Lotz SD. Ligand Release Pathways Obtained with WExplore: Residence Times and
Mechanisms. Journal of Physical Chemistry B. 2016; 120(24):5377–5385. 10.1021/
acs.jpcb.6b04012.

[29]. Dickson A, Lotz SD. Multiple Unbinding Pathways and Ligand-Induced Destabilization
Revealed by WExplore. Biophysical Journal. 2017; 112:620–629. [PubMed: 28256222]

[30]. Dixon T, Lotz SD, Dickson A. Predicting ligand binding affinity using on- and off-rates for the
SAMPL6 SAMPLing challenge. Journal of Computer-Aided Molecular Design. 2018; p. 1–12.
[PubMed: 29204945]

[31]. Lotz SD, Dickson A. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding
Reveals Transition State Stabilizing Interactions. Journal of the American Chemical Society.
2018; p. jacs.7b08572 10.1021/jacs.7b08572.

[32]. Zhang BW, Jasnow D, Zuckerman DM. Efficient and verified simulation of a path ensemble for
conformational change in a united-residue model of calmodulin. Proceedings of the National
Academy of Sciences. 2007; 104(46):18043–18048. 10.1073/pnas.0706349104.

[33]. Pratt A, Suarez E, Zuckerman D, Chong L. Extensive Evaluation of Weighted Ensemble
Strategies for Calculating Rate Constants and Binding Affinities of Molecular Association/
Dissociation Processes. bioRxiv. 2019; 10.1101/671172.

[34]. DeGrave AJ, Chong LT. Reducing the impact of transient effects in rate-constant estimation using
the weighted ensemble strategy. bioRxiv. 2018; 10.1101/453647.

[35]. Mostofian B, Zuckerman DM. Statistical Uncertainty Analysis for Small-Sample, High Log-
Variance Data: Cautions for Bootstrapping and Bayesian Bootstrapping. Journal of Chemical
Theory and Computation. 2019; 15(6):3499–3509. 10.1021/acs.jctc.9b00015. [PubMed:
31002504]

Bogetti et al. Page 45

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1810.10514
http://arxiv.org/abs/1810.10514
http://arxiv.org/abs/1903.04673

[36]. Joung IS, Cheatham TE. Molecular Dynamics Simulations of the Dynamic and Energetic
Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. The Journal of
Physical Chemistry B. 2009; 113(40):13279–13290. 10.1021/jp902584c. [PubMed: 19757835]

[37]. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple
potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;
79(2):926–935. 10.1063/1.445869.

[38]. Nguyen H, Maier J, Huang H, Perrone V, Simmerling C. Folding Simulations for Proteins with
Diverse Topologies Are Accessible in Days with a Physics-Based Force Field and Implicit
Solvent. Journal of the American Chemical Society. 2014; 136(40):13959–13962. 10.1021/
ja5032776. [PubMed: 25255057]

[39]. Nguyen H, Roe DR, Simmerling C. Improved Generalized Born Solvent Model Parameters for
Protein Simulations. Journal of Chemical Theory and Computation. 2013; 9(4):2020–2034.
10.1021/ct3010485. [PubMed: 25788871]

[40]. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. Structure of
the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Trans-activation Domain. Science.
1996; 274(5289):948–953. 10.1126/science.274.5289.948. [PubMed: 8875929]

[41]. Honda S, Yamasaki K, Sawada Y, Morii H. 10 Residue Folded Peptide Designed by Segment
Statistics. Structure. 2004; 12(8):1507–1518. 10.1016/j.str.2004.05.022. [PubMed: 15296744]

[42]. Hill TL. In: State Probabilities and Fluxes in Terms of the Rate Constants of the Diagram
Springer New York; 1989 p. 39–88. 10.1007/978-1-4612-3558-3_2.

[43]. Dickson A Mapping the Ligand Binding Landscape. Biophysical Journal. 2018; 115(9):1707–
1719. 10.1016/j.bpj.2018.09.021. [PubMed: 30327139]

[44]. McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, Schwantes
CR, Wang LP, Lane TJ, Pande VS. MDTraj: A Modern Open Library for the Analysis of
Molecular Dynamics Trajectories. Biophysical Journal. 2015; 109(8):1528–1532. 10.1016/
j.bpj.2015.08.015. [PubMed: 26488642]

[45]. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the
analysis of molecular dynamics simulations. Journal of Computational Chemistry. 2011;
32(10):2319–2327. 10.1002/jcc.21787. [PubMed: 21500218]

[46]. Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler S, Doma ski J, Dotson D, Buchoux S,
Kenney I, Beckstein O. MDAnalysis: A Python Package for the Rapid Analysis of Molecular
Dynamics Simulations. In: ; 2016 p. 98–105. 10.25080/Majora-629e541a-00e.

Bogetti et al. Page 46

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Weighted ensemble MD simulations. Trajectory segments (blue) are fairly evenly distributed

in configuration space, and hence enhance sampling of normally undersampled regions of

configuration space, such as free energy barriers. In this schematic, the free energy or

potential of mean force is shown as a function of an arbitrary progress coordinate. Darker

color denotes higher weight trajectories, which will occur at free energy minima and regions

initially seeded with trajectories and probability.

Bogetti et al. Page 47

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Hierarchical Voronoi polyhedra for the ring potential model system [6, 27]. The blue colors

show potential energy minima on the left and right and shallower minima on the top and

bottom. Heavy lines show the Voronoi boundaries between the largest regions; one region is

defined per local energy minimum. Each of these is broken up by medium regions (shown

with medium-weight lines), which are themselves broken up by smaller regions (shown with

light-weight lines).

Bogetti et al. Page 48

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Convergence assessment and error analysis in the face of large run-to-run variation. The flux

of probability into the target state B computed as a function of continuous molecular time,

tmol, is shown for several independent WE runs (grey). The large variation among individual

runs makes it challenging both to assess whether the transient period has ended and to

construct reliable error bars (see text). The history augmented Markov State Model

(haMSM) analysis (green lines) provides an estimate of the long-time behavior, and the

Bayesian bootstrap credibility region (red lines) estimates the average transient behavior.

Bogetti et al. Page 49

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Probabiity evolution of Na+/Cl− association as a function of interatomic distance and WE

iteration. The distribution from your particular simulation may look slightly different.

Observe that at the beginning of the simulation, the probability is centered around 12 Å (the

initial distance).

Bogetti et al. Page 50

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Mean flux evolution of Na+/Cl− association as a function of WE iteration. The mean flux

alternatively rises sharply and then relaxes. These “peaks” correspond to probability

crossing into the target state. Your plot may still not be completely converged after 100 WE

iterations.

Bogetti et al. Page 51

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Probability distributions for each of the two progress coordinate dimensions versus WE

iteration. The simulation was analyzed after 10 WE iterations.

Bogetti et al. Page 52

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Probability distributions for each of the two progress coordinate dimensions versus WE

iteration. The simulation was re-analyzed after 40 WE iterations

Bogetti et al. Page 53

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Ramachandran plot showing the occurance of ϕ/ψ angles of the second peptide bond for

each segment throughtout the course of the simiulation.

Bogetti et al. Page 54

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Cα RMSD vs simulation time for the brute force simulation of chignolin.

Bogetti et al. Page 55

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Estimating the unfolding rate constant of chignolin. The 1 ns window-averaged unfolding

rate constant is shown in a semi-logarithmic plot for three independent WE simulations

(black, red, and green) that were started from the same folded starting structure (see lower

left). The corresponding unfolding rate constant from the brute force simulation is indicated

by the horizontal blue line and its confidence interval by the shaded region. The molecular

time is the time elapsed, Nτ where N is the number of WE iterations that each have a length

of τ. The aggregate simulation time was on average, ~1.3 μs for each simulation.

Bogetti et al. Page 56

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Estimating the folding rate constant of chignolin. The 20-ns window-averaged folding rate

constant is shown in a semi-logarithmic plot for three independent WESTPA simulations

(black, red, and green profiles) with the same unfolded starting structure (see lower left).

Note the significantly longer molecular and aggregate simulation times for each simulation

to obtain converged rate constants of folding compared to unfolding (see Figure 11). The

corresponding rate constant from the brute force simulation is indicated by the horizontal

blue line and its confidence interval by the shaded region.

Bogetti et al. Page 57

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
The K+/18-Crown-6 ether system. The K+ ion is shown as a pink sphere. Left: top view.

Right: side view.

Bogetti et al. Page 58

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13.
Two-dimensional probability distribution as a function of the progress coordinate. Two

representative, continuous trajectories that originate from distinct initial states are traced in

cyan and white, respectively.

Bogetti et al. Page 59

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bogetti et al. Page 60

Ta
b

le
 1

.

W
E

 p
ar

am
et

er
s

us
ed

 f
or

 n
ot

ab
le

 a
pp

lic
at

io
ns

 in
 th

e
lit

er
at

ur
e.

 T
he

 a
st

er
is

k
(*

)
in

di
ca

te
s

an
 a

pp
lic

at
io

n
w

ith
 I

/O
 o

pe
ra

tio
ns

 th
at

 is
 to

o
fr

eq
ue

nt
 f

or

su
pe

rc
om

pu
te

rs
 a

nd
 g

am
in

g
G

PU
s.

R
ar

e-
ev

en
t

pr
oc

es
s

Sy
st

em
 a

nd
 s

iz
e

W
E

 P
ar

am
et

er
s

Su
it

ab
le

 c
om

pu
ti

ng
 r

es
ou

rc
es

m
ill

is
ec

on
d

pr
ot

ei
n

fo
ld

in
g

[2
6]

N
T

L
9

pr
ot

ei
n

in
 g

en
er

al
iz

ed

B
or

n
(G

B
)

im
pl

ic
it

so
lv

en
t w

ith

lo
w

 a
nd

 h
ig

h
so

lv
en

t v
is

co
si

ty

(c
ol

lis
io

n
fr

eq
ue

nc
y

of
 5

 p
s−

1

an
d

80
 p

s−
1

re
sp

ec
tiv

el
y)

: 6
27

at

om
s

1D
 p

ro
gr

es
s

co
or

di
na

te
: C

α
R

M
SD

 f
ro

m
 th

e
fo

ld
ed

 s
tr

uc
tu

re
.

B
in

ni
ng

: 5
3

bi
ns

, t
ha

t a
re

 f
in

el
y

sp
ac

ed
 f

or
 n

ea
r-

fo
ld

ed
 s

tr
uc

tu
re

s
(3

5
bi

ns
 f

or
 1

.0
 Å

 <
 R

M
SD

 <
 4

.4
 Å

)
an

d
m

or
e

co
ar

se
ly

 s
pa

ce
d

fo
r

m
or

e
un

fo
ld

ed
 s

tr
uc

tu
re

s:
 (

12
 b

in
s

fo
r

4.
4

Å
 <

 R
M

SD
 <

 6
.6

 Å
 a

nd
 5

 b
in

s
fo

r
6.

6
Å

 <
 R

M
SD

 <
 1

0.
2

Å
).

τ
=

 1
0

ps
; 1

20
0

W
E

 it
er

at
io

ns
; 4

 tr
aj

ec
to

ri
es

/b
in

Pr
of

es
si

on
al

-g
ra

ph
ic

s-
pr

og
ra

m
m

in
g

G
PU

s*
 (

e.
g.

N

V
ID

IA
 G

T
X

 1
08

0)

pe
pt

id
e-

pr
ot

ei
n

as
so

ci
at

io
n

[9
]

p5
3

pe
pt

id
e/

M
D

M
2

pr
ot

ei
n

in

G
B

/S
A

 im
pl

ic
it

so
lv

en
t:

16
85

at

om
s

2D
 p

ro
gr

es
s

co
or

di
na

te
: h

ea
vy

-a
to

m
 R

M
SD

 o
f

p5
3

pe
pt

id
e

re
la

tiv
e

to
 it

s
M

D
M

2-
bo

un
d

co
nf

or
m

at
io

n
fo

llo
w

in
g

al
ig

nm
en

t o
n

(i
)

M
D

M
2

an
d

(i
i)

 it
se

lf
.

B
in

ni
ng

: 1
6

bi
ns

 w
ith

 0
.5

 Å
 w

id
th

s
al

on
g

th
e

p5
3-

al
ig

ne
d

R
M

SD
 a

nd
 w

id
th

s
ra

ng
in

g
fr

om
 0

.2
 to

 2
 A

 f
or

th

e
M

D
M

2-
al

ig
ne

d
R

M
SD

.
τ

=
 5

0
ps

; 3
96

 W
E

 it
er

at
io

ns
; 8

 tr
aj

ec
to

ri
es

/b
in

16
00

 C
PU

 c
or

es
 o

n
a

su
pe

rc
om

pu
te

r
(e

.g
. X

SE
D

E
’s

B

ri
dg

es
)

or
 1

6
G

PU
s

(e
.g

.
N

V
ID

IA
 T

es
la

 P
10

0
G

PU
s)

pr
ot

ei
n-

pr
ot

ei
n

as
so

ci
at

io
n

[1
0]

ba
rn

as
e/

ba
rs

ta
r

pr
ot

ei
ns

 in

ex
pl

ic
it

so
lv

en
t:

>
10

0,
00

0
at

om
s

2D
 p

ro
gr

es
s

co
or

di
na

te
: (

i)
 h

ea
vy

-a
to

m
 R

M
SD

 o
f

ba
rs

ta
r

re
si

du
es

 D
35

 a
nd

 D
39

 a
ft

er
 a

lig
nm

en
t o

n
ba

rn
as

e,
 a

nd
 (

ii)
 m

in
im

um
 p

ro
te

in
-p

ro
te

in
 s

ep
ar

at
io

n
di

st
an

ce
. D

35
 a

nd
 D

39
 a

re
 th

e
ba

rs
ta

r
re

si
du

es
 th

at

be
co

m
e

th
e

m
os

t b
ur

ie
d

up
on

 b
in

di
ng

 b
ar

na
se

.
τ

=
 2

0
ps

; 6
50

 W
E

 it
er

at
io

ns
B

in
ni

ng
: 7

2
bi

ns
 w

ith
 c

oa
rs

el
y

sp
ac

ed
 b

in
s

ev
er

y
1

Å
 f

ro
m

 1
0

to
 6

0
Å

 a
nd

 m
or

e
fi

ne
ly

 s
pa

ce
d

bi
ns

 e
ve

ry

0.
5

Å
 f

ro
m

 0
 to

 1
0

Å
 a

lo
ng

 th
e

R
M

SD
 c

oo
rd

in
at

e;
 tw

o
bi

ns
 a

lo
ng

 th
e

di
st

an
ce

 c
oo

rd
in

at
e

se
pa

ra
te

d
by

 a

bi
n

bo
un

da
ry

 a
t 5

 Å
; f

ix
ed

 to
ta

l n
um

be
r

of
 tr

aj
ec

to
ri

es
 (

16
00

)

16
00

 C
PU

 c
or

es
 o

n
a

su
pe

rc
om

pu
te

r
(e

.g
. X

SE
D

E
’s

B

ri
dg

es
)

or
 1

6
G

PU
s

(e
.g

.
N

V
ID

IA
 T

es
la

P1
00

G
PU

s)

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bogetti et al. Page 61

Table 2.

WEST_SIM_ROOT organization and file explanations

bstates/ directory containing basis states

env.sh set environment variables

init.sh initialize the WESTPA simulation

common_files/ directory containing files for dynamics (i.e. topologies)

run.sh run the WESTPA simulation

tstate.file define the target state (for steady state simulations only)

west.cfg specify main WE simulation parameters

westpa_scripts/ directory containing essential scripts

system.py a separate script to define functions or parameters (optional)

reference/ directory containing reference files for calculations (optional)

Living J Comput Mol Sci. Author manuscript; available in PMC 2020 May 11.

	Abstract
	Introduction and Scope of Tutorials
	Using WE Concepts in MD Simulation
	Prerequisites
	Background Knowledge and Experience
	Software Requirements
	Hardware Requirements
	Number of Processors.
	Storage Requirements.

	Running WESTPA on a Computing Cluster

	Workflow of Running a WE Simulation
	Overall Flow
	Ready:
	Set:
	Go:
	Analyze:

	General Guidelines for Choosing WE Parameters
	Choosing WExplore-Specific Parameters
	Choice of Distance Metric.
	Region Size, Number of Levels, Branching Factor.
	Number of Trajectories.

	Cluster-Specific Considerations
	Minimizing the Number of Output Files
	Data Management
	Minimizing Network Traffic Across Multiple Computing Nodes
	Advice when Using GPUs

	Uncertainty Quantification and Monitoring of Convergence
	Tutorials
	Basic Tutorial: Na+/Cl− Association
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.

	Setting up a WE Simulation Using WESTPA
	Overview.
	The System.
	Choosing an Initial State.
	Files for Dynamic Propagation.
	Preparing the System Environment.
	Equilibrium vs Steady State WE.
	Progress Coordinate, Binning Scheme and τ value.
	Other WE Parameters.
	Trajectory Imaging.

	Initializing the WE Simulation
	Running the WE Simulation
	Monitoring the WE Simulation
	Analyzing the WE Simulation
	Conclusion

	Intermediate Tutorial: P53 Peptide Conformational Sampling
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.

	Adding Another Dimension to the Progress Coordinate
	Preparing the WE System
	The System.
	Choosing an Initial State.
	Files for Dynamics.
	Preparing the Simulation Environment.
	Equilibrium vs Steady State WE.
	Progress Coordinate, Binning Scheme and τ Value.
	Other WE Parameters.

	Tracking the Auxiliary Data
	Initializing and Running the WE Simulation
	Monitoring the WE Simulation (10 Iterations)
	Adjusting Bin Spacings “On the Fly”
	Monitoring the WE Simulation (40 Iterations)
	Accessing Auxiliary Data
	Conclusion

	Advanced Tutorial 1: Folding of Chignolin Mini-Protein
	Introduction
	Learning Objectives.
	Prerequisites.
	Computational Requirements.
	The System.

	Brute Force Simulations
	Overview.
	Running and Analyzing the Brute Force Simulation.

	Using WESTPA
	Overview.
	Choosing an I nitial State.
	Files for Dynamics.
	Preparing the Simulation Environment.
	Equilibrium vs Steady State WE.
	Progress Coordinate, Binning Scheme and τ value.
	Other WE Parameters.
	Initializing and Running the WE simulations.
	Monitoring and Analyzing the WE Simulations.

	Conclusion

	Advanced Tutorial 2: K+/18-Crown-6 Ether Dissociation with the WExplore Plugin
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.

	Installation and Configuration of the WESTPA-WExplore Plugin
	Preparing the Simulation
	The System.
	Distance Metric.
	Setting parameters.
	Choosing an Initial State.
	Other parameters.
	Preparing the Simulation Environment.

	Running the Simulation
	Analyzing the WExplore Simulations
	Conclusion

	Advanced Tutorial 3: Analysis Tools
	Calculating Progress Coordinates Using External Analysis Suites
	Introduction.
	Learning Objectives.
	Explanation of Files and Scripts.
	Files in amber_config/ directory:
	Running the Simulation.
	Using the MDAnalysis Analysis Suite
	Using the MDTraj Analysis Suite
	Conclusion.

	The w_ipa Analysis Tool
	Introduction.
	Setting Up.
	The Interface.
	Changing Schemes and Accessing Datasets.
	Plotting.

	Visualization of WE Datasets
	Learning Objectives.

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Table 1.
	Table 2.

