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The placenta participates in maternal insulin sensitivity
changes during pregnancy; however,mechanisms remain
unclear. We investigated associations between maternal
insulin sensitivity and placental DNA methylation markers
across the genome. We analyzed data from 430 mother-
offspring dyads in the Gen3G cohort. All women under-
went 75-g oral glucose tolerance tests at ∼26 weeks of
gestation; we used glucose and insulin measures to es-
timate insulin sensitivity (Matsuda index). At delivery, we
collected samples from placenta (fetal side) and mea-
sured DNA methylation using Illumina EPIC arrays. Using
linear regressionmodels to quantify associations at 720,077
cytosine-guanine dinucleotides (CpGs), with adjustment
for maternal age, gravidity, smoking, BMI, child sex, and
gestational age at delivery, we identified 188 CpG sites
where placental DNA methylation was associated with
Matsuda index (P < 6.943 1028). Among genes annotated
to these 188 CpGs, we found enrichment in targets for
miRNAs, in histonemodifications, and in parent-of-origin
DNA methylation including the H19/MIR675 locus (pater-
nally imprinted).We identified12knownplacenta imprinted
genes, including KCNQ1. Mendelian randomization analy-
ses revealedfive lociwhereplacentaDNAmethylationmay
causally influencematernal insulin sensitivity, including the
maternally imprinted gene DLGAP2. Our results suggest
that placental DNA methylation is fundamentally linked to
the regulation of maternal insulin sensitivity in pregnancy.

Insulin sensitivity decreases drastically in the 2nd half of
pregnancy to levels that are similar to those in individuals
with early type 2 diabetes (T2D) (1). It is hypothesized that
this dramatic decrease in insulin sensitivity is meant to help
provide nutrients from maternal sources to the growing
fetus. The placenta likely plays a role in this physiologic
adaptation, but the exact mechanisms remain unclear.

The placenta is a unique organ of fetal origin that lies at
the maternal and fetal interface with primary roles to
optimize fetal growth, protect the fetus against infections,
and produce key hormones to maintain pregnancy; these
hormones profoundly influence maternal physiology. In its
role of nutrient transfer, the placenta responds to both
fetal demands and maternal availability of nutrients and
further adapts to regulate resources allocation. Yet, the
“maternal-fetal conflict” theory posits that the mother and
the fetus “disagree” on an optimal level of resource allo-
cation from the mother to the fetus to allow pregnancy to
its term and a healthy baby (2). During early embryogen-
esis, the trophectoderm develops to form the placenta with
a distinctive epigenetic process (3). The placenta demeth-
ylation process in early development is characterized by
a great number of genomic regions remaining imprinted from
their parent of origin. Some investigators have proposed that
the maintenance of the parental origin of imprinted regions
in placenta contributes to the “maternal-fetal conflict”
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where genes that are expressed from paternal alleles act to
shunt more nutrients to the fetus while expression driven
by maternal alleles helps the mother maintain her resources
(2,4). Thus, it is plausible that specific DNA methylation
patterns in the placenta may influence the decline in
maternal insulin sensitivity that leads to the transfer of
glucose and other fuels to the fetus.

Based on these hypotheses, we investigated associa-
tions between maternal insulin sensitivity estimated in the
2nd trimester and genome-wide DNA methylation in pla-
centa collected at birth in a large prospective pregnancy
cohort. We had initially hypothesized that maternal insulin
sensitivity could lead to changes in placental DNA methyl-
ation (given temporality of our measures) but also tested
the possibility that placenta DNA methylation may in-
fluence maternal insulin sensitivity. To untangle whether
placental DNA methylation is influencing maternal insulin
sensitivity or vice versa, we tested potential causality using
a bidirectional Mendelian randomization (MR) framework.
Additionally, we conducted pathway analyses to deepen
our understanding of our findings.

RESEARCH DESIGN AND METHODS

Description of Participants
This study is based onmother-child pairs in the Genetics of
Glucose regulation in Gestation and Growth (Gen3G) pro-
spective cohort. We have previously published details of re-
cruitment and phenotypic measurements during pregnancy
(5). In brief, we recruited women in the 1st trimester (V1:
5–14weeks), inviting all women presenting for their routine
prenatal laboratories at Centre Hospitalier Universitaire de
Sherbrooke (CHUS).We excludedwomenwith diabetes prior
to pregnancy (known or discovered at 1st trimester) and
nonsingleton pregnancies. In addition to collecting blood
samples, our trained research staff collected demographics,
medical history, and completed standardized anthropometric
measurements. We calculated BMI using the standard
formula (kg/m2).

We followed participating women in the 2nd trimester
(V2: 24–30 weeks) and completed similar measurements.
After overnight fasting, women completed a 75-g oral glucose
tolerance testing (OGTT) for gestational diabetes mellitus
(GDM) screening. We collected plasma samples at baseline
(fasting) and at 1 h and 2 h during the OGTT. We measured
glucose and insulin at each OGTT time point, which allowed
us to derive indices of insulin sensitivity.

We followed women until delivery and collected delivery
and neonatal outcomes in addition to cord blood and placenta
samples. At birth, trained research staff collected placenta
samples (,30 min postpartum) based on a standardized
protocol: 1 cm3 placenta tissue was collected ;5 cm from
the umbilical cord insertion on both sides of the placenta.
Prior studies have shown high concordance of placental
DNA methylation levels at specific loci across biopsy loca-
tions (6). Placenta samples were rapidly put in RNALater
(QIAGEN) and stored at 4°C for a $24 h and then stored
at 280°C. For this study, we selected fetal side placenta

samples based on availability of adequate tissue (high-
quality DNA extraction) and excluded complications in late
pregnancy or delivery (e.g., preeclampsia, chorioamnionitis,
stillbirth).

The CHUS ethics board review committee approved this
study; all women provided written consent. For this study,
we included only women of European origin (self-reported)
who had consented for genetics investigations.

Bioassays
We measured glucose by the glucose hexokinase method
(Roche Diagnostics) immediately after collection and insulin
using multiplexed particle-based flow cytometric assays
(Human MILLIPLEX map kits, EMD Millipore) from
plasma samples previously frozen (280°C). We estimated
insulin sensitivity using the Matsuda index, given by the
following equation: 10,000/ (=[(fasting glucose3 fasting
insulin) 3 (mean glucose during OGTT 3 mean insulin
during OGTT)]) (7). We selected the Matsuda index over
other measures of insulin sensitivity because it has been
validated against euglycemic-hyperinsulinemic clamps in
pregnant women (7).

DNA Methylation Measurements
We purified DNA from 460 placenta samples using the
AllPrep DNA/RNA/Protein Mini Kit (QIAGEN). After bi-
sulfite conversion, the Illumina Laboratory (San Diego, CA)
performed epigenome-wide DNA methylation measure-
ments using the InfiniumMethylationEPIC BeadChip. We
imported methylation data into R for preprocessing using
minfi. We performed quality control (QC) at the sample
level, excluding samples that failed (n 5 5) or had mis-
matched genotype based on paired cord blood data (n5 6)
or sex (n 5 1). Our final placenta DNA methylation data
set included 448 samples. We then excluded women be-
cause of missing data (Matsuda or key covariables). Thus,
our final data set for this study was composed of 430
mother-child pairs (see Supplementary Fig. 1), which fully
overlap with our prior publication of maternal 2-h glucose
associations with placenta DNA methylation (8).

We normalized our data as previously described (8). We
applied functional normalization (9) (FunNorm) and Regres-
sion on Correlated Probes (10) (RCP) to adjust for technical
variability and probe type bias, respectively. Briefly, FunNorm
removes technical variability using control probes from the
array and RCP corrects type II probe distributions using the
distribution of proximal type I probes to increase precision.
We removed cytosine-guanine dinucleotide (CpG) probes
with single nucleotide polymorphisms (SNPs) at the target
site (4,453), single base extension (5,552), or anywhere
within the probe (71,054) with a minor allele frequency
(MAF) of.5%; probes on sex chromosomes (19,129); and
previously identified cross-reactive probes (40,448) (11) to
analyze 720,077 high-quality probes. We used the ComBat
function from the sva package to adjust for batches. We
logit transformed the b-values to M values for statistical
analyses, as they have been shown to be more appropriate,
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meeting statistical model assumptions (12). However, we
also reported effect estimated on the b-value scale to ease
interpretability, since it approximates the proportion of
methylation (from 0 to 1).

Genotyping
We isolated DNA from maternal buffy coat using the Gentra
Puregene Blood Kit (QIAGEN,Mississauga, Ontario, Canada).
We performed genotyping on 598 maternal samples using
IlluminaMEGAEX arrays. We removed 16 samples with a call
rate#98%or failed sampleQC. All remaining samples passed
additional QC measures (percent heterozygosity, sex concor-
dance, principal components derived outliers). We removed
SNPs that were monomorphic, on sex chromosomes, or had
MAF ,1% in our sample, Hardy-Weinburg equilibrium P
value ,1 3 1028, and insertions/deletions. After the above
steps, we had data available on 838,884 SNPs in 582 women.
We performed genotyping imputation using ShapeIT v2.r790
phasing Haplotype Reference Consortium (HRC) r1.1 2016
reference panel and Minimac3 software provided by the
Michigan Imputation Server, which resulted in a data set
containing a total of 39,183,141 autosomal SNPs for the
overall population. Before analyses, we excluded all mono-
morphic SNPs or those with an MAF ,0.05.

Statistical Analyses
We described participants’ characteristics using median and
interquartile range (IQR) for continuous variables and
frequency and percentage for categorical variables. We
used natural log (ln) transformation to obtain a normal
distribution of Matsuda index and used ln values for all
analyses. We conducted analyses using R, version 3.5.1.

In 430 mother-infant pairs, we performed an epigenome-
wide association study (EWAS) by fitting robust linear re-
gression models using the rlm function for each CpG site. In
CpG-by-CpG models, we included DNA methylation (M val-
ues) as the response variable andMatsuda (ln) as the exposure
of interest. Inmodel 1, we adjusted formaternal age, gravidity,
smoking during pregnancy, maternal BMI (1st trimester),
child sex, and gestational age at delivery. To control for
genomic inflation, we used ReFACTor (model 2), a reference-
free method that adjusts for heterogeneity putative to cell
types in EWAS from heterogenous tissues (13). We used
the top-10 principal components (PCs) estimated from
ReFACTor as proxy for placenta cellular heterogeneity as
suggested by the scree plot (Supplementary Fig. 2). We used
quantile-quantile plots and histograms for the regression
P values to visually inspect genomic inflation (l) in both
models (Supplementary Fig. 3).We corrected formultiple testing
using Bonferroni with significant P values ,6.94 3 1028.

Gene Annotation and Pathway Analyses
First, we annotated CpGs with the R package IlluminaHu-
manMethylationEPICmanifest (14). Second, we utilized the R
package humarray (15) to find the nearest gene based on base
pair distance upstream and downstream. We tested for
enrichment in biologic pathways with Enrichr (16,17)

Web platform using only one gene per identified CpG: at
each CpG, we prioritized gene annotation from UCSC
Reference extracted from the IlluminaHumanMethylation-
EPICmanifest (except in cases of updated gene names) and
then used the closest informative gene name from humarray
annotation (priority to coding genes). We focused our atten-
tion on TargetScan miRNA, 2017; ENCODE histone modifi-
cations, 2015; WikiPathways, 2019; BioCarta, 2016; GWAS
Catalogue, 2019; and dbGaP-reported databases in Enrichr
(16,17).

MR Analyses
We conducted MR analyses to untangle direction of effect of
associations based on 401 women with complete data from
genotyping arrays, placental DNA methylation, and Matsuda
index. First, we used MR to test whether placental DNA
methylation levels may influencematernal insulin sensitivity.
We searched for SNPs in cis (within 500 kb on each side) at
each of 188 CpGs identified in our model 1 and tested SNP-
to-methylation associations to identify genetic instrumental
variables (IVs) in each region. We removed SNPs with an
MAF ,0.05. We assumed a genetic additive model and
chose the effect allele as associated with greater DNA
methylation levels. If multiple SNPs present in the deter-
mined cis region were associated with DNA methylation
levels at the CpG of interest, we used the elastic net pro-
cedure with the glmnet (18) package. We looked at models
with a from 0.1 to 1 by steps of 0.1. For each model, l was
chosen as the value that gave the minimum mean cross-
validated error (l.min). Finally, the a was chosen as the
value that gave the smallest mean square error. When there
was more than one SNP remaining in the final model from
the elastic net procedure, we built a genetic risk score (GRS)
assuming an additive genetic effect and summed the num-
ber of risk alleles as a global genetic IV. If there was only one
SNP associated with DNA methylation in the designated in
cis region, we used additive genetic modeling for that one
SNP as genetic IV. We tested associations between the ge-
netic IVs (GRS or individual SNP) andMatsuda index (ln). To
compare effect estimates, we used the two-stage least squares
(TSLS) that uses the predicted DNA methylation value by its
respective genetic IV as the independent variable in the linear
regression to predict Matsuda index (19,20). We used the
Durbin-Wu-Hausman test to test whether TSLS estimates
were significantly different from the observed estimates. We
corrected for the number of CpGs tested (n 5 131 with
genetic IV available) using false discovery rate (FDR).

Second, we used prior knowledge of SNPs known to
influence insulin sensitivity (21). We selected eight SNPs
(see Supplementary Table 1) that were previously estab-
lished as determinants of fasting insulin in large GWAS
(with P, 53 1028 inMeta-Analyses of Glucose and Insulin-
related traits Consortium [MAGIC] data sets) (22,23) and
were also nominally associated (P , 0.05) with Matsuda
index in nonpregnant individuals (24). We built a GRS
assuming additive genetic effect and summed the number
of risk alleles. We tested associations between the insulin
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sensitivity GRS and placentaDNAmethylation (inMvalues) for
the 188 CpGs identified in model 1 and corrected using FDR.

Data and Resource Availability
Data sets analyzed during the current study are not
publicly available because we did not obtain consent for such
public release of epigenetic data from participants. However,
data are available from the corresponding author with the
appropriate permission from the Gen3G study team upon
reasonable request and approval of institutional review boards.
Summary statistics of EWAS results for models 1 and 2 are
available via https://figshare.com/s/5040ad2ece334944bf34.

RESULTS

We present characteristics of participants in Table 1. At the
beginning of pregnancy, women’s median age was 28 years
(IQR 25; 31), median BMI was 23.7 kg/m2 (IQR 21.6; 27.9),
one-third were primigravid, and ,9% reported smoking.
Median Matsuda insulin sensitivity index was estimated at
7.72 (IQR 5.69; 10.67) and appeared normally distributed
after natural log transformation.

In model 1, we found that maternal insulin sensitivity
was associated with placental DNA methylation at 188
CpGs (P values ,6.94 3 1028; adjustment for maternal
age, gravidity, smoking, maternal BMI, child sex, and ges-
tational age at delivery). Adding GDM status as covariate
had minimal impact on association estimates at identified
CpGs (0.02%–9.9% changes inb-coefficients). These 188 in-
dividual CpGs were distributed across the genome (Fig. 1A);
in 14 regions, multiple CpGs were in close genomic vicinity
and were annotated to the same gene (Supplementary Table
2). Among annotated genes, we identified 12 genes known
to be imprinted in the placenta (9 maternally imprinted,
SPHKAP, CNTN6, KCNIP4, PODXL, DLGAP2, KCNQ1,
DSCAML1, GPC6, and OCA2, and 3 paternally imprinted,
H19/MIR675, MCF2L, and LINC01056) (25). We also
noted that specific miRNAs were listed at 11 loci (Sup-
plementary Table 2). We examined our findings and found
no CpGs overlapping with the list of CpGs that we had
previously identified for associations with maternal 2-h
glucose in the same cohort (8), despite moderate correlation
(r 5 20.44) between Matsuda and 2-h glucose. In model 2,
adjusting bioinformatically for cell type heterogeneity, we did
not find any individual CpGs that reached Bonferroni (Fig.
1B). Examining PCs generated by ReFACTor that reflect the
cellular heterogeneity of tissue samples, we observed that
PC1, PC2, and PC5 were strongly associated with Matsuda
index, suggesting that cell type–specific placental DNAmeth-
ylation profile is strongly related to maternal insulin sensi-
tivity (Supplementary Table 3).

MR 1: Does Placental Methylation Affect Maternal
Insulin Sensitivity?
We identified genetic IVs in 131 of the 188 CpGs identified
in model 1 (Supplementary Table 4). Specific GRS built
with selected cis-SNPs captured respective CpG methylation
levels with r2 ranging from 1% to 32%. We found 28 GRS
capturing methylation at their respective CpG that were

nominally associated (P , 0.05) with Matsuda index: 5 of
these were statistically significant at FDR ,0.05. These five
GRS representedmethylation levels at cg01618245 (CHRNA4),
cg12673377 (MICALL2/UNCX), cg24475484 (DLGAP2),
cg08099672 (ENTPD2), and cg03699074 (BDP1P). In all
five cases, higher DNA methylation levels (as represented by
GRS) were associated with lower Matsuda index and were in
line with the direction of effect detected in our primary
observational analyses (Fig. 2). TSLS estimates were also all
in the same direction as that of the observed associations
and significant (FDR ,0.05). In two of the five CpGs
(cg03699074 at BDP1P and cg24475484 at DLGAP2), the
Durbin-Wu-Hausman test suggested that observed asso-
ciations between DNA methylation and Matsuda index
might be confounded. The fact that MR estimates were
larger than the observational estimates suggests that obser-
vational estimates were negatively confounded and that
“true” causal effects may be larger than the “observed.”

MR 2: Does Maternal Insulin Sensitivity Affect
Placenta?
The insulin sensitivity GRS build with eight SNPs captured
;1.5% ofMatsuda index variance (r25 0.015). Among our
188 identified CpGs (model 1), we did not identify any
CpGs at which the insulin sensitivity GRS was associated with
placental DNA methylation levels (Supplementary Table 5).

Table 1—Characteristics of Gen3G mother-child pairs
included in maternal insulin sensitivity EWAS of placenta

Mothers (N) 430
Age (years) 28 (25; 31)
Ethnicity, European descent 430 (100.0)
Gravidity, 1st pregnancy 142 (33.0)
Parity, 1st term pregnancy 218 (50.7)
Smoking in early pregnancy 36 (8.4)
BMI in early pregnancy (kg/m2) 23.7 (21.6; 27.9)
Waist circumference at 1st-

trimester visit (cm) 89.1 [82.0; 97.0]
Blood pressure at 2nd-

trimester visit (systolic/
diastolic mmHg) 107/67 (100/63; 112/72)

OGTT (2nd trimester)
Fasting glucose (mmol/L) 4.2 (3.9; 4.4)
1-h glucose (mmol/L) 7.1 (6; 8.2)
2-h glucose (mmol/L) 5.7 (4.8; 6.6)

Insulin sensitivity, Matsuda
index (raw) 7.72 (5.69; 10.67)

Insulin sensitivity, Matsuda
index (natural log
transformed) 2.04 (1.74; 2.37)

GDM* 37 (8.6)

Children
Gestational age at birth (weeks) 39.7 (38.9; 40.4)
Female sex 204 (47.4)
Birth weight (kg) 3.44 (3.17; 3.71)
Large for gestational age,

.90th percentile 31 (7.2)
Placental weight (g) 542 (467; 642)

Data are median (IQR) or n (%) unless otherwise indicated. *GDM
was diagnosed according to International Association of the
Diabetes and Pregnancy Study Groups.
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Pathways Analyses
Among transcription pathway databases, we noticed
a strong enrichment in the TargetScan miRNA database
(Supplementary Table 6): we found 34 miRNA target terms

with adjusted P values,0.05 including hsa-miR-3180(-3p),
hsa-miR-3196, hsa-miR1538, and hsa-miR-4745-3p at the
top of the list. We also observed enrichment in the
ENCODE histone modifications database, mainly driven by

Figure 1—Manhattan plots representing the results of the epigenome-wide association analyses between maternal insulin sensitivity
(Matsuda index, ln transformed) and placenta methylation (in M values). A: Model 1 adjusted for maternal age, gravidity, smoking, maternal
BMI, sex, and gestational age at delivery (genomic inflation 5 2.884). The horizontal line indicates the Bonferonni level of statistical
significance (P values ,6.94 3 1028). B: Model 2 adjusted for maternal age, gravidity, smoking, maternal BMI, sex, and gestational age at
delivery and 10 PCs from ReFACTor (genomic inflation 5 1.158).
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H3K27me3 in a variety of tissues and cell types (Supple-
mentary Table 7).

The top term emerging from the GWAS Catalog (Sup-
plementary Table 8) was “DNA methylation (parent-of-

origin)” with H19, MIR675, and SEPT5 (P 5 3.76 3 1025;
adjusted P 5 0.017). Among the top 10 terms from the
GWAS Catalog, we also observed “hemoglobin A1c” (driven
by TCF7L2, KCNQ1, and PIEZO1) and “fasting insulin”

Figure 2—MR supporting direction of effect at five loci where placenta DNA methylation may influence maternal insulin sensitivity: cg01618245
(CHRNA4) (A), cg12673377 (MICALL2/UNCX) (B), cg24475484 (DLGAP2) (C), cg08099672 (ENTPD2) (D), andcg03699074 (BDP1P) (E). In eachpanel,
the a arrow indicates the association between genetic IV representing the fetal placental DNAmethylation levels at CpGsite (usingGRS frommaternal
genotypes), the b arrow indicates the association with the build genetic IV and Matsuda index, and the c arrow (with b and SE below) indicates the
observed (obs) association between methylation levels at the CpG and Matsuda index (reverse of original EWAS, to allow comparison of bs). TSLS
estimates, SE, and Durbin-Wu-Hausman test P values are presented under observed estimates for the c arrows. All estimates are unadjusted
(no covariates); the adjusted P values for b association results are FDR adjusted for number of tests performed (n5 131 with a genetic IV available).
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(driven by TCF7L2 and CNTN6), which is the most com-
mon proxy of insulin resistance in large GWAS analyses
(22) (both adjusted P value .0.05). From dbGaP, we iden-
tified 10 terms that reached adjusted P values ,0.05 in-
cluding “body mass index” and “body height” and other
cardiovascular traits (triglycerides and blood pressure [Sup-
plementary Table 9]).

In BioCarta, the top pathway was “role of PPAR-g coac-
tivators in obesity and thermogenesis,”withMED1 andRXRA
leading the emergence of this pathway (Supplementary Table
10). The top pathways emerging from WikiPathways (Sup-
plementary Table 11) were “adipogenesis” (6 of 130 genes:
MEF2A, WWTR1, MBNL1, RXRA, GATA4, and PRLR) and
“genes targeted by miRNAs in adipocytes,” driven by KCNQ1
and HCN2 (2 of13 genes), yet neither pathway had adjusted
P values ,0.05.

DISCUSSION

Our results suggest that placental DNA methylation is
fundamentally linked to maternal insulin sensitivity reg-
ulation. Using MR, we identified five loci where placental
DNA methylation may be modulating the pregnancy-
associated decrease in insulin sensitivity. To our knowl-
edge, this is the 1st study to suggest that placental DNA
methylation may causally influence maternal insulin sen-
sitivity. Other identified loci are within known placenta-
specific imprinted regions, consistent with the theory of
maternal-fetal conflict. In addition, our assessment of
cellular heterogeneity showed that the two 1st compo-
nents of overall placenta DNA methylation profile are
strongly associated with maternal insulin sensitivity.
On one hand, it is possible that insulin sensitivity influ-
ences cell repertoire in the placenta as well as cell lineage
commitment early during development. This cellular
model has been termed “polycreodism,” or systematic
variability in cell fate, which is relevant during embryonic
development (26). Our MR 2 analyses did not support this
direction, but our IV for insulin sensitivity was limited
(r2 5 0.015). On the other hand, placental DNA methyl-
ation at delivery might also reflect DNA methylation
stability across gestation at some loci. Despite the well-
known global increase in placenta DNA methylation
throughout gestation, Novakovic et al. (27) showed that
substantial changes in methylation (b $ 0.2) were ob-
served in 954 CpG sites between the 1st and 3rd trimesters
and in only 157 CpG sites between the 2nd and 3rd
trimesters (out of .26,000 CpG sites). Moreover,
Schroeder et al. (28) demonstrated that partially methyl-
ated domains are common in placenta (37% of placental
genome) and stable across gestation. Furthermore, by defi-
nition, imprinted loci remain stably methylated during fe-
cundation and throughout in utero development (4).

miRNAs are suspected to have key roles in placenta
development and function (29). Many of our findings impli-
cated miRNAs as a potential link between placental DNA
methylation and maternal insulin sensitivity. First, among
the 188 identified CpGs, 11 were annotated to an miRNA as

one of the closest genes. Second, TargetScan miRNA showed
that our list of genes was greatly enriched for targets of
multiple human miRNAs. In addition, we identified CpGs
near genomic imprinted regions that containmiRNAs known
to play an important role in placenta, e.g., at theH19/MIR675
and DIO3OS loci. DIO3OS is located near the placenta-
specific miRNA cluster on Chr14q32 known as C14MC
in the imprinted Dlk1-Dio3 domain. DIO3 is paternally
imprinted during fetal development, suggesting thatDIO3OS
is a noncoding gene that may have a role in maintaining
monoallelic maternal expression of DIO3 (30). The locus
H19/MIR675 is paternally imprinted and thus maternally
expressed (29). miR-675 is a highly conserved miRNA,
located in the 1st exon of H19, and is specifically expressed
by the placenta, with expression rising as the gestation
advances (31). A putative role of miR-675 is to limit placental
growth, likely via reducing the expression of IGF1R (main
receptor of IGF2 key placental growth factor) (31).

It is notable that many imprinted genes are predomi-
nantly or solely expressed in the placenta (29). The different
parental origin of DNA methylation patterns led to the
maternal-fetal conflict hypothesis whereby paternal expres-
sion should favor fetal growth by deriving more maternal
resources, while the maternally expressed genes should act to
conserve maternal resources. We identified three loci at which
the annotated gene is a known paternally imprinted (mater-
nally expressed) gene in the placenta (including H19/MIR675)
and nine loci at which the annotated gene is maternally
imprinted (paternally expressed) in placental tissue (25) in-
cluding KCNQ1. Our MR investigations suggested that meth-
ylation levels at cg24073146 in KCNQ1 could causally
influence maternal insulin sensitivity, yet our MR estimate
at this locus was nonsignificant after accounting for multiple
testing. Loss of maternal-specific methylation of KCNQ1
causes Beckwith-Wiedemann syndrome, characterized by
prenatal overgrowth and hypoglycemia in infancy (32). Dur-
ing normal fetal development, fetal pancreas shows mono-
allelic expression of KCNQ1, suggesting an important role of
imprinting at this locus during pancreatic development, while
adult pancreas shows biallelic expression (33). Genetic
variants at KCNQ1 are well-established T2D risk variants
with evidence of parent-of-origin effect where the trans-
mission of maternal allele shows a very strong association
for risk of T2D in comparisonwith paternal transmission (34).

Another identified CpG (cg24475484) is located within
a known placenta-specific maternally imprinted region an-
notated to DLGAP2. DLGAP2 is biallelically expressed in the
brain, but only paternally expressed in the testis (35), and
was differentially methylated in spermatozoal DNA of in-
fertility studies (36). Our MR analyses supported that
methylation at cg24475484 (DLGAP2) causally influences
maternal insulin sensitivity (FDR,0.05), in line with the
maternal-fetal conflict hypothesis where the paternally
expressed gene would reduce maternal insulin sensitivity
to drive more nutrients toward the fetus.

Based on our MR analyses, we found that placenta DNA
methylation levels at some identified CpGs may be causal
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in influencing maternal insulin sensitivity: four loci passed
FDR significance threshold in addition to cg24475484
(DLGAP2). These CpGs were not located near genes with
known placental function; this highlights the importance
of agnostic approaches to discover new biologic candi-
dates. Some of these loci deserve further functional studies
in placenta and/or other relevant tissues. For example,
cg08099672 is located near ENTPD2 expressed by the
placenta, in addition to ovaries and testis, nervous system,
and islets of Langerhans (37). The placenta expresses
MICALL2 (located at ;80 kb of cg12673377), and the
protein is also highly detected in pancreas, adrenal, and
stomach tissues (38). One intriguing finding is cg01618245,
located near CHRNA4, which encodes for cholinergic recep-
tor, nicotinic, a4, associated with epilepsy and nicotine
addiction (39). It is noteworthy that two miRNAs (MIR3674
and MIR596) are located nearby cg24475484 at DLGAP2
(,150 kb apart) and the MIR4326 is located ;72 kb from
cg01618245 at CHRNA4, again implicating placental miRNAs
as potential biologic mediators of pregnancy-associated
changes in maternal insulin sensitivity.

Our pathway analyses highlighted many genes and path-
ways involved in adipose tissue regulation. From WikiPath-
ways, “adipogenesis” (40) emerged from genes such asMEF2A,
WWTR1, MBNL1, RXRA, and GATA4 and, notably, PRLR,
which encodes for the prolactin receptor. MED1 and RXRA
(6MEF2A) also highlighted the role of “PPAR-g coactivators in
obesity and thermogenesis” (BioCarta) and “energy metabo-
lism” (WikiPathways), with PPARGC1A central to this pathway
(41). We also identified two probes annotated to PRDM16,
a key regulator of brown adipose tissue differentiation. Our
group previously demonstrated in candidate gene studies
that maternal hyperglycemia is associated with placental
DNA methylation at PRDM16 and PPARGC1A (42); our
current analyses using an agnostic approach validate our
previous findings. On the other hand, none of the 188 iden-
tified CpGs in the current analyses overlapped with loci
identified in our prior EWAS of maternal 2-h glucose and
placenta DNA methylation (8). The absence of overlapping
findings may be due to different biological phenomena or
indicate that we would need a larger sample size to observe
associations between placenta DNA methylation and both of
these two moderately correlated glycemic traits.

Strengths and Limitations
Among our strengths, we have investigated a large number
of placenta samples using the most comprehensive DNA
methylation array, covering .720,000 CpGs across the
genome, in a prospective cohort of pregnant women with
well-characterized phenotypes, including a validated mea-
sure of insulin sensitivity during pregnancy. We were able
to account for many potential confounders and applied
an MR approach to test potential causality. Despite our
attempts at untangling direction of effect, we found only
a handful of CpGs from whichMR supported causality. It is
likely that the MR 2 analyses were limited in power given
that our IV captured only 1.5% of the variance in Matsuda,

resulting in aweak IV—one of themajor limitations of ourMR
analyses in this direction. After adjustment for heterogeneity
using ReFACTor, none of the CpGs reached P values ,6.94
3 1028, so it is possible that our signals from model
1 reflect placental cell-specific DNA methylation. Top
ReFACToR PCs, reflecting cell type heterogeneity, were
associated with insulin sensitivity; this might suggest
that early DNA methylation programming might be driv-
ing a distinctive repertoire of cells in the placenta, also
known as polycreodism (26). We feel this is highly bi-
ologically relevant and that future studies should investi-
gate whether specific cells are responsible for the signals
that we found and potential causal biological effects on
maternal insulin sensitivity. Finally, our cohort is com-
posed of women of European descent and thus findings
may not be generalizable to other ethnicities.

Conclusion
In summary, our findings support a placental DNA meth-
ylation signature fundamentally linked to maternal insulin
sensitivity. We identified CpGs at which our MR inves-
tigations supported that placental DNA methylation
has a causal influence on maternal insulin sensitivity. The
enrichment in miRNA targets and identification of specific
miRNAs add to recent literature implicating miRNAs
in placenta biology, either as paracrine or endocrine
actors. Stimulation of insulin responsive cells (adipocytes,
hepatocytes, myocytes) or trophoblasts by exposure to
identified miRNAs could reveal potential functions. Fi-
nally, the identification of both maternally and paternally
imprinted genes is in line with the maternal-fetal conflict
hypothesis and yet also suggests that imprinted genes from
both parents regulate maternal insulin sensitivity during
pregnancy.
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