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Abstract

Vocal production is hierarchical in the time domain. These hierarchies build upon biomechanical 

and neural dynamics across various timescales. We review studies in marmoset monkeys, 

songbirds and other vertebrates. To organize these data in an accessible and across-species 

framework, we interpret the different timescales of vocal production as belonging to different 

levels of an autonomous systems hierarchy. The first level accounts for vocal acoustics produced 

on short timescales; subsequent levels account for longer timescales of vocal output. The hierarchy 

of autonomous systems that we put forth accounts for vocal patterning, sequence generation, 

dyadic interactions and context-dependence by sequentially incorporating central pattern 

generators, intrinsic drives and sensory signals from the environment. We then show the 

framework’s utility by providing an integrative explanation of infant vocal production learning in 

which social feedback modulates infant vocal acoustics through the tuning of a drive signal.
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A simplified framework for vocal production

Understanding the biology of vocal production—how all the mechanistic pieces are 

coordinated, and how this coordination is achieved over the course of development—is a 

formidable challenge. Here, we review what is known about the biomechanical and neural 

mechanisms of nonhuman animal vocal production. We focus on nonhuman species because 

we know so much more about their biology and development than we do for human speech 

production. Moreover, at the level of the central pattern generators (CPGs) and some 
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forebrain pathways, many circuits appear homologous or at the very least analogous across 

species [1, 2]. It will be apparent even in just the subset of studies that we describe that there 

is a problem of increasing complexity: As we learn more and more about the details of 

neural circuits and biomechanics in different species finding a common ground is difficult. 

We therefore put forth what we think is a plausible framework for the integrative biology of 

vocal production across species: a hierarchical set of autonomous systems with feedback [3]. 

In a system like this, high-level states are slower and provide the scaffolding for the fast, 

lower-level states [3, 4]. This approach has, for example, been used to model the fast 

acoustic features of speech as the result of the slower articulator movement [5, 6].

Our hope is that this framework will provide an integrative perspective on adaptive vocal 

production. It emphasizes that, first, vocal production should not be viewed as a one-to-one 

mapping from single-neuron activity to sound. The neural activity at each level of this 

system is under the influence of its upper level and in turn, determines (or at least strongly 

influences) how downstream neural activities unfold. The same set of neurons can be 

involved in various types of vocal output, and the aggregate activity of a large neural 

population across different structures is more relevant to the outcomes of the vocal 

production than any single neuron or small set of neurons. Second, the framework 

recognizes that vocal production is a consequence of the interplay between internal states 

and behavioral context [7]. The interactions between context, the internal state and the vocal 

output have often been invoked to explain vocal acoustic structure or even vocalization 

types, but much of the research is based largely on speculation as to what the animal’s 

internal states may be and how it could influence vocal output [8]. Any context is comprised 

of multiple types of external sensory cues interacting with fluctuating internal states (which 

generate visceral cues) [9,10].

The scope of the problem

Vocal production is intrinsically hierarchical in the time domain. Human conversation, for 

example, consists of a sequence of vocal exchanges between two individuals; the duration of 

the conversation can vary greatly but must be composed of at least one utterance from each 

participant. These utterances are themselves sequences but of words. Words are, in turn, 

composed of consonant-vowel sounds. A similar temporal hierarchical structure is found in 

the vocal output of other animals, and these utterances can also be exchanged systematically 

between individuals. In many species of birds, mated pairs sing duets [11]; e.g., both sexes 

of the black-bellied wren (Pheugopedius fasciatoventris) initiate song production and both 

answer their mates' songs to form duets [12]. Among other vertebrates, there is a similar 

duetting among mated pairs of both Old and New World nonhuman primates [13, 14]. In 

frogs [15] and rodents [16], there are structured vocal exchanges between males during 

territorial defense. Beyond mating and territorial defense, animals also exhibit vocal turn-

taking as affiliative gestures, a form of “grooming-at-a-distance” (marmoset monkeys: [17, 

18]; macaque monkeys: [19]; lemurs: [20]; meerkats: [21]), much like humans seem to do 

[22]. Each individual’s vocalizations often have multiple elements and these can be divided 

into smaller units based on their sequential structure and duration (e.g., motifs and syllables) 

(Figure 1A-C).
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The neural correlates of vocal production also have a seemingly hierarchical structure. 

Across vertebrates, vocal production requires a source of air power and a sound-producing 

organ (e.g., the larynx, syrinx or swim bladder) [1, 23], and the 1st-order innervation of these 

peripheral structures are thought to arise from a homologous set of brainstem structures [24]. 

In primates and other mammals, the neural circuitry related to respiratory power includes 

groups of neurons within the pons and medulla that generate rhythmic patterns [25-27]; the 

circuitry influencing laryngeal tension arises from the nucleus ambiguus located in the 

medulla [27, 28]. Homologous circuitry is present in songbirds [29]. Figures 1D-F show 

only a portion of the neural pathways for vocal production in monkeys, birds and fish. Some 

nodes in these vocal-motor networks are tightly-correlated with the temporal patterns and 

frequency modulations of the vocalizations they produce; they are thus considered vocal 

central pattern generators (CPGs) [30-32]. The periaqueductal gray (PAG) in the midbrain 

provides descending control over these CPGs, and its activity influences the production of 

specific vocalizations [29, 33-36]. The PAG receives inputs from higher-order motor 

structures in the forebrain that are critical for the initiation of vocalizations and the 

integration of sensory cues (such as the vocalizations of conspecifics) with internal states 

(e.g., arousal levels). In the human lineage, this forebrain circuitry, and its relationship to 

brainstem structures have been elaborated upon considerably over the course of evolution [2, 

37, 38].

Vocal production from a two-level hierarchical system

The minimal system that can autonomously generate motor behaviors consists of the 

appropriate effectors and self-generated neural activity that drives the movement of those 

biomechanics. Rhythmic motions, such as breathing, swallowing, walking, and swimming, 

are mainly driven by CPGs located within the spinal cord [39, 40] and the brainstem [41, 

42]. The CPGs are intrinsically capable of producing rhythmic signals that directly influence 

the biomechanics of effectors by alternating the activation of flexor and extensor muscles. 

Vocal production is also driven by the coordinated activity of CPGs for multiple effectors 

(e.g., the diaphragm and larynx [30-32], and the result is the production of sound—or sound 

sequences—that often have a rhythmic structure [43, 44]. These vocalizations exhibit some 

stable features in the temporal and/or spectral domains and can be organized into distinct 

call types.

In primates and other mammals, the vocal apparatus consists of the lungs, the vocal folds of 

the larynx, and the vocal tract; the vocal tract consists of the oral and nasal cavities anterior 

to the larynx and whose shapes can be modified through articulations of the mouth and lips 

[23, 45]. Sound production is through self-sustaining vocal fold oscillations induced by 

increases in subglottal air pressure and vocal fold tension [46-49]. A simple mechanism to 

vary fundamental frequencies, as demonstrated in marmoset monkeys [50, 51] and zebra 

finches [52], is through manipulating two parameters, the air pressure and the vocal fold 

tension. As such, the spectral and temporal patterns emerge from the coordinated activity 

between respiratory and laryngeal (or syringeal for birds) muscles [50, 52, 53]. When 

coordinated by their respective CPGs, they define the spectral properties of the sound and 

provide the temporal structure for vocal output [49-51]. Here’s a specific example: In a 

vocal fish, the plainfin midshipman, pacemaker neurons in the hindbrain control the 
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frequency of vocalizations, while “prepacemaker” neurons that innervate them control the 

overall duration of the vocalization [54].

The emergent acoustic patterns, however, do not always slavishly reflect the output patterns 

of the CPGs; they are a joint consequence of the CPG patterns and the nonlinear dynamics 

of the tissue and biomechanical properties of the vocal apparatus. Typically, the production 

of different vocalizations is thought to occur through the differential assembly of neuronal 

populations that make up the vocal CPGs; i.e., it has been reasonably argued that there is a 

dedicated CPG assembly for each vocalization type [32]. Work in the domain of locomotion 

suggested, however, that this need not be the case. Distributed and coupled CPGs, instead of 

dedicated CPGs, yielded a successful model—with neurophysiological support—for 

switching between discrete modes of locomotion in the salamander: running and swimming 

[40], where the CPGs governing the limbs and body were coupled oscillators. The CPGs are 

usually modeled with low-dimensional nonlinear equations, a means to describe rich 

biologically relevant dynamics without the need to explicitly code the details of pattern 

formation [55, 56]. Models like this are used to simulate marmoset monkey calls and 

birdsongs [53, 57-59]. Together, the nonlinearities inherent in both the biomechanics of the 

vocal apparatus and the driving CPG activity are able to generate a set of acoustically 

discrete vocalizations with a repeated temporal pattern. They represent what we would refer 

to as a two-level hierarchical system (Figure 2A).

On some temporal scales, the rhythm of vocalizations seems to be in a similar range across 

mammals. In humans, regardless of languages and contexts, the amplitude modulation of the 

speech signal consists of a rhythm that ranges between 3 and 8 Hz and is correlated with 

production of syllables [60, 61]. The vocalizations and facial expressions of monkeys and 

apes also have this rhythmic structure [44, 62-66]. For example, in marmoset monkeys, 

experimental interruptions of their contact calls (by playing back noise) reveal that the 

seemingly continuous longer elements of this vocalization are actually made up of smaller 

elements: marmoset vocalizations can only be interrupted at periodic time points [44]. These 

periodic intervals occur at a frequency of ~ 7 Hz. These data suggest that, just as human 

speech is built up from the elemental units of syllables, marmoset monkey vocalizations 

(and likely the vocalizations of other species), are built of multiple sequentially uttered units 

on the same time scale [44](see [67] for review).

This suggests that humans and other mammals share a mechanistic substrate that produces 3 

– 8 Hz vocal rhythms. We speculate that this substrate is at the two-level system we 

described (Figure 2A) and the set of CPGs involved are likely to be mostly overlapping with 

those involved in ingestive orofacial rhythms (like licking and chewing) for all mammals. 

These other orofacial movements are produced with a > 2 Hz rhythm. The CPGs for all 

orofacial rhythms (including vocalizations) are located in the brainstem, specifically the 

pons and medulla [31, 32, 68]. These regions contain the cranial nuclei for sensory 

processing in the head and face and final motor outputs to orofacial muscles. Vocal and 

ingestive rhythms occur at frequencies faster than the respiratory rhythm and both the slower 

respiratory rhythm and the faster orofacial rhythms can be linked directly to separable 

patterns of CPG activity [68]. Yet, neurons within a CPG network can still participate in 

multiple orofacial behaviors. For example, in macaque monkeys, neural activity in the 
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nucleus ambiguus of the medulla (which innervates laryngeal muscles) is modulated by 

vocalization, respiration, and/or swallowing [69, 70]. Likewise, neurons in the medullary 

ventral respiratory group are modulated not only by respiration but by swallowing and 

vocalizations as well[70]. Taken together, these data suggest that vocalizations and their 

rhythmicity are generated by a distributed network of CPGs that also participate in other 

rhythmic orofacial behaviors.

Complex vocalization from a three-level hierarchical system

Repetitively produced, rhythmic vocalizations driven by the two-level system do not 

necessarily represent ethologically relevant vocal behavior. A mechanism to produce 

different vocalizations at different times is needed. To enable that, one needs a third level. 

Let us consider the simplest situation regarding the timing of vocal output: when the animal 

is alone and spontaneously producing vocalizations (that is, without an external triggering 

event such as another individual or a threat). Rats, for example, produce spontaneous 

ultrasonic vocalization bouts at a rate of about once every 7 or 8 seconds (~0.1 Hz) [71]. 

Adult marmoset monkeys produce contact calls around every 10 s (~0.1 Hz) when alone and 

with no conspecifics responding to them [18, 72]. When in the hearing range of 

conspecifics, they exchange contact calls and their vocal production becomes anti-phase-

locked to each other but with each marmoset maintaining a ~0.1 Hz rhythmic output [18]. 

Finally, the spontaneous speech of humans also has a similar slow temporal structure, 

whereby an individual will produce utterances of varying lengths roughly every 10 to 15 

seconds (~0.1 Hz) [73] (though how this relates to turn-taking is not known). The temporal 

regularity of vocal production on a roughly similar timescale across species suggests that a 

common, slow oscillatory drive might exist within the mammalian vocal system.

However, what could be the biological basis for the much slower ~0.1 Hz rate of vocal 

production found in rats, marmoset monkeys, and humans? One link could be with the 

autonomic nervous system. In marmoset monkeys, spontaneous contact calls by adults are 

correlated with heart rate (a measure of arousal levels) [72]. This rhythmic arousal variation 

is the product of the “Mayer wave”, an oscillation of the autonomic nervous system 

(specifically, sympathetic vasomotor tone); the Mayer wave appears to be common to all 

mammals [74]. The neural activity of the PAG, a brain structure essential for vocal 

production [75], is modulated by this 0.1 Hz oscillation [76]. This could causally account for 

the spontaneous production of vocalizations every 10 seconds or so by adult marmoset 

monkeys, and possibly other mammals [18, 72]. Another possible source (and perhaps not 

unrelated) is the neocortex. The neocortex produces oscillations at various timescales [77, 

78] and this includes infraslow oscillations on the order of 0.1 Hz [79-81]. These very slow 

neural oscillations are distinct from other neural oscillations (e.g., 1-4 Hz delta rhythm and 

the much faster gamma rhythm); they travel across the neocortical sheet with a stereotypical 

spatiotemporal trajectory and are state-dependent [82]. Moreover, there is at least one 

neurophysiological link between the Mayer wave (as measured by vasomotor tone) and 

neocortical activity: Infraslow fluctuations of neural activity occur as envelope over fast 

gamma band (30 – 80 Hz) activity, and this 0.1 Hz neural rhythm causes the 0.1 Hz 

oscillatory dilations and constrictions of arterioles [83]. This autonomic nervous system-

related slow cortical rhythm represents the next level of our proposed hierarchical system 
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(Figure 2B). It initiates the two-level system to produce vocal output at particular times, in 

this case, roughly every 10 seconds.

Importantly, the 0.1 Hz rhythm not only initiates vocal production but, in infants at least, it 

also influences the sequential structure of vocalizations. When separated from adults, 

newborn infant marmosets spontaneously produce long sequences of both immature- and 

mature-sounding vocalizations [50, 84]. As is the case for human infants [85] and songbirds 

[43, 86, 87], the vocal output of marmoset infants is very rhythmic, tightly locked to the 

respiration rate around 1 Hz [84]. The time-varying spectral structure of infant marmoset 

vocal sequences also has a rhythm; however, it is at a rate that is an order of magnitude 

slower. Spectral entropy, a measure of the noisiness of the sound spectrum [50, 88], 

fluctuates during infant vocal sequences at a 0.1 Hz frequency [84]. This spectral rhythm is 

in tight coherence with the infant’s Mayer oscillation. The different and discrete call types 

produced in these sequences are likely the result of this arousal-linked 0.1 Hz oscillation 

driving the CPG oscillators and the subsequent vocal biomechanics through different 

regimes. Results from a computational model of rhythmic vocal output lend support to this 

idea [57]. Thus, our three-level hierarchical system can also modulate (in addition to 

initiating their coordinated activity) the CPGs controlling the vocal apparatus.

Context-dependent vocalization from a four-level hierarchical system

Vocal output is context-dependent. Spontaneous vocalizations described above are a special 

case of undirected contexts (no conspecifics are present) and thus reflect, in large part, the 

internal state of the animal. Most of the time, however, vocalizations involve another 

individual who responds in kind. In human vocal turn-taking, individuals become anti-

phase-locked and entrained to each other through their speech [89l]. Similar “coupled 

oscillator” turn-taking behavior is observed in adult marmoset monkeys [18], macaque 

monkeys [90], meerkats [21], and potentially other species [67, 90-94]. In both human and 

marmoset monkey turn-taking, vocal exchanges are separated by intervals within a small 

range, albeit at different timescales [18, 95]. The coupling between individuals is modulated 

by the exchange of visual, auditory and potentially other sensory signals. The processing of 

these sensory signals in the brain comprises the fourth level of the hierarchical system 

proposed here (Figure 2C).

Consider the following scenario: two marmoset monkeys can hear each other but cannot see 

each other. In this context, the two marmosets exchange contact “phee” calls with anti-

phase-locking, and mutually entrain to each other’s call timing [18]. Manipulating the 

amplitude of contact call playback – a simulation of the physical distance of a caller out of 

sight – revealed that the marmoset vocal responses to nearby conspecifics were delayed and 

quieter; the opposite was true for far-away conspecifics [17]. A simple model can account 

for this behavior whereby the drive to vocalize is inhibited by auditory feedback [17, 96]. Of 

course, varying inter-individual distances is not unique to marmoset monkeys. Zebra finches 

will adjust the intensity of their courtship songs according to their physical distance from a 

conspecific female [97]. Even human speakers are tacitly aware that as the distance between 

themselves and listeners is increased, vocal intensity must also be increased to maintain 

effective communication [98, 99]. As a result, low amplitude speech signals elicit high 
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amplitude responses from the listener. Adaptively adjusting speech amplitude is interpreted 

as a cooperative act requiring a high-level social skill [98, 99]. However, a simple model 

incorporating auditory feedback can account for the behavior in humans as well as marmoset 

monkeys [17].

Changing the social distance between two individuals can also result in qualitative acoustic 

changes—the production of different call types [100]. In one study, an adult marmoset 

monkey was placed in four different contexts in which the marmoset could be (1) by itself, 

(2) with a partner at the opposite corner of the room behind a curtain, (3) with a visible 

partner at the opposite corner of the room, and (4) with a partner close by. As the distance 

between two individuals decreased, marmoset monkeys switched from producing loud 

contact calls to producing softer, shorter and noisier vocalizations [100]. Decreasing the 

distance between two individuals increased the robustness of auditory and visual signals 

from the conspecific. Together, the effect seems to be to increase the inhibition on the drive 

to produce vocalizations, which in turn reduces the overall time spent on calling and reduces 

the power to produce vocalizations. This is similar to what is observed for the spontaneous 

vocalizations of infants—the level of the drive changes what vocalizations are produced. The 

presence of increasing sensory cues coming from conspecifics seems to gradually diminish 

the dependence on the internal state fluctuation (i.e., the 0.1 Hz Mayer wave). This is 

supported by the decreasing coherence between vocal output and heart rate as a function of 

decreasing social distance [100]. In real life, the environment, including the proximity of 

conspecifics, slowly changes and continuously modulates the dynamics of the drive to 

vocalize. Relevant variables such as social distance represented by multiple sensory cues 

constitute the fourth (and final) level of the hierarchical set of autonomous systems (Figure 

2C).

Using the autonomous systems framework to understand vocal 

development

How do infants, capable from postnatal day one of producing spontaneous vocalizations, 

develop adaptive vocal behavior? Sensory input from the social environment influences the 

structure of vocalizations very early in life. In humans, the acoustic structure of newborn 

crying reflects the acoustic structure of the ambient language environment [101]. In fairy 

wrens, the acoustic structure of parental nesting calls is learned prenatally by their offspring 

and partially reproduced postnatally in the offsprings’ begging calls [102]. In marmoset 

monkeys, it is suggested that sensory experiences as early as in the womb contribute to 

shaping the temporal structure of the vocal output in early postnatal life [84]. The early 

vocal sequences of infant marmoset monkeys (within the first postnatal week), as well as 

their heart rate profiles, exhibited greater similarities in their sequential structure between 

dizygotic twins than with their non-twin siblings and non-relatives [84]. The similar 

autonomic modulation of the twins is likely through the interactions with their mothers both 

pre- and post-natally. In humans, changes in maternal arousal levels can influence offspring 

both in the womb and through physical contact postnatally. For example, the 

cardiorespiratory dynamics of human infants will entrain to their mother’s dynamics when 

they are laying on her body [103] and even during face-to-face communication [104]. These 
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inter-individual autonomic system influences can affect the vocal behavior of those infants 

[105]. Taken together, these studies suggest that the set of autonomous systems proposed 

here are working in concert very early in life, that vocal develop does not proceed in discrete 

stages seemingly represented by the levels of the hierarchy (Figure 2).

Vocalizations continue to undergo changes over the course of postnatal development in 

many species. These changes include the improved ability to produce the correct sound in 

the right context, and this improvement is influenced by social factors. This is true for 

humans [106-108], birds [109-111], bats [112, 113] and marmoset monkeys [50, 114-116]. 

For example, newborn marmosets spontaneously produce many different call types when 

alone, some of which are not appropriate for the context or immature-sounding [50]. 

Through development, marmosets gradually switch to producing only mature-sounding, 

high-energy contact calls when they are out of sight or far away from conspecifics [100]. In 

order to produce such calls, laryngeal muscles providing the vocal fold tension and 

expiratory muscles providing the subglottal pressure have to be strongly contracted. How are 

the neural dynamics shaped to direct a strong input to the muscles? This could be achieved 

through tuning the drive signal (arousal state) via infant-parent interactions.

The effect of parental feedback on changing vocal behavior is both immediate and 

cumulative. In one experiment, an infant marmoset and its parent were placed in the 

opposite corners of a room with an acoustically-transparent curtain in between. Instead of 

turn-taking using contact calls as adult marmosets do in this scenario [18], infant marmosets 

produce various types of vocalizations. However, they do immediately respond with a more 

adult-like contact call following the parental call [117]. It was found that parental calls were 

contingent upon the dynamics of the acoustic change in infant calls: they are produced at the 

phase of the 0.1 Hz acoustic oscillation when the infant calls were at the transition point 

from less to more adult-like [117]. Thus, on a moment-to-moment basis, the contingent 

parental calls are affecting the dynamics of the drive to the CPGs in the infants; it is 

providing a reinforcement signal to the infants (Figure 3). Parent-infant interactions can lead 

to a long-term change in infant vocal behavior. In humans [106-108] and songbirds 

[109-111], contingent parental responses accelerate the development of infant vocalizations, 

making them sound more mature more quickly. Similarly, in marmoset monkeys, the timing 

of the transition from immature to mature-sounding contact calls is correlated with the 

amount of contingent parental vocal feedback [50].

A study in which the amount of contingent parental responses was experimentally 

manipulated revealed that such feedback has a causal influence on vocal learning in this 

primate species as it does in humans [116]. Other studies showed that infant marmosets with 

limited parental feedback continued producing a large number of immature calls [114, 115]. 

Together, these results suggest that the contingent vocal feedback and parental interactions 

are not merely a perturbation to the infant vocal system but rather is changing the stable state 

of the drive oscillator in order to keep producing higher energy (mature sounding) calls 

(Figure 3). What could be the biological basis for the sustained change of drive oscillations? 

The dopamine (DA) neurons of mammalian PAG represent the social context and arousal in 

response to social cues [118, 119]. Analogously, a recent study in songbirds has suggested 

that the DA neurons in the PAG of juveniles play a role in initiating song learning through 
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the PAG-HVC pathway in the presence of a singing tutor [120]. In mammals, the PAG is 

also part of the pathway of vocal control. We thus hypothesize that dopamine signaling in 

the PAG modulated by cortical inputs is involved in vocal learning by marmoset monkeys 

(and perhaps other vocal learning animals) through contingent parental feedback.

Using the hierarchy of autonomous systems as a hypothesis-testing 

framework

The hierarchical autonomous systems framework for vocal production by its very nature 

suggests that components of vocal production can be, in some sense, isolated from each 

other. For example, the processes related to the production of a vocal sound (2-level system; 

Figure 2A) can be separated from the process that determines the initiation of a vocalization 

(3-level system; Figure 2B). Along the same lines, the type of vocalization produced 

(independent of its initiation) is determined by what is called for by the context (4-level 

system; Figure 2C). Neurophysiologic data from macaque monkeys trained to produce 

vocalizations on cue provide some support for this notion of separability, showing that 

sensory cues set up the decision to produce a vocalization in the ventrolateral prefrontal 

cortex while the anterior cingulate cortex reflects the degree to which the animal is 

motivated to produce a vocalization [121]. More specific predictions of the proposed 

multilevel framework could include testing the degree to which each level of the hierarchy 

functions as an autonomous system. For example, if the two-level system is autonomous, 

then experimental changes in laryngeal tension or the movement of other parts of the vocal 

apparatus should naturally should affect the acoustic structure of vocalizations but it should 

not affect the rate or probability of producing a vocalization. Along the same lines, 

pharmacological manipulations of the autonomic nervous system (the three-level system) 

that affect arousal levels (e.g., beta blockers or beta agonists) should influence the timing of 

vocalizations independent of vocalization type. Finally, microstimulation, inactivation or 

other manipulations of motor structures in the forebrain (the four-level system) should affect 

the probability of producing a particular type of vocalization without affecting its acoustic 

structure (i.e., novel vocal sounds will not be produced). Certainly, we are well aware that 

the biology of vocal production is much more complex than we presented it [7] (for 

example, we completely neglected the important role of hormones [122-124]), but despite 

these limitations, we would argue for the utility of the proposed framework, particularly for 

comparative studies.

Concluding Remarks

The hierarchical structure of the motor system has long been adopted to facilitate our 

understanding of motor planning and motor control. Vocal production is a concrete example 

of a motor behavior that can be well quantified due to the relatively low-dimensional nature 

of acoustic signals. In this review, we summarize findings in animal vocal production 

occurring at different timescales into a hierarchical autonomous systems framework to 

understand vocal production. Each hierarchy of this framework operates at a different 

temporal scale, starting with acoustic features within vocalizations, and proceeding to 

sequences of vocalizations, and finally to vocal interactions and context-dependent vocal 
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production. Following this deduction, we gradually reveal the dynamics of higher-level brain 

regions that provide the manifolds for the dynamics of the lower level to unfold. Essentially, 

we propose that at least four levels are needed to fully understand the vocal production 

system, i.e., from the lowest to the highest: the vocal biomechanics, the CPGs, the drive, and 

the sensory representation. With the help of the autonomous systems perspective and 

findings in recent experiments, non-trivial transitions in vocal behavior through development 

can be explained including those induced by social experience.
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Outstanding questions

Can the idea of distributed CPGs for vocal production be empirically validated, and if so, 

what is the neural basis for the versatile patterning of the vocal CPG circuit?

How do global fluctuations generated by the autonomic nervous system influence the 

dynamics of central pattern generators and other neural structures related to vocal 

production?

In what manner, and at what levels, does social reinforcement influence the neural 

dynamics and sensorimotor integration required for vocal production?
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Highlights

Vocal production can be understood in terms of a timescale-based hierarchy of 

autonomous dynamical systems representing biomechanics and central pattern 

generators, internal drives, and the environment.

Each level of the vocal system generates a dynamical aspect of vocal output at a specific 

timescale.

This proposed autonomous systems framework can be used to illuminate how social 

reinforcement shapes the drive to generate mature sounding vocalizations in developing 

animals.
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Figure 1. 
Temporal hierarchies of vocalizations, and the corresponding brain structure and vocal 

apparatus. (A) A segment of infant marmoset monkey vocalization comprised of utterances 

of different types of calls (contributed by Ghazanfar lab). (B) A segment of Bengalese finch 

song comprised of fixed and variable syllable sequences (contributed by Yisi Zhang). (C) A 

segment of midshipman fish grunts (courtesy of Dr. Andrew Bass). (D) Vocal 

communication system and vocal apparatus of nonhuman primates. Abbreviations: ACC, 

anterior cingulate cortex; AC, auditory cortex; Am, amygdala; Hy, hypothalamus; PAG, 

periaqueductal gray; LRF, lateral reticular formation; PB, parabrachial nucleus; MN, motor 

nuclei; VC, visual cortex (adapted from [125] and [126]). (E) Song system and vocal 

apparatus of songbirds. Abbreviations: HVC (as a proper name); RA, robust nucleus of the 

arcopallium; NIf, nucleus interfacialis of the nidopallium; LMAN, lateral magnocellular 

nucleus of the anterior nidopallium; Area X, striato-palliadal basal ganglia nucleus; DLM, 

dorsolateral thalamic nucleus; Uva, nucleus uvaeformis; nXIIts, tracheosyringeal part of the 

hypoglossal motor nucleus (adapted from [127]). (F) Vocal network and vocal apparatus of 

fish. Abbreviations: POA, preoptic area; AT, anterior tuberal nucleus; VT, ventral tuberal 

nucleus; PL, paralemniscal midbrain tegmentum; TS, torus semicircularis; VPP, vocal 
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prepacemaker nucleus; VPN, vocal pacemaker nucleus; VMN vocal motor nucleus (adapted 

from [128]). Solid lines indicate vocal pathways and dotted lines indicate sensory pathways.
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Figure 2. 
A hierarchical structure of the vocal production system based on time-scales. (A) Two-level 

system: the vocal biomechanics (lungs and larynx) and two coupled central pattern 

generators (CPGs). (B) Three-level system: adding a drive signal on top of the CPGs enables 

the continuous production of various calls. (C) Four-level system: a fourth layer provides the 

modulation to the drive and allows animals to adjust the vocal output with respect to the 

environment.
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Figure 3. 
Vocal development through social feedback. Here we illustrate vocal development through 

marmoset monkey parent-infant vocal interaction. The parent responds at the transitions 

where the infant starts producing more mature-sounding vocalizations [117]. As more 

mature-sounding vocalizations indicate a greater underlying drive signal [53], parental 

responses occur in the rising phase of the oscillatory drive. The contingent parental calls 

have a cumulative effect on the infant vocal production towards more high-energy calls, 

accelerating vocal development on the timescale of days [116]. This process can be a 

consequence of shaping the drive signal of infant vocal production. The social feedback 

process described here compactly illustrates its cumulative influence on cumulative changes 

in the drive signal.
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