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Abstract

Motivation: Batch effect is a frequent challenge in deep sequencing data analysis that can lead to misleading conclu-
sions. Existing methods do not correct batch effects satisfactorily, especially with single-cell RNA sequencing (RNA-
seq) data.

Results: We present scBatch, a numerical algorithm for batch-effect correction on bulk and single-cell RNA-seq data
with emphasis on improving both clustering and gene differential expression analysis. scBatch is not restricted by
assumptions on the mechanism of batch-effect generation. As shown in simulations and real data analyses, scBatch
outperforms benchmark batch-effect correction methods.

Availability and implementation: The R package is available at github.com/tengfei-emory/scBatch. The code to gen-
erate results and figures in this article is available at github.com/tengfei-emory/scBatch-paper-scripts.

Contact: tianwei.yu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the recent decade, RNA sequencing (RNA-seq) has become a
major tool for transcriptomics. Due to the limitation of sequencing
technology and sample preparations, technical variations exist
among reads from different batches of experiments, such as varying
sequencing depth and amplification bias (Hicks et al., 2018; Tung
et al., 2017). These unwanted technical variations, or batch effects,
affect both mean and variance of the distribution of gene expression
in count matrices obtained from different experiment batches, which
eventually leads to misleading scientific findings in downstream data
analysis (Hicks et al., 2018). Typically, batch effects can alter the
sample patterns, causing false interpretations about cell lineage and
heterogeneity. If the goal is to detect differential expression (DE)
genes, the analysis can suffer loss of statistical power and/or bias. In
a broader sense, a number of factors can be considered as batches,
including different laboratories, different sample preparation
batches, different sequencing batches, or even different subjects, as
single cells collected from different subjects can exhibit different
characteristics based on different sample handling and the subjects’
personal genetic background and exposures.

While the severity of batch effects varies in different datasets,
batch-effect corrections were shown to be effective in general. For
instance, batch-effect correction on the ENCODE human and
mouse tissues bulk RNA-seq data (Lin et al., 2014), where the batch
effects were intense, obtained largely different and more sensible tis-
sue clustering results compared to before correction (Gilad and
Mizrahi-Man, 2015). In other datasets, batch effects are often more

subtle. In such cases, although the true biological pattern is main-
tained to some extent, weak to moderate batch effects can still be
observed. Hicks et al. (2018) discussed the coexistence of biological
signal and technical variation, which may still compromise the
downstream analysis. The correction of the batch effects can yield
better clustering results (Fei et al., 2018) on data with weak to mod-
erate batch effects that were unobvious from dimension reduction
plots (Muraro et al., 2016; Usoskin et al., 2015). These previous
efforts argue for the inclusion of batch-effect corrections as a routine
procedure in data preparation.

Since the microarray era, efforts have been made to correct batch
effects. One prevalent strategy for batch-effect correction is to estab-
lish linear models of gene expression with biological groups (e.g. dis-
ease and control groups, cell types) and confounding effects (e.g.
batch labels, patient IDs) as covariates. Johnson et al. (2007) pro-
posed an empirical Bayes algorithm, ComBat, to normalize the data
by removing additive and multiplicative batch effects. As a widely
applied tool for DE gene analysis, package limma also incorporates
batch-effect removal into its linear model framework (Ritchie et al.,
2015). Recently, an improved version of ComBat, ComBat-seq, was
developed to correct batch effects in RNA-seq data by negative bino-
mial regression (Zhang et al., 2020). Researchers also utilized the
technology of control probes in microarray (Yang, 2006) and spike-
in genes in RNA-seq (Jiang et al., 2011) to find and correct un-
known batch effects in mircoarray (Gagnon-Bartsch and Speed,
2012) and RNA-seq data (Leek, 2014; Risso et al., 2014). The fam-
ily of linear model-based methods, however, requires the knowledge
of biological groups for each observation, which is hardly feasible, if
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not impossible, in single-cell RNA-seq (scRNA-seq) data due to the
high heterogeneity of cells (Luo and Wei, 2019).

The aforementioned limitation of linear models motivated the re-
cent development of alternative batch-effect correction methods for
scRNA-seq data. Kiselev et al. (2017) introduced the consensus clus-
tering method SC3 to conduct clustering analysis based on multiple
distance metrics; Shaham et al. (2017) applied deep-learning tech-
nique in the software BatchEffectRemoval; Chen and Zhou (2017)
proposed a linear model-based method, scPLS, that utilizes control-
gene information and is insensitive to the influence from unknown
biological groups; we developed a robust non-parametric approach,
named QuantNorm, to correct sample distance matrix by quantile
normalization (Fei et al., 2018); Haghverdi et al. (2018) utilized the
mutual nearest neighbor (MNN) relationships among samples from
different batches to establish the MNN correction scheme. As
observed from the results in Kiselev et al. (2017), Fei et al. (2018)
and Haghverdi et al. (2018), the recently developed methods
improved clustering and dimension reduction performances, com-
pared to linear model-based approaches.

While there is a rich set of choices of batch-effect correction
methods, we still notice space for improvement. The scPLS method
(Chen and Zhou, 2017) requires the presence of spike-in genes,
which is not applicable to all datasets; SC3 (Kiselev et al., 2017) and
QuantNorm (Fei et al., 2018) only return distance matrices, thus
not supporting downstream DE analysis; MNN (Haghverdi et al.,
2018) assumes that the direction of batch effects being orthogonal
to the direction of biological differences, which may be strong if the
batch effects involve not only shifting and rescaling but also rotat-
ing. In addition, DE detection appears not to be the emphasis of re-
cent methods evaluation. Chen and Zhou (2017), Kiselev et al.
(2017) and Fei et al. (2018) only evaluated the clustering performan-
ces. Although Haghverdi et al. (2018) conducted DE tests, the user
manual (https://bioconductor.org/packages/3.8/workflows/vignettes/
simpleSingle

Cell/inst/doc/work-5-mnn.html) of the corresponding biocon-
ductor function, mnnCorrect, recommends not using the corrected
count matrix for DE analysis with considerations on manipulated
data scales and altered mean-variance relationship.

Motivated by the challenges faced in batch-effect correction, in
this study, we develop a new method, scBatch, to utilize the cor-
rected sample distance matrix to further correct the count matrix.
Specifically, we seek a linear transformation to the count matrix,
such that the Pearson correlation matrix of the transformed matrix
approximates the corrected correlation matrix obtained from
QuantNorm. QuantNorm is a non-parametric method that can ad-
just for non-linear batch effects in the sample patterns, which is feas-
ible as the sample distance matrix is limited in size. However
pursuing non-linear transformation in the original count matrix
makes the search space too large, which can cause spurious solu-
tions. Thus, in this work, we seek a linear transformation to the ori-
ginal count matrix, with the goal of approximating the non-linear
correction in the sample distance matrix while keeping the method
robust. For this purpose, we propose a random block coordinate
descent algorithm to conduct linear transformation on the p (genes)
�n (samples) count matrix. The resulting corrected count matrix
inherits the advantages of QuantNorm, such as enhanced clustering
results and decreased outlier influence on sample pattern.
Simulation studies demonstrate that in terms of DE gene detection,
our method corrects the count matrix better compared to multiple
batch correct or normalization schemes, with consistently higher
adjusted Rand index (ARI) and relatively better area under the re-
ceiver operating characteristic curve (AUC) and area under the
precision-recall curve (PR-AUC). In real data analyses, the proposed
method also shows strong performances in clustering and DE detec-
tion in a bulk RNA-seq dataset (Lin et al., 2014) and three scRNA-
seq datasets (Kim et al., 2015; Usoskin et al., 2015; Xin et al.,
2016).

2 Materials and methods

The scBatch method considers a study design scenario where the cell
type or disease status composition is not severely confounded with
batch, i.e. different cell subtypes or disease status are roughly evenly
distributed among the batches. This balanced study design scheme
has been recommended (Hicks et al., 2018) and widely adopted be-
cause it helps to avoid bias caused by confounding with batch.
Under this assumption, although the batch effect may interrupt the
overall data pattern, the data pattern within each batch should share
similar characteristics, including similar quantile distributions in dif-
ferent batch blocks in the sample distance matrix. The above study
design assumption has been justified in our previous study (Fei et al.,
2018), which demonstrated solid-clustering performances of
QuantNorm on two scRNA-seq datasets (Muraro et al., 2016;
Usoskin et al., 2015) with relatively balanced study design. It is
worth noting that there is a reasonable variation of the batch-level
cell type proportion in the two tested datasets, further justifying the
robustness of QuantNorm correction.

Figure 1 summarizes the workflow of scBatch. Given a count
matrix X and its Pearson correlation matrix, we first utilize
QuantNorm to obtain the corrected sample Pearson correlation ma-
trix D. Then, X and D are input to the proposed algorithm to seek
the weight matrix W, such that the Pearson correlation matrix of the
linear transformation X � W approximates D. After the algorithm
converges, the linear-transformed count matrix Y ¼ X�W is out-
put as the corrected count matrix that inherits the corrected sample
pattern in D. Note that, the resulting linear transformation indeed
approximates a non-linear correction of sample pattern. Although
more complex models can be used to achieve non-linear transform-
ation, we believe linear transformation can avoid over-correction
while still achieving good results.

2.1 Main algorithm
Problem setup. The count matrix Xp�n with p genes and n cells, in
which the n cells fall into multiple batches, is subject to batch
effects. Based on the Pearson correlation matrix of X, a corrected
n � n correlation matrix D with improved sample similarities is
obtained using the distance matrix correction algorithm
QuantNorm (Fei et al., 2018). Given D, the objective is to solve for

Algorithm 1 Random block coordinate descent algorithm.

Input: raw count matrix X 2 R
p�n, reference distance ma-

trix D 2 R
n�n, initial weight matrix W 2 R

n�n, group number

m 2 ½1; n�, step size � 2 R
þ, tolerance tol 2 ð0; �Þ, function L

returning loss function and column-wise gradients.

½p; n� ¼ dim(X)

while � > tol do

group ¼ sample(1: m, size¼n, replace¼T)

for i ¼ 1, 2,. . ., max(group) do

W0 ¼W

idx ¼ group ¼¼ i

L; dL ¼ LðW; idxÞ
W ¼W � �:� dL

Lnew ¼ LðWÞ
if Lnew � L then

� ¼ 0:5�

W ¼ W0

else

� ¼ 1:5�

end if

end for

end while

Y¼X�W

Output: Y.
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an optimal n � n weight matrix W such that the Pearson correlation
of the linear-transformed count matrix Y ¼ XW approximates the
sample pattern in D. The transformed count matrix Y can then be
used in downstream analyses. We note that similar to other meth-
ods, the resulting matrix may no longer be composed of non-
negative integers.

Least squares loss function. In order to solve W, we propose to
minimize the following least squares loss function:

LðWÞ ¼ 1

2
jjDY �Djj2F ¼

1

2

Xn

i¼1

Xn

j¼1

jDY ij �Dijj2; (1)

where DY is the Pearson correlation matrix of Y, jj � jjF is the
Frobenius norm and Aij denotes the (i, j) entry of matrix A. Thus,
the optimized weight matrix Wopt satisfies Wopt ¼ argminWLðWÞ
and the corrected count matrix is Y opt ¼ XWopt.

Gradient of the loss function. By chain rule, the gradient of the
loss function L(W) is:

@

@W
LðWÞ ¼ @

@W
DYÞTðDY �DÞ:

�

By definition, the i, j entry of DY satisfies:

fDYgij ¼
ðXWiÞTðIp � 1

p 1p1T
p Þ

2XWjQ
k2fi;jg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXWkÞTðIp � 1

p 1p1T
p Þ

2XWk

q ;

where Wi is the ith column of W, Ip is the p � p identity matrix and
1p is the p� 1 vector with all entries ¼1. As can be observed, @

@W DY

is a fourth-rank tensor in n-dimensional space. Thus, the gradient of
the loss function L(Y), which is the product of @

@W DY and the n � n
matrix ðDY �DÞ, is also a n � n matrix.

Although the scale of computation appears large, we derived an
equivalent but more economic approach to compute the gradient in

practice. Since fDYgij involves only two columns from W, the tensor
@
@W DY is sparse so that all its entries can be saved in a third-rank ten-
sor in n-dimensional space. Let Ak denotes the kth column of matrix
A. Considering the gradient performance and practical computing,
moreover, we further decompose the calculation into column-wise
gradients @

@Wk
DY ; k ¼ 1; . . . ; n, which are n � n matrices. Using col-

umn-wise gradients as the unit, both coordinate gradient descent
(Wright, 2015) and standard gradient descent can be easily
implemented.

Denote C ¼ XTðIp � 1
p 1p1T

p Þ
2X. By some algebra, the column-

wise gradient @
@Wk

LðWÞ satisfies:

@

@Wk
LðWÞ ¼ ð @

@Wk
DYÞT

(
aDY k �Dk

9=
;

þ trace½ð @

@Wk
DYÞT

(
aDY �D

9=
;�ek;

where ek is a n� 1 vector in which the k entry is equal to 1 and
others are equal to 0, and

@

@Wk
DY ¼

CW

ðWT
k CWkÞ1=2

� CWkðWTCWkÞT

ðWT
k CWkÞ3=2

" #

�½f1n � diagðWTCWÞ
	1=2g

	�1
�;

where �;	, respectively, represents Hadamard (elementwise) prod-
uct and power, and � represents outer product.

Random block coordinate descent algorithm. We adapt a flex-
ible gradient descent algorithm (Algorithm 1). In each iteration, the
algorithm first randomly partitions n subjects into m groups. Then,
gradient descent is sequentially conducted from group 1 to group m
to update the group-specific columns in W. That is, the subjects are
randomly partitioned in m group blocks in each iteration to improve
the robustness of gradient descent. Note the number of groups m
can be customized as any integer from 1 to sample size n. When
m ¼ 1, the algorithm is equivalent to the traditional gradient descent
algorithm; when m ¼ n, the algorithm is equivalent to the coordin-
ate descent algorithm (Wright, 2015). The flexibility alleviated both
the long running time of coordinate gradient descent algorithm
(Wright, 2015) and the excessive use of memory of gradient descent
algorithm. In order to dynamically adjust the learning rate, we uti-
lized Armijo line search (Armijo, 1966). The algorithm is stopped
when the step size decreases below a threshold tol, indicating the ap-
proximation of a local minimum. We then applied batch-wise stand-
ardization after obtaining the corrected count matrix. The algorithm
is implemented by RcppArmadillo (Eddelbuettel and Sanderson,
2014) in R package scBatch, which is available at https://github.
com/tengfei-emory/scBatch.

2.2 Simulation design
We applied Bioconductor package PROPER (Wu et al., 2015) for
simulation. In each dataset, gene expression counts for 20 000 genes
were generated for six cell types in three batches. Specifically, three
cell type pairs with randomly generated DE genes were generated to
obtain the six cell types, where the proportion of DE gene is fixed as
0.05. The randomly generated DE genes for the three pairs were
later used as gold standard to evaluate the performances of DE gene
detection. In order to make the characteristics of cell proportions of
simulated data close to a real scRNA-seq data, we varied the cell
type proportions across the batches. Specifically, we first generated
batches with systematic cell proportion differences, using six cell
types with the proportion of 1:3:1:1:1:6, 3:10:3:4:3:13 and
6:17:7:8:6:28, respectively, for the three batches. Then, for every
batch, we randomly drew cells based on the proportions, such that
random variation in cell sampling also factor into the data. As a re-
sult, the cell proportions vary across different batches.

To generate batch effects, we considered two aspects. First, the
log-scaled baseline gene expression level (lexp) for each gene was
perturbed in each batch by a random uniformly distributed variable.

Fig. 1. Overview of scBatch workflow. For the preprocessed count matrix X, the

Pearson correlation matrix is corrected by QuantNorm to obtain a reference sample

distance matrix D. Then the main algorithm is utilized to search for the weight ma-

trix W to achieve the objective that the Pearson correlation of X �W is close to D.

The corrected count matrix Y ¼ X�W inherits the sample pattern information

from D, which can be used for downstream analyses
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Second, the log-scaled over-dispersion parameter (lOD) for each
gene varied in each batch. This way, the batch effects were gene-
specific, a more realistic and more challenging scenario than the
naive batch effects having the same effect for all genes.

We considered three sample size configurations (270 cells, 540
cells and 1080 cells). For batch-effect parameter configurations,
lexp was perturbed by a Uniform(�3,3) random variable for each
gene in batch 2 and batch 3; lOD was increased by a Uniform(0,0.5)
random variable for batch 1 and 2, and was increased by a
Uniform(4,5) random variable for batch 3. As a control group, we
also simulated datasets without batch effects by keeping lexp and
lOD identical among the three batches, for the three sample size
configurations. For batch-effect data or control data, we simulated
50 datasets in each sample size and conducted batch-effect correc-
tion by various methods, including scBatch, MNN [Haghverdi et al.
(2018), function mnnCorrect in package batchelor], linear model-
based methods ComBat (Johnson et al., 2007), ComBat-seq (Zhang
et al., 2020) and limma [Ritchie et al. (2015), function
removeBatchEffect], and naive dataset normalization or standard-
ization scheme included in packages scater [McCarthy et al. (2017),
function normalize] and batchelor [Haghverdi et al. (2018), function
rescaleBatches], which is similar to ScaleData in package Seurat
(Satija et al., 2015). For MNN, default hyperparameters were used.
For scBatch, the hyperparameter m was chosen to be 1.

2.3 Datasets, preprocessing and correction
Mouse embryonic stem cells (mESCs) data. The data were generated
by Kim et al. (2015). The raw data are available in the ArrayExpress
database with accession number E-MTAB-2600. We utilized a proc-
essed dataset from the public data repository of Hemberg Group
(https://hemberg-lab.github.io/scRNA.seq.datasets/). The batch
labels were requested from the authors conducting the experiment.
The two batches of 469 mESCs cultured in three different conditions
were used in batch correction and analysis. All 38 616 genes, includ-
ing 92 External RNA Controls Consortium (ERCC) spike-in genes
were included.

Mouse neuron data. The data were generated by Usoskin et al.
(2015). The raw data can be obtained from the NCBI Gene
Expression Omnibus (GEO) with accession number GSE59739. We
also obtained the data from the same public repository (https://hem
berg-lab.github.io/scRNA.seq.datasets/), where normalization, out-
lier exclusion and log transformation were conducted to obtain a
dataset with 622 cells and 25 334 genes. We further removed two
batches with too few samples. The final data used for batch correc-
tion consisted of 610 cells and 25 334 genes.

Human pancreas data. The data were generated by Xin et al.
(2016). The raw data are available at the NCBI GEO with accession
number GSE81608. The data used for analysis were also obtained
from Hemberg Group’s repository (https://hemberg-lab.github.io/
scRNA.seq.datasets/). We used the same gene filter mentioned in
Xin et al. (2016) and retained genes with RPKM counts >100 in no
<10 samples. Only cells from healthy donors were selected in batch
correction and downstream analysis. The processed data contained
651 cells and 6797 genes.

For each dataset, we conducted corrections using the six batch-
effect correction methods used in simulation study. For data with
ERCC spike-in genes, we also used scPLS (Chen and Zhou, 2017),
which utilizes spike-in genes information. For ComBat-seq, we used
raw count matrix as input to ensure its assumption of negative bino-
mial distribution was met.

2.4 Analysis and performance evaluation scheme
DE analysis. We applied Seurat (Satija et al., 2015) to conduct DE
gene tests and adjusted the P-values by Benjamini and Hochberg ap-
proach (Benjamini and Hochberg, 1995). In simulation studies, we
base on the gold standard to directly calculate AUC and PR-AUC to
compare DE detection results. In addition, numbers of discovered
true DE genes at false discovery rate (FDR) 0.2, denoted by
NDE(0.2), were reported. For real data, comparisons were made for
genes with adjusted P-values < 10�6 and log fold-changes >2 to

check the agreements among different count matrices. Functional
analysis of the DE gene lists are conducted using the GOstats pack-
age (Falcon and Gentleman, 2007), which conducts tests of over-
representation of gene sets using hypergeometric test.

Clustering analysis. We repeatedly conducted 50 k-means clus-
tering on the Pearson correlation matrix of the corrected count ma-
trix to obtain cell clusters, where k was determined by the number
of cell types reported by the raw data. Then, we utilized ARI
(Hubert and Arabie, 1985) to evaluate the agreement between the
cell type labels and the k-means cluster labels. The ARI index equals
1 if the clustering result perfectly matches the cell labels, while the
index values around zero under random assignment. Finally, the
average ARI for the 50 k-means clustering results were reported.

Batch correction evaluation. For real datasets, we conducted k-
nearest-neighbor batch-effect test (kBET) (Büttner et al., 2019) to
evaluate whether cells from different batches were well-mixed after
correction. For the human pancreas dataset GSE81608, we further
applied a batch-correction evaluation framework (B-CeF) (Somekh
et al., 2019) to examine the preservation of biological signal in the
form of gene–gene association. Specifically, we obtained the gold-
standard gene network for human pancreas from GIANT database
(Greene et al., 2015) (giant.princeton.edu/download/) and evaluated
whether the corrected count matrix may recover the gold-standard
associations.

Dimension reduction. For real datasets, we applied t-distributed
stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008),
uniform manifold approximation and projection (UMAP) (Becht
et al., 2019) and principal component analysis (PCA) (Wold et al.,
1987) for dimension reduction. We used default parameters for the
three dimension reduction tools. The first two dimension-reduced
components were plotted to display the sample pattern after batch
correction.

3 Results

3.1 Simulation study
Figure 2 and Supplementary Figure S1 generated by ggplot2
(Wickham, 2016) displays the simulation results for the three sam-
ple size configurations under batch effect (Fig. 2) or control settings
(Supplementary Fig. S1). As observed in Supplementary Figure S1,
when there were no batch effects, the clustering and DE detection
performances were similar for all methods with slightly better per-
formances as the sample size increased. Compared to the control set-
ting without batch effects, both clustering and DE detection
performances were adversely affected when batch effects were pre-
sent (Fig. 2).

When there was batch effect, scBatch showed strong perform-
ance under different sample size settings. As indicated by the consist-
ently higher ARI index, scBatch inherited good clustering
performances from the distance matrix obtained by QuantNorm. In
addition, scBatch achieved better median PR-AUC, AUC and
NDE(0.2) in most pairwise DE comparisons. Furthermore, DE de-
tection performances improved as sample size increased (Fig. 2).
Generally for all methods, when the sample sizes were small (3 ver-
sus 4), or the ratio between the cell counts of the two groups under
comparison were large (5 versus 6), the ARI, PR-AUC and AUC
results tended to be slightly worse. When there was no batch effect,
scBatch yielded slightly better ARI results but slightly worse PR-
AUC results compared to the raw data and other methods
(Supplementary Fig. S1). This indicates a small amount of artifact
introduced when scBatch tries to force the distance between samples
to follow the same distribution within every batch and between
batches. In real data, usually the batch effects are relatively strong.
In the next sections, we examine the methods’ performance on real
datasets.

3.2 scRNA-seq datasets
Under the assumption of scBatch algorithm, the correction can be
reliably applied for batches with similar cell type compositions. This
assumption is particularly suitable for the investigation of cell
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heterogeneity from a certain tissue. In practice, however, the as-
sumption of balanced cell distribution may not be satisfied. In our
real data analysis, we compared batch-effect correction of various

methods on three scRNA-seq datasets with increasing complication
of cell distributions among batches (Kim et al., 2015; Usoskin et al.,
2015; Xin et al., 2016). The performances on the three datasets
revealed the robustness of scBatch: the method not only obtained
better sample patterns, but also retained important information in

marker genes.

3.2.1 mESC dataset E-MTAB-2600

The mESCs data were generated by Kim et al. (2015). The mESCs

were cultured in three different conditions, namely serum/leukemia
inhibitory factor (LIF), 2i/LIF (2i) and alternative 2i/LIF (a2i). The

batch labels were requested from the authors and the culture condi-
tion labels are available with the raw data. As shown in
Supplementary Table S1, the mESCs with the three culture condi-

tions are balancedly distributed in the two batches. In addition, the
high-rejection rate of kBET test (Supplementary Fig. S2) indicates
reasonable batch effects in the raw data.

Batch-effect corrections were conducted by ComBat, ComBat-
seq, MNN, scBatch, limma, rescaleBatches and scPLS. For ComBat-
seq, we conducted correction with raw count matrix and then nor-

malized it by scater (McCarthy et al., 2017). For the other methods,
batch-effect correction was conducted after scater normalization. As
shown in Supplementary Figure S2, all seven correction schemes

achieved a lower kBET rejection rates compared to the raw data, for
neighborhoods of k ¼ 20 cells. We further conducted t-SNE
(Fig. 3A), UMAP (Supplementary Fig. S3) and PCA (Supplementary

Fig. S4) dimension reduction and the average ARI based on repeated
k-means clustering. As the t-SNE plots indicate, most correction
schemes managed to group cells of the same type together. MNN

yielded a pattern with some residual batch effects. With limma and
rescaleBatches, we can still observe several cells with lif (orange)
condition mixed in the tail of 2i and a2i clusters. In contrast,

ComBat, scBatch and scPLS produced a relatively more separated
pattern for the three groups.

The 2D pattern alone does not reflect the cell type separation in

the high-dimensional space. We guaged the separation using the
average ARI indices from k-means clustering. The ARI further indi-
cated that scBatch ( �ARI ¼ 0:55) obtained better sample separation

Fig. 2. Boxplots of metrics evaluating batch-effect correction methods in the 50 simulations with gene-specific batch-effects, under different configurations of sample size. PR-

AUC, AUC and NDE(0.2) were calculated based on adjusted P-values from Seurat DE tests
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than uncorrected data ( �ARI ¼ 0:15), ComBat ( �ARI ¼ 0:26),
ComBat-seq ( �ARI ¼ 0:30), MNN ( �ARI ¼ 0:10), limma
( �ARI ¼ 0:21), scPLS ( �ARI ¼ 0:24) and rescaleBatches
( �ARI ¼ 0:243).

DE gene detection was then conducted between the pairs of cul-
ture conditions. Figure 3B shows the comparison of DE genes
detected by the data corrected by different methods. As observed,
the uncorrected data, rescaledBatches and ComBat-seq detected
least DE genes that largely overlap, while the other methods
obtained mostly overlapped DE gene sets, with ComBat disagreeing
with the other three methods to some extent. The functional analy-
ses by GOstats (Falcon and Gentleman, 2007) of the selected genes
showed similar results between scBatch, MNN and limma (full list:
Supplementary File S2; top 5 GO terms after manual removal of
highly overlapping terms: Supplementary File S3). For example, in
the comparison between a2i/LIF versus serum/LIF, scBatch, MNN
and limma all selected ‘positive regulation of Notch signaling path-
way’ as one of the top biological processes, while ComBat selected
less genes from this pathway and did not select it as one of the major
biological processes. Given the inhibitor used in this study, GSK3b,
is an established regulator of the Notch signaling pathway (Zheng
and Conner, 2018), we expected the pathway to be one of the most
significantly changed pathways between the two culture conditions.
Overall, the methods agree reasonably well with each other. This
can probably be explained by the well-balanced study design and
relatively straightforward pattern of batch effects. In the next two
real data examples, we attempted to correct more challenging batch
effects with less balanced study design.

3.2.2 Mouse neuron dataset GSE59739

The mouse neuron scRNA-seq data were generated by Usoskin et al.
(2015). Cell labels determined by marker genes were provided in the
data. We based our analyses on the given cell labels to investigate
the differences of four main subtypes of cells, namely non-
peptidergic nociceptors, tyrosine hydroxylase containing, neurofila-
ment containing and peptidergic nociceptors.

The source of batch effects came from different libraries, as con-
firmed by kBET test with high-rejection rates (Supplementary Fig.
S5). In addition, Supplementary Table S2 shows that the different
libraries contain the four cell types with varied proportions.
Therefore, the cell distribution is slightly imbalanced. As observed
in the 2D t-SNE plot (Fig. 4A, top-left panel), although the uncor-
rected data maintained part of the clusters of the four cells, there are
still splitting of a single cell type, and mixture of cell types.

Regarding the libraries as batches, we conducted batch-effect
correction using ComBat, ComBat-seq, MNN, scBatch, limma and
rescaleBatches. Note that, for ComBat-seq, the raw count matrix
was corrected then normalized, while for the other methods the nor-
malized count matrix was corrected. As shown in Supplementary
Figure S5, scBatch correction achieved the lowest average kBET re-
jection rate, indicating that the batches are better mixed at any
neighborhoods of k ¼ 20 cells.

In order to evaluate the clustering performance, we utilized t-
SNE (Fig. 4A), UMAP (Supplementary Fig. S6), PCA
(Supplementary Fig. S7) dimension reduction and the average ARI
based on multiple k-means clustering results. As the t-SNE plots dis-
play, scBatch (bottom left) obtained a clearer sample pattern which
distinguished the four subtypes better. The ARI indices based on k-
means clustering results also demonstrated that scBatch
( �ARI ¼ 0:64) outperformed uncorrected data ( �ARI ¼ 0:09),
ComBat ( �ARI ¼ 0:11), ComBat-seq ( �ARI ¼ 0:08), MNN
( �ARI ¼ 0:15), limma ( �ARI ¼ 0:13) and rescaleBatches ( �ARI ¼ 0:09)
by a large margin. To further investigate whether corrected count
matrices kept crucial marker information, we plot the marker gene
expression levels in the t-SNE plots for the four cell subtypes, dis-
played in Supplementary Figure S8. It can be observed that scBatch
correction inherited the marker information from the uncorrected
data with large contrast, while the other approaches did not main-
tain as strong contrast in the marker genes.

Due to its ability to restore better sample patterns and maintain
important marker contrasts, scBatch also showed good performance

in DE gene detection. We conducted DE gene detection between all
cell type pairs. Figure 4B shows the comparison of DE genes

A

B

Fig. 3. Analysis results for the mESCs data: (A) t-SNE plots of the sample patterns

from uncorrected data (normalized raw count data), ComBat-corrected data,

MNN-corrected data, scBatch-corrected data, limma-corrected data,

rescaleBatches-corrected data and scPLS-corrected data, colored by different cul-

tured conditions; (B) comparison of the significant genes from pairwise differential-

gene tests by Seurat (Satija et al., 2015) with adjusted P-values < 10�6 and log

fold-changes >2

A

B

Fig. 4. Analysis results for the mouse neuron data: (A) t-SNE plots of the sample pat-

terns from uncorrected data (normalized raw count data), ComBat-corrected data,

MNN-corrected data, scBatch-corrected data, limma-corrected data and

rescaleBatches-corrected data, colored by cell types; (B) comparison of the signifi-

cant genes from pairwise differential-gene tests by Seurat (Satija et al., 2015) with

adjusted P-values < 10�6 and log fold-changes >2
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detected from the different count matrices. Similar to the results for
the mESCs data, for most pairs of cell types, the DE gene set
detected by scBatch covered the DE gene set obtained by other meth-
ods, except for ComBat and MNN. This indicates that more under-
lying information masked by batch effects may be revealed by
scBatch.

In most of the comparisons, scBatch and ComBat both covered
the genes detected by uncorrected data, rescaleBatches and ComBat-
seq. At the same time, MNN showed smaller agreement with raw
data, rescaleBatches and ComBat-seq. ScBatch also mostly covered
the genes detected by limma. With regard to biological interpreta-
tions, the methods MNN, scBatch, comBat and limma mostly
pointed to similar top pathways that were biologically quite plaus-
ible, indicating the biological signal was very strong in this dataset
(full list: Supplementary File S4; top five GO terms after manual re-
moval of highly overlapping terms: Supplementary File S5).

3.2.3 Human pancreas data GSE81608

We analyzed another scRNA-seq data of human pancreas cells (Xin
et al., 2016). The dataset consists of cells from healthy controls and
patients with type II diabetes.

Here, we focused on healthy control cells to investigate the cell
heterogeneity. The data were collected from 12 donors. We first
examined whether the data show any subject effects. There are four
dominating endocrine cell types—alpha cells that produce glucagon,
beta cells that produce insulin and amylin, delta cells that produce
somatostatin and gamma cells that produce pancreatic polypeptide.
By observing the t-SNE and UMAP plots (Supplementary Fig. S9),
we found that the sample patterns were confounded with donor IDs.
Specifically, cells from the same donor tend to form their own clus-
ters. Therefore, the data are subject to confounding subject effects,
which affect downstream data analysis in similar ways as batch
effects and can be corrected by batch correction approaches. In
other words, the donor IDs were treated as batches in this analysis.
Furthermore, the distribution of cell types between the donor IDs,
or batches, vary substantially (Supplementary Table S3). The pro-
portion of alpha cells ranged from 16.7% to 74.6% among the
batches. The proportion of beta cells ranged from 14.0% to 54.2%.
Given that gamma and delta cells account for small proportions in
the pancreas islet, they were not present in some of the batches. The
range for delta cell was from 0% to 8.3%; the range for gamma cell
was from 0% to 20.0%. These variations made the data more chal-
lenging than the mESCs data and the mouse neuron data. In specific,
since delta or gamma cells can be missing in some batches, it is not
reasonable to assume a good mixture of batches for delta or gamma
cells after correction. Thus, the kBET rejection rates may not be a
representative metric for batch-effect correction under the imbal-
anced nature of the dataset.

We applied similar analysis procedure used for the mouse neuron
data. As expected, the kBET rejection rates (Supplementary Fig.
S10) for scBatch remains high due to the imbalanced cell distribu-
tion among batches, while comBat, limma and rescaleBathes
achieved lower rejection rates. However, the sample pattern
reflected by the t-SNE and UMAP plots (Fig. 5A and Supplementary
Fig. S11) indicated a better clustering pattern for scBatch, especially
for delta (yellow points) and gamma (pink points) cells. In K-means
clustering results, scBatch achieved highest average ARI (0.60), com-
pared to uncorrected data (0.42), ComBat (0.44), ComBat-seq
(0.43), MNN (0.07), limma (0.48) and rescaleBatches (0.17). The
marker gene expressions on t-SNE plots (Supplementary Fig. S13)
similarly demonstrated that scBatch was able to maintain marker
gene information from the original data. Combining the kBET
results, dimension reduction plots and clustering performances, we
found that the kBET results may not be associated with better di-
mension reduction or clustering performances for this specific data-
set with very imbalanced study design.

Figure 5B displays the comparison of significant DE genes.
Similar to the results for the two mouse datasets, uncorrected data
and rescaleBatches detected least DE genes. Apart from MNN, high
degrees of agreement were observed among other methods, where
scBatch was able to detect the most DE genes in all six pairs. In

addition, scBatch also achieved highest AUC in the B-CeF evaluation
(Supplementary Fig. S14). However, the AUCs for all count matrices
were lower than 0.6. This is expected given tissue-specific gene–gene
associations were used as gold standard. Currently, no good data
source is available for cell type-specific gene–gene associations.

We again used GOstats to analyze the over-representation of
gene ontology biological processes by the selected genes (Falcon and
Gentleman, 2007). We took the DE genes between delta and gamma
cells as an example, as it showed the largest difference between
MNN and the other methods. Delta cells secrete somatostatin, the
growth hormone-inhibiting hormone; gamma cells secrete pancreat-
ic polypeptide that regulates pancreatic secretion activities. At the P-
value threshold of 0.005, MNN yielded six significant biological
processes, while the other correction methods each yielded more
than 20. In addition, given the biological functions of the two cell
types, various hormone metabolism and hormone response proc-
esses were repeatedly found by ComBat, ComBat-seq, scBatch,
limma and rescaleBatches. But they were not selected by MNN (full
list: Supplementary File S6; top 5 GO terms after manual removal of
highly overlapping terms: Supplementary File S7).

Overall, in all three datasets we analyzed, scBatch tended to yield
the clearest cell type patterns, and select the most number of DE
genes. In each dataset, there were one or two methods that tended to
select somewhat different DE genes compared with the other meth-
ods. ScBatch stayed in the majority in every dataset, which suggested
its robustness.

4 Discussion

Batch effects are frequently encountered in omics data analysis, thus
a crucial issue to address before downstream analysis that leads to

A

B

Fig. 5. Analysis results for the human pancreas data: (A) t-SNE plots of the sample

patterns from uncorrected data (normalized raw count data), ComBat-corrected

data, MNN-corrected data, scBatch-corrected data, limma-corrected data and

rescaleBatches-corrected data, colored by cell types; (B) comparison of the signifi-

cant genes from pairwise differential-gene tests by Seurat (Satija et al., 2015) with

adjusted P-values < 10�6 and log fold-changes >2
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scientific discoveries. In this article, we introduced a novel method
for batch-effect correction. We have shown that the proposed
method, scBatch, can obtain better clustering pattern, maintain cru-
cial marker information and detect more DE genes.

The proposed method assumes roughly balanced sample popula-
tion among batches. The assumption is reasonable (Hicks et al.,
2018), and the method appeared to be robust when the assumption
is mildly violated, as demonstrated in the analysis for human pan-
creas data (Xin et al., 2016). It is worth noting, however, that the
balanced study design may be unrealistic due to logistical limitations
(Bacher and Kendziorski, 2016) and batches and biological factors
are commonly confounded (Stegle et al., 2015). In addition, al-
though we did not consider utilizing information from spike-in
genes, the performance of our method was comparable to the
approaches designed for control-gene scenario, such as scPLS (Chen
and Zhou, 2017). In fact, the clustering performance of scBatch out-
performs control-gene-based method for the mESCs data (Kim
et al., 2015). Furthermore, since our method is based on non-
parametric distance matrix correction, it can handle data with dif-
ferent characteristics. We show in Supplementary Section S3 and
Figure S15 that our method achieved good performance on a bulk
RNA-seq dataset. Nevertheless, when the study design is extremely
imbalanced, such as for a dataset with cells from different develop-
mental stages distributed in separate batches, we do not recommend
using our method.

Another popular analysis objective for scRNA-seq data is to
combine datasets from several platforms. Haghverdi et al. (2018)
provided a benchmark example on combining four human pancreas
datasets (Grün et al., 2016; Lawlor et al., 2017; Muraro et al.,
2016; Segerstolpe et al., 2016) from SMART-seq2 (Picelli et al.,
2013) and CEL-seq/CEL-seq2 (Hashimshony et al., 2012) protocols.
We managed to reproduce the results for MNN, ComBat and
limma, and applied scBatch to correct the batch effect among the
four datasets. As shown in Supplementary Section S4 and Figure
S16, scBatch still achieved the highest ARI compared to other bench-
mark methods. The sample patterns obtained by scBatch, ComBat
and limma, however, still clearly showed residual batch influences.
Although MNN obtained larger clusters that appeared to mix
batches better and restore the patterns for the seven cell types, each
cluster actually consisted of a mixture of cell types. From the above
observations, the batch correction across sequencing platforms
appears unsatisfactory for every tested correction scheme. In fact,
our previous article (Fei et al., 2018) demonstrated that one of the
four human pancreas datasets (Muraro et al., 2016) has batch effect
within the dataset. It might be a better practice to correct within-
dataset batch effect before considering cross-dataset batch effect.
Despite the difficulty, scBatch still retrieved better sample pattern in
terms of ARI, showing promising signs in applying non-parametric
distance matrix correction on similar tasks involving multiple data-
sets. We plan to study hierarchical batch-effect correction, first with-
in study, and then between study, in our future work.

Computation is another practical concern for the application of
scBatch. As discussed in Section 2.1, the memory use is excessive
when computing the gradient of the loss function without random
blocks, while more random blocks reduce the memory use at costs
of longer running time to convergence. According to the supplemen-
tary simulation results (Supplementary Section S5 and Fig. S17), for
datasets with relatively small sample size, full gradient descent with-
out random blocks, i.e. m ¼ 1, is the best practice. If the computa-
tional cost of full gradient descent is unaffordable, utilizing random
blocks, i.e. m > 1, can be used to achieve similar clustering and DE
detection performance. In addition, Supplementary Figure S18 indi-
cates reasonable stability of clustering and DE detection perform-
ance of the random block approach. In terms of running speed,
scBatch requires more computation time to reach optimal results
compared to most existing approaches. Moreover, as shown in
Supplementary Figure S19, the scBatch running time increases faster
than a linear growth rate as the sample size increases. Moreover, for
a fixed sample size, the time to convergence for scBatch also varied.
The varied running time was determined by the complication of
batch effects, which decided the similarity between uncorrected

sample pattern and the corrected referencing sample pattern.
Although slower than other alternatives, the running speed of
scBatch is within acceptable range. For a few hundred cells, the com-
puting time was in the range of minutes. For large studies with over
1000 cells, the computing can take hours.

There is still large room to improve the proposed method. First,
we only adopted the simplest linear transformation of raw count
matrix in this article, while a non-linear transformation may better
depict the sample pattern in the corrected distance matrix. Secondly,
the metrics of distance can also affect the correction. We used the
Pearson correlation matrix because it was easy to interpret and con-
venient for gradient computation, while other distance metrics, such
as Spearman correlation may bring other insights to the data pat-
tern. Thus, a more universal numerical gradient descent algorithm
may be applied to adapt to different types of distance matrices.
Furthermore, the current implementation of algorithm can be poten-
tially improved and accelerated by utilizing graphic processing units
computing, which is already available under R software framework
(Determan, 2019; Rupp et al., 2016).
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