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Abstract

Revolutions in natural and exact sciences started at the dawn of last century have led to the 

explosion of theoretical, experimental, and computational approaches to determine structures of 

molecules, complexes, as well as their rich conformational dynamics. Since different experimental 

methods produce information that is attributed to specific time and length scales, corresponding 

computational methods have to be tailored to these scales and experiments. These methods can be 

then combined and integrated in scales, hence producing a fuller picture of molecular structure and 

motion from the “puzzle pieces” offered by various experiments. Here, we describe a number of 

computational approaches to utilize experimental data to glance into structure of proteins and 

understand their dynamics. We will also discuss the limitations and the resolution of the 

constraints-based modeling approaches.
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Introduction

The past century has been transformational for many scientific disciplines. Some of the most 

prominent revolutions happened in biology: the field transformed from the descriptive and 

cataloging field to a mechanistic one, whereby we have started to understand the molecular 

origins, processes, and mechanisms responsible for life of species. We dove deeper into 

molecular and atomic scale of these processes and learned how atomic constellations of 

biological molecules result in interactions between these molecules, resulting in higher-order 

physiological phenotypes. Not only we started to understand molecular mechanisms 

underlying physiological processes, but also learned how to rationally manipulate biological 

systems using genetic tools, molecular engineering, and drug discovery.

Molecular architecture and atomic structure have become central to biology. Recognizing 

the impact of structural biology, many nations contributed to Structural Genomics Initiative. 

The USA National Institutes of General Medical Sciences have sponsored one of the most 

successful programs, Protein Structure Initiative (PSI) [1], that resulted in significant 

expansion of coverage of protein fold space. This initiative has resulted in determination of 

nearly 7,000 protein structures including many unique folds. PSI has also promoted 

innovations in molecular structure determination methods and technologies [2].

Technological developments have been central to structural biology revolution. These 

developments can be stratified in to three categories: experimental, computational, and 

hybrid, in which sparse experimental, knowledge-based, and/or evolutionary information is 

used to determine protein structure. Next, we outline the strengths and limitations of these 

approaches, challenges, and strategies to tackle modern day problems of protein structure 

determination.
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High-resolution experimental approaches

The solution of the first X-ray crystallographic structure of the protein myoglobin by Sir 

John Kendrew in 1958 [3] opened the flood gates of molecular structural revolution. 

Technological and scientific advances, that included the development of the nuclear 

magnetic resonance (NMR) techniques [4,5], negative staining and cryo-electron 

microscopy (cryo-EM) [6–8], computational and theoretical approaches [9–34], resulted in 

exponential explosion of the number of determined protein structures (Figure 1). In turn, 

newly discovered structures empowered scientists with unprecedented abilities to (i) 

establish structure-functional relationships in molecules, which resulted in a new field of 

molecular biology [35], (ii) discover new drugs based on small molecule-receptor structures, 

which resulted in the field of molecular pharmacology [36,37], (iii) design new proteins, 

which resulted in the field of computational protein design [38,39]. The structural revolution 

has had a profound impact on our society and we continue to benefit from the expanding 

field of structural biology.

Initial growth in determined protein structures has been due to advances in X-ray 

crystallography, however, the introduction of NMR for protein structure determination by 

Kurth Wüthrich [40–42] and others altered the landscape of molecular structure 

determination. Although one of the principal limitations of NMR has been the size of the 

molecule, a number of innovative techniques pushed the boundaries of molecular weight 

limit on studied proteins (Table 1). This technique offers a critical advantage with respect to 

crystallography, namely the ability to witness conformations of proteins, that float freely in, 

albeit crowded, solutions.

Technological innovations, as well as innovations in computer algorithms have led to 

breakthrough advances in cryo-EM technology and the rise of new era in structural biology. 

The number of protein structures solved using cryo-EM has been growing, including 

especially challenging transmembrane proteins and whole viruses [43]. According to 

estimates [44], we have not reached the theoretical limits of what is possible with cryo-EM, 

and the emerging field of cryo-electron tomography. Cryo-EM field promises to 

revolutionize molecular structure determination.

Computational modeling

Molecular modeling has been playing a critical role in structural determination. It is hard to 

imagine any structural biology experiment that would not rely on computational assistance 

in data processing and reconstruction. Molecular modeling has been used in molecular 

reconstruction of crystallographic data using molecular replacement, structural refinement, 

as well as building ensembles of molecular conformations using NMR data.

Ever increasing computational power enabled significant advances in molecular modeling. 

Initial success in structure prediction has come from phenomenological modeling, whereby 

known structural information was used to reconstruct previously unknown molecules. 

“Threading” [45] was one of the original dominant approaches for structure modeling that 

has been relying on a critical observation that if two proteins share sequence similarity, their 

structures are also similar (homologous) [46–50]. Thus, the first step in threading is 
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identification of homologous proteins (with known structures) to a given target protein. In 

the second step, all the sequence information is stripped from the identified homologous 

proteins and only backbone trace remains. In the third step, the sequence of the target 

protein is “threaded” through the backbone trace of the homologous proteins. Upon 

resolution of clashes and further structural optimization (energy minimization), the final 

energy of the threaded sequence, E, is evaluated and compared to that of the average of a 

randomly reshuffled sequences, E (to maintain amino acid composition). Based on this 

comparison one can build a distribution of Z-scores (Z = E − E
σE

, where σE is the standard 

deviation of the distribution). The probability, p, of finding a particular structure with a given 

Z-score can be obtained by integrating the tail of the normal distribution of Z-scores (due to 

the central limit theorem). This approach proved to be powerful [51–53], but limiting to 

closely related homologs. More distant homologous proteins featured backbone 

rearrangements. Since the threading score is susceptible to backbone variations, the 

threading procedure results in less accurate results for more distant homologs.

The next revolution in protein structure prediction has come from the fragment-based 

modeling, [54,55] whereby known protein structures are deconstructed into fragments of 

several amino acids. The library of fragments is then used to assemble the structures of an 

unknown target protein by matching corresponding sequence fragments of the target protein 

to that of a fragment from the library. This approach has proved to not only accurately 

predict protein structure, but enabled successful and robust protein design protocol, 

implemented in RosettaDesign [56]. Nonetheless, even this approach reached the limit of 

prediction accuracy as it is evidenced from the adaption of new approaches in the field of 

protein structure prediction.

The next breakthrough in computational structure determination was based on observation 

that if two amino acids in proteins form stabilizing interaction, then substitution of one 

would impact the other amino acid [57,58]. Based on this observation then, we can relate the 

strength of covariation of amino acids at various positions in the course of evolution with the 

chances that these residues interact in 3D space. Several methods have been developed to 

extract the potential interactions between positions along the chain using such direct 

coupling analysis [59–62], or DCA. As the result protein structure prediction reached new 

highs in the Critical Assessment of Structure Prediction (CASP) [63] competitions. The 

most recent breakthrough in computational structure prediction has come from the 

implementation of machine learning approaches [64–66]. Combination of the computational 

approaches has had a profound impact on structural biology.

Challenges

Despite these paramount advances in experimental and computational approaches, we are 

still facing some of the critical challenges in our understanding of molecular structure and 

dynamics. These challenges are typically associated with the complexity of characterization 

of intrinsic molecular dynamics and capturing conformational states of interest. Some 

examples of such obstacles include: (i) characterization of disordered proteins [67–72], (ii) 

identifying rare conformations [63–65], (iii) witnessing templating conformational 

conversions [73–76] (key steps in protein aggregation), (iv) determining structures of 
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molecular complexes, especially featuring interactions with disordered conformations [77–

81], and (v) ligand-induced conformational disorder-order transitions [82–88]. All of these 

obstacles induce heterogeneity in samples, making structural determination extremely 

challenging.

The thread among above challenges is the characterization of disorder. Unlike structural 

determination of proteins that populate most of their life time in the near-native 

conformations, disordered proteins lack well-defined states and, instead, feature some 

persistent structural elements in otherwise diverse conformational ensemble. In this regard, 

the meaning of structural characterization is shifted from the concept of “one protein – one 

structure” to identifying persistent elements of conformational ensembles.

Problem formulation

How can we characterize these ensembles of disordered proteins? To understand how to 

characterize the ensembles, we look into the physical properties of heterogeneous proteins. 

Unlike random homopolymers, heteropolymers feature non-equal interactions between 

distinct regions of the polymers. According to Boltzmann distribution, the probability, p(Γ), 

of observing a particular conformation, Γ, is p(Γ ) exp − E(Γ )
kBT , where E is the energy of this 

conformation, kB is the Boltzmann constant and T is the temperature. Thus, heteropolymeric 

segments that feature preferable interactions are more likely to appear in proximity within 

each other as such conformations feature lower energies than those that do not have strongly 

interacting segments in proximity. These more favorably interacting segments in proteins 

determine their conformational landscape. In structurally ordered proteins the attraction 

between interacting segments (ΔH) compete against conformational entropy (ΔS) to 

converge on a well-defined near-native structural ensemble, with stability ΔG = ΔH – TΔS < 

0. In natively disordered proteins, there is little distinction between any sub-states and the 

unfolded states, i.e. ΔS ≈ 0. We can deconstruct contribution to ΔH = ΔHsis + ΔHwis, where 

ΔHsis is the enthalpic contribution of the strongly interacting segments, and ΔHwis is that of 

the contribution of the weakly interacting segments. The probability to observe 

conformations with the strongly interacting segments present, considering that the weakly 

interacting segments have minimal energy contribution (ΔHwis ≈ 0), would be 

pi(Γ ) exp
−ΔHsis(Γ ) + TΔS

kBT , which is much larger than that when these strongly interacting 

segments do not interact, p0(Γ ) exp
−ΔHwis(Γ ) + TΔS

kBT : pi(Γ ) > p0(Γ ). Hence, in 

heteropolymers, one expects dynamic persistence of strongly interacting structural segments. 

Even in folded proteins, local unfolding around strongly interacting structural segments 

determine the dynamics of proteins and their aggregation morphologies [89].

Although strongly interacting segments shape protein conformational states, their 

characterization is not trivial as these conformational ensembles can be complex and 

context/condition-dependent. For example, there can be multiple competing conformations 

resulting in a given conformational ensemble. To better understand the problem, it is worth 

consider various evolutionary scenarios for appearance of natively disordered proteins.
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There are several scenarios how proteins evolve to be disordered or feature some level of 

disorder (Figure 2). In one scenario, a stable protein loses its structure in the course of 

evolution. For example, partial loss of a function due to the stability loss of a given protein 

can be compensated to preserve fitness of the organism by having a compensation in a 

different protein with a similar function. Hence, the stability of the protein does not have to 

be maintained for organismal fitness. Yet unless a protein performs some function in cells, 

its expression becomes an energetic burden. Hence, proteins that lose their stability in the 

course of evolution either maintain its function, although at a lower level, or acquire new 

function(s). Not all mutations that result in disordered but functional protein are fixed. 

Thermodynamically stable proteins pack their hydrophobic cores on the inside and expose 

hydrophilic patches on the outside. When such proteins are unfolded, unfolded protein 

response (UPR) is initiated: these proteins are recognized by chaperones by binding to 

exposed hydrophobic patches. These chaperones either assist refolding of the misfolded 

protein or target it to proteasomal degradation. Hence, natively disordered proteins also 

evolve to evade UPR.

Another scenario for evolution of the natively disordered proteins may come from functional 

adaptation of a given protein. In the course of evolution, a protein may adapt a new function, 

and likely a new functional conformational ensemble. In this case, these two (original and 

acquired) functional ensembles compete with each other, making the protein de facto 
disordered, although it persistently populates these two functional states.

Although other scenarios for evolution are likely, the keys differentiating these scenarios are 

the number of dominant structural conformations and the kinetics of interconversion 

between them. Hence, to characterize the conformational states of the natively disordered 

proteins, one needs to generate these ensembles and, then, identify their chemical and 

biological properties, as well as the rates of conversions between states.

Molecular dynamics (MD) computer simulations allow generation of hypothetical 

ensembles of protein conformations. Upon sufficient sampling, MD simulations faithfully 

reproduce physical properties of natively disordered proteins [90]. However, sufficient 

sampling can be challenging with the traditional MD [91–100]. To circumvent this 

challenge, several approaches have been developed. One class of approaches is based on 

innovative strategies for sampling states, that include replica exchange (REX) [101,102] and 

accelerated MD (aMD) [103]. Another class of sampling enhancement approaches comes 

from parallelization, utilization of graphical processor units (GPUs) [104–107], and custom 

processor architectures, e.g. Anton [108]. Faster algorithms for simulations, such as Monte 

Carlo and discrete molecular dynamics (DMD) [109–113] offer increase in raw speed of 

simulations. These algorithms can often be combined with different sampling strategies, and 

hardware acceleration.

Even with software and/or hardware acceleration, the sampling maybe insufficient due to the 

size of the system. Furthermore, imperfections of the force fields may bias the 

conformational ensembles. A number of strategies have been developed to circumvent these 

challenges with the premise of restricting the search space by utilizing prior knowledge, 

such as evolutionary data, experiments, and literature. In all of these cases the restriction of 
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the search space impacts the entropy and reduces the free energy barrier that separates low 

energy conformational state(s) from the random coil states. Next, we will describe several 

such strategies.

Fitting the experimental collective observables

Various experiments offer different types of observables. In case when experiments report on 

collective variables, Sexp
i , for a given observable i, a method to restrict computational 

sampling of molecular conformations is to impose constraints on the difference between 

computational, Scomp
i , and experimental values of the collective observables by minimizing 

their χ2 S comp, S exp  values:

χ2 S comp, S exp = 1
n ∑

i = 1

n
Scomp

i − Sexp
i 2

χmin2 = minS compχ2 S comp, S exp

(1)

The solution of these equations guarantees an optimal ensemble that satisfies experimental 

data and the level of agreement between thus computationally-constructed and experimental 

conformational ensembles is characterized by the value of χmin2 .

This approach has been extensively used in protein folding community to build protein 

folding-unfolding transition state ensembles by using as the collective variables ϕ-values, 

which is an approximate measure of a particular residue, i, contribution to the transitional 

state ensemble [114–121]: Si = ϕi. Mapping transition state ensembles by fitting of the 

experimental ϕ-values allowed the determination of the structural properties of some of the 

kinetically most evasive states.

Sample and select

If sampling of conformational states is not an obstacle, an alternative strategy, named 

“sample and select”, is based on the generation of the naïve (without experimental biases) 

conformational ensembles in MD simulations, and selection of conformations from the 

obtained ensembles that satisfy experimental data using Equation (1). This approach has 

been developed by Chen et al. [122], for utilizing NMR residual dipolar coupling (RDC) 

data as the bias to obtain conformational ensembles consistent with the RDCs. It has also 

been utilized by other groups for interpreting NMR data of RNA and DNA molecules [123–

125].

Pairwise constraints-based modeling

Various experiments, such as amino-acid cross linking, FRET, and NMR, and evolutionary 

inference studies [57–62] often report on pairwise proximity of residues. Pairwise proximity 

data can be readily incorporated into the physical force field, Hphys,
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H = Hpℎys + λHconstr, (2)

where

Hconstr = ∑(i, j)constr Uij(r), (3)

(i, j)constr are pairs of constrained residues, and λ < 1 is a weight coefficient for the 

constraints’ potential. The form of potentials, Uij(r), can be chosen as spring (quadratic) 

potential, if it is used in traditional MD engine, or square wells, if used in DMD (Figure 3). 

The middle of the well, rij, corresponds to the average distance expected between residues i 
and j, and the width, σij, corresponds to the expected variation of distances between these 

residues.

An important experimental limitation that needs to be considered is that some of the 

pairwise proximity data set may conflict within itself. The solution to this limitation is 

described in the Ensemble deconstruction and Conflicting and “dirty” constraints sections 

below.

The utilization of the pairwise proximity information offers a rapid construction of protein 

conformations that are consistent with this information [126]. Satisfying each constraint 

reduces entropy of protein by ΔS ~ ln|i – j| [127], thus driving the conformational ensemble 

towards the states that satisfy constraints and minimize the free energy of the system.

A number of groups develop methodologies for incorporating cross-linking and co-

evolutionary constraints [128–130]. Borchers and Dokholyan laboratories developed cross-

linking driven DMD engine that streamlines utilization of chemical cross-linking 

information in DMD simulation [72,131] (Figure 4). This approach has been successfully 

applied to a number of proteins [131,132], including intrinsically disordered proteins (IDP) 

[133–135] α-synuclein [72] and tau [71] proteins.

Shape constraint-based modeling

Shape of the protein can be determined using several approaches, such as small angle X-ray 

scattering (SAXS), atomic force microscopy (AFM), and negative staining EM. Shape can 

be also used as constraints for building a structure. Many packages utilizing SAXS data 

build molecular shapes by filling in spheres into the volume and optimizing the shape of the 

volume until significant match between experimental and computational intensities of 

scattered X-ray [136–140].

Alternative approaches may include: (i) fitting the shape density profiles to computationally-

derived ones by using χ2 minimization, similar to Equation (1); (ii) determining shape 

fingerprints, such as Zernike functions, and matching experimentally derived ones to those 

coming from known structures [141,142]; (iii) using simulations with biasing potential 

towards a particular shape. While the last approach has not been implemented for ab initio 
structure prediction, Dokholyan laboratory uses this approach routinely to bias simulations 

using experimental constraints [79].
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Surface exposure-based modeling

Measuring exposure of various amino acids to solvent can be readily achieved in 

biochemical and biophysical experiments. Next, we describe several techniques used to 

perform protein surface mapping.

In a limited proteolysis approach a protein is subject to proteases for a period of time 

sufficient for a single cut to occur. The conditions are controlled by the buffer and the 

reaction is rapidly quenched at the time point where we expect a single proteolytic event. 

This approach requires calibration of protease reaction kinetics through a set of time course 

experiments. Single cuts are most likely to occur on the surface of a thermodynamically-

stable proteins, while cleavable sites are buried in the protein cores. The cleavage sites are 

readily detectable using mass spectrometry (MS).

In these experiments, thermodynamic stability of a protein determines how noisy is the data. 

For a two-state protein the ratio of folded versus unfolded state is determined by the 

equilibrium constant KF = f u, where f and u are fraction of folded and unfolded states 

correspondingly. If KF ≫ 1, then proteolytic cleavage occurs predominantly in the folded 

state. In contrast, when KF~1, cleavage of the unfolded conformations contributes to the 

signal, thereby mixing folding and unfolding states. Even for marginally stable proteins, 

limited proteolysis can be a viable approach to determine structures of protein native folded 

states, although in this case, quantitative MS should be used to determine contribution of 

each states and deconvolute them using Ensemble deconstruction technique described below.

An important benefit of the proteolysis is that some of the proteases are specific to a 

particular amino acid sequence epitope. If these proteases do not cleave a protein in a 

particular specific to these proteases’ sites, this negative information can also be used as a 

constraint in simulations.

An approach to utilize surface exposure data in simulations was proposed by Proctor et al. 

[143], who developed a modified Gō potential [144,145] to perform DMD simulations. Gō 

force field biases the protein towards the native state by assigning attractive or repulsive 

potential to pairs of residues that are proximal or distal in the native state [67,146,147]. In 

this approach, experimental data was used as a biasing potential to a native Gō potential 

[110,144,145], i.e.

H = − ϵ0∑i < jΔijδij + λ∑l ∈ cuts ∑k < lEcut(j, k), (4)

where the first term is the Gō potential and the second term is the biasing term that is 

attractive for all potential cut sites that are not cut in experiments, i.e. they are protected, and 

is repulsive for the potential cut sites that were cut in experiments [143]. Using this 

potential, Proctor et al, was able to propose a model of a transient trimeric intermediate of 

superoxide dismutase 1 (SOD1) that appears on its aggregation pathway and has relevance 

to amyotrophic lateral sclerosis (ALS), discussed below.

Hydrogen-deuterium exchange (HDX) experiments utilize the propensity for amide 

hydrogens to be replaced by deuteriums when protein is immersed into the heavy water. The 
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exchange rates can be measured by NMR (quantitatively) in the EX2 limit (in which 

conformational changes occur at faster than the exchange between hydrogen and deuterium) 

[148] and MS. In the EX2 regime, satisfied for most stable proteins, the protection factor of 

a given residue, Pf, is a ration of the intrinsic krc and an experimentally measured kex 

exchange rates, Pf = krc kex. Protection factors are related to residues (k) contributions to the 

free energy differences between open and closed states:

ΔGHDX = ∑kΔGHDX(k) = − RT ∑k  ln Pf(k) . (5)

There are two approaches to reconstruct protein conformational ensembles using protection 

factors: one was developed by Vendruscolo et al. [149], and one developed in Dokholyan 

laboratory [148]. Vendruscolo et al. proposed to minimize the difference between the 

protection factors determined from the simulated conformational ensembles and 

experimental ones, in essence, similar to Equation (1). Dokholyan laboratory used protection 

factors to design a force field that would guide rapid DMD simulations towards ensembles 

consistent with the observed protection factors. The latter approach is agnostic about 

physical force field since we generate ensembles based on the force field derived directly 

from the experiments.

Chemical modifications mapping is another approach to utilize residue reactivity to reagents 

present in solutions. The modifications of residues exposed to the solvent that reacted with 

the reagents, can be detected using MS or chemical/physical sensors, such as fluorescent 

reporter binding at the modification site[150]. The approach to model molecular structure 

based on chemical modification is conceptually similar to the approaches used for HDX or 

limited proteolysis-based structure modeling.

Ensemble deconstruction

All described methods result in conformational ensembles, Γ, that are consistent with 

various experimental data. These ensembles contain information about (meta)stable states, 

some of them are rare. To uncover these states, clustering of protein conformations is 

performed based on the pairwise root-mean square distance (RMSD) between all 

conformations. The clustering procedure partitions the conformational ensemble into states, 

Γk, whose population is the weight of the cluster, wk:

Γ ∪k = 1
Ncl Γk, (6)

where Ncl is the number of obtained clusters. In essence, these clusters represent 

conformational landscape of a protein [151,152] and the logarithm of weights is related to 

the free energy of these states:

Fk = − kBT  log wk, (7)

Where kB is the Boltzman constant and T is the temperature.
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Depending on the algorithm, the clustering may depend on one or more free parameter that, 

in most cases, is/are chosen ad hoc. This threshold or cutoff parameter defines the number of 

clusters Ncl that one expects to obtain, which requires intuition about the properties of 

system under consideration. One algorithm, where there is no arbitrary cutoff parameter is 

based on the physical assumption of criticality, i.e. the partitioning of the protein 

conformational space is a critical phenomenon. In such case, the number of clusters in 

clustering critically depends on the order parameter, which is the cutoff. The critical point of 

this transition is at the midpoint of quazi-first order or second-order phase transition. In the 

first order phase transition critical points separates two discontinuous phases, and the 

transition is discontinuous. However, due to the finite size of the system, the boundary 

conditions do not allow discontinuity and the dependence of Ncl as a function of the cutoff is 

typically a sharp sigmoidal curve (Figure 6). In the second-order phase transition, Ncl 

depends on the cutoff also as a sigmoidal curve, although this curve is typically less sharp at 

the transition point than that in the quasi-first order transition. The advantage of this 

clustering approach is that it does not require subjective intuition about the number of states 

in the system. Criticality-based clustering was implemented by Dokholyan et al. [153] to 

uncover the intrinsic evolutionary relationship between structures of unrelated proteins.

Conflicting and “dirty” constraints

Experimental measurements come with errors stemming from (i) the instrumental 

inaccuracies, (ii) incorrect interpretation/assignment of measured values (wrong 

assignment), and, (iii) when dealing with molecular conformations, measurements of 

variables, that due to insufficient instrumental resolution, effectively represent an average 

between distinct states (insufficient resolution). Next, we will address methods for 

mitigating these errors in computational modeling using experimental constraints using 

protocols established over years in Dokholyan’s laboratory using DMD simulations [110–

112,146,147,154–158], although these protocols can be implemented in other simulation 

packages.

(i) Mitigating instrumental inaccuracies. A hallmark feature of the DMD simulations is the 

force field that is represented by square-well potentials. In essence, the force field itself can 

be thought of a set of pairwise constraints between different atom types, UMedusa(r), (in all 

atom force field, e.g. Medusa) [159]. Integration of experimental pairwise constraints is then 

just an addition of the square well potentials, Ui
cons, to the main force field with the width, δ, 

of the square well corresponding to the instrumental variability of the signal (Figure 3).

U(r) = Umedusa(r) + w∑i Ui
cons(r), (8)

where w is the relative weight of the constraints and

Ui
cons(r) =

−εi, di − δi/2 < r < di + δi/2
0, otℎerwise

. (9)

The depth of the square well, ε, is set to contribute comparatively with other terms of the 

force field. For simplicity, all the well depth parameters εi can be set to a single value ε, 
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unless there is evidence for other experimental biases. The distances di between atoms or 

amino acids are derived from the experimental constraints.

How to choose the weight, w, in DMD simulation? The answer to this question is in the 

physical properties of a protein. The energy function Eq. (8) defines the folding temperature, 

hence, the weight is chosen in such a way that the melting temperature of the protein agrees 

with the experimental value. Hence, the weight should be adjusted in such a way that (a) the 

constraints terms ∑iUi
cons(r) do not overpower the physical terms UMedusa(r), i.e. both terms 

are of the same order of magnitude, and (b) the folding transition temperature matches 

experimental values. Alternatively, weight w can be chosen by minimizing the square 

difference of observable parameters measured in simulations and experiments, and 

identifying the value of wmin, where this difference is minimal.

(ii) Wrong assignments may appear due to human or algorithmic errors in assigning the 

experimental data to a particular atom/residue(s).

(iii) Insufficient resolution. Lack of experimental resolution may result in overlap/averaging 

between two or more distinct states and measured value corresponds to a non-physical 

conformation. For example, if the time scale resolution of experiments is longer than the life 

time of a protein in either of two states, the measured variable will represent an average 

between these two states, which may not have any physical meaning (Figure 7).

Both errors (ii) and (iii) are automatically mitigated by the sufficient sampling and the 

sufficient amount of properly assigned constraints. Clustering typically separates 

conformational states. Constraints stemming from both wrong assignments and the 

insufficient resolution would form substates distinguishable from other states because non-

physical constraints effectively frustrations in the free energy landscape of proteins [160–

162]. These frustrations can be mitigated by extensive sampling that overcomes artificial 

free energy barriers introduced by these constraints. Thus, identified conformational states 

can either be physical or artificial. Even if the incorrect experimental constraints dominate 

the system, a small number of correct constraints may be sufficient to “pull down” physical 

states [163].

How to distinguish physical states? Any computational study results in a model, and, as 

such, this model requires validation. Hence, a critical step in any modeling studies is a 

forward validation step, whereby based on the developed model, one predicts previously-

unknown properties of the system. With the advent of protein design, this approach presents 

a viable and potent tool to perform forward validation of the model protein. For example, in 

order to determine transient oligomeric states of SOD1, Proctor et al. [143] implemented 

surface exposure-based modeling by performing limited proteolysis of the isolated 

oligomers SOD1 and identifying the proteolytic sites using MS. Identified cut sites shape a 

map of solvent accessibility, which can be used to build model structures of oligomers. For 

forward validation, Proctor et al. designed mutations that stabilize and destabilize the 

oligomers, which indeed had corresponding effects in both biochemical and cellular assays.
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Additional consideration to keep in mind when applying constraints is that molecular 

kinetics may play role in how imposed constraints are satisfied, i.e. even if all constraints are 

representing a single state, the order of the constraints’ satisfaction may have a detrimental 

impact on whether the molecule can reach the target state. Hence, the constraints should be 

“soft” enough to allow them to form and break easily, if the kinetics of folding prevents 

satisfaction of all constraints (Figure 3CD).

Ensemble completeness

How can we make sure that the computational sampling is sufficient? The real answer is 

never. Ultra-rare state may never be sampled in simulations. Perhaps the most pragmatic 

question is: when do we know that we have achieved sufficient enough conformational 

sampling to address particular biological questions? One approach to address this question, 

is to compare the properties of measured in simulation observables ω derived from 

trajectories spanning time t and 2t. Indistinguishability of these observables, ω(t) ≈ ω(2t), 
indicates a plausible convergence of the simulation and an adequate sampling. If these 

observables vary significantly, ω(t) ≠ ω(2t), then further simulation time doubling is 

performed until convergence.

Integrated modeling

Complex problems often require complex solutions. Building structural models of 

multifaceted molecules and molecular complexes may require multiple diverse orthogonal 

and nonorthogonal experimental interrogations of these molecules. In this complex system, 

integrating developed algorithms to incorporate different types of constraints offers a direct 

approach for building structural models. Perhaps one of the most striking examples of 

integrated model building was developed by Sali laboratory [164], where they were able to 

build one of the largest complexes in living cells, 50 MDa nuclear pore complex (NPC), 

which comprises of 456 proteins [165]. Alber et al. integrated a number of different 

experiments, ranging from crystallography, NMR, cryo-EM, affinity purification and 

computational modeling to reconstruct NPC [166]. Sali laboratory offers imp package for 

integrated modeling [137].

Multiscale modeling

Computational or experimental approaches offer only a limited view of the biological 

processes in living cells, which can span a broad range of time and length scales. For 

example, studies of electron transport require understanding quantum processes, 

conformational dynamics, and protein-protein interactions. Over the past two decades many 

multiscale modeling approaches have been developed that allow spanning sufficiently broad 

range of the life of a single biological molecule. Many laboratories are moving towards 

developing multiscale modeling for whole cell simulations. The pioneering work from 

Schulten’s laboratory [167] demonstrated the feasibility of such approaches. Conceptually, 

the multiscale modeling workflow consists of approaches that span overlapping but distinct 

time and length scale regions. These approaches must agree in the overlap regions, and these 

regions tend to be particularly challenging [158] to model due to inherently different 

methods used in these approaches. Nobel Prize in Chemistry 2013 (The Nobel Prize in 

Chemistry 2013. NobelPrize.org) was awarded to Michael Levitt, Ariel Warshell, and Martin 
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Karplus for the development of multiscale approaches in computational chemistry. Since 

their original pioneering works, a number of computational approaches have been developed 

to span scales relevant to life of biological molecules [26,168]. Constraintsbased modeling 

can be incorporated into multiscale modeling workflow at any scale, barring in mind effects 

those constraints may have on the boundary regions between different scales.

Resolution of computational models

The resolution of structural model is a critical parameter in experimental structure 

determination, as it allows one to understand the level of “trust” of the determined atomic 

positions. Likewise, the resolution of computational model is as critical. One approach to 

evaluate the resolution of a structural model that is used in Dokholyan laboratory is to relate 

uncertainty in atomic positions from the fluctuations of the molecular structure within a low 

free energy basin, i.e. resolution of the model is approximated by the root mean square 

fluctuations over the ensemble of conformations. We perform simulated annealing 

simulations [169,170], whereby the system gradually is brought to a free energy basin with 

satisfied experimental constraints. At this point, the root mean square fluctuations of the 

conformational ensemble determines allowed space for our system, thereby determining the 

resolution of the structural model. This approached was proposed by Chen et al. [171], and 

Dokholyan laboratory has used it for internal evaluation of structural models. For example, 

in attempt to understand the molecular etiology of cystic fibrosis, we build a structural 

model of the cystic fibrosis transmembrane conductance regulator (CFTR), which revealed 

that the most common mutation ΔF508 occurs at the interface between the surface of the 

nucleotide-binding domain 1 (NBD1) and a cytoplasmic loop (CL4) in the C-terminal 

membrane-spanning domain (MSD2) [172]. We further validated the model by performing 

cross-linking experiments, which tested the proximity of residues predicted by our structural 

model. The experiments indeed validated our model. To determine the accuracy of CFTR in 

the NBD1-CL4 interface, we performed simulations with the constrains imposed by the 

linkers and, using a protocol described above, determined that our resolution is 

approximately 3 Å (unpublished). This approach can be broadly utilized for estimating 

resolutions of structural models based on experimental constraints.

Future challenges

Approaches to model protein structure are becoming increasingly complex and are being 

integrated into multi-step workflows. Each of the approaches has limitations and the 

integration often requires explicitly taking those limitations in the consideration. The 

advantage of these modeling workflows is that they offer one stop solution for building 

molecular structures. The drawback is that these modeled structures are taking without 

further validation. Constructions of CFTR [172,173] ryanodine receptor (RyR) [174–177], 

and the dynein [178,179] models have been particularly challenging because direct modeling 

workflows failed and we had to resort to manual molecular structure reconstruction. 

Understanding limitations of each of the step in the modeling workflow and forward 

validation of computational models in experiments are critical to validity of the molecular 

models.
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The advent of machine learning techniques offers new horizons in our ability not only to 

build structural models, but also to select models most likely to be resembling “real” 

proteins. The advantage of the machine learning approaches is in establishing connections in 

data, otherwise “invisible” to rational thought processes. The disadvantage in such 

approaches is our inability to gauge whether the constructed structural models are 

appropriate and truthful representations of the targets. Thus, forward experimental 

validations of structural models built using machine learning approaches are essential to the 

validity of molecular models.
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Significance

Experimentally-driven computational structure modeling and determination is a rapidly 

evolving alternative to traditional approaches for molecular structure determination. 

These new hybrid experimental-computational approaches are proving to be a powerful 

microscope to glance into the structural features of intrinsically or partially disordered 

proteins, dynamics of molecules and complexes. In this review, we describe various 

approaches in the field of experimentally-driven computational structure modeling.
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Figure 1. 
Exponential knowledge growth of structures of biological molecules (mostly proteins) over 

the past 40 years.
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Figure 2. Two evolutionary scenarios resulting in functional yet intrinsically disordered protein.
In one scenario, a partial loss of function can be compensated by the increased functionality 

of orthologous genes or reduced need of a given functionality in evolved environments. In 

another scenario, a given scaffold can be adapted to carry a distinct function that require less 

ordering of the protein.
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Figure 3. Implementations of constrains in the force field.
(A) Restrictive constraints enforce residues within a given range. (B) Hookean spring 

potential is a “softer” analog of potential (A). This potential can be approximated by square-

well potential function to enable its implementation in DMD. (C) Biasing constraints make 

it more favorable for residues to be within a certain range. This potential allows constraints 

to not be satisfied, which is an important property when constraints, representing distinct 

states, are in conflict with each other. (D) Hybrid constraints potential between that of (B) 

and (C).
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Figure 4. The workflow for CL-DMD protein structure prediction [117].
Copyright (2017) Science.
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Figure 5. The workflow for structural modeling of protein complexes using information derived 
from proteolytic cleavage of these complexes [143].
Copyright (2016) National Academy of Sciences.

Dokholyan Page 30

J Proteomics. Author manuscript; available in PMC 2021 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. The dependence of the size of the largest cluster on the cutoff parameter, p, is a 
sigmoidal curve.
The midpoint of the transition, pc, denotes the critical regime with the appearance of clusters 

of all sizes with one maintaining the majority of the elements.
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Figure 7. Superposition of two distinct physical states may have no real physical manifestation.
(A) In this example, the peptide bond of the average state is non-physical (bottom) upon 

averaging structures of two physical states of the ensemble (top). (B) Superposition of happy 

and angry faces does not result in a neutral one, but rather in not a face.
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Table 1.

Advantages and limiations of experimental structure determination techniques.

Technique Advantages Limitations

X-ray 
crystallography

Large proteins and complexes
High resolution structures

Requires high protein concentration
Possible crystallographic artifacts: packing, non-native 
conformatins
Ad hoc detemination of crystalizing conditions for the 
target protein
Limited to stable proteins
Molecular motion is challenging to obtain

NMR Multiple complementary techniques for structure 
determination: two (and higher)-dimensional NMR, 
residual dipolar coupling, hydrogen-deuterium exchange, 
paramagnetic relaxation enhancements
Ability to quantify dynamics and witness large-scale 
conformational dynamics of proteins

Requires high protein concentration
Atominc assignment may present challenges

CryoEM Large structures
Ability to witness many conformational states
Fairly rapid workflow

Small proteins still present a challenge
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