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Prediction of organic homolytic bond dissociation
enthalpies at near chemical accuracy with
sub-second computational cost
Peter C. St. John 1✉, Yanfei Guan 2,4, Yeonjoon Kim 1, Seonah Kim 1✉ & Robert S. Paton 2,3✉

Bond dissociation enthalpies (BDEs) of organic molecules play a fundamental role in deter-

mining chemical reactivity and selectivity. However, BDE computations at sufficiently high

levels of quantum mechanical theory require substantial computing resources. In this paper,

we develop a machine learning model capable of accurately predicting BDEs for organic

molecules in a fraction of a second. We perform automated density functional theory

(DFT) calculations at the M06-2X/def2-TZVP level of theory for 42,577 small organic

molecules, resulting in 290,664 BDEs. A graph neural network trained on a subset of these

results achieves a mean absolute error of 0.58 kcal mol−1 (vs DFT) for BDEs of unseen

molecules. We further demonstrate the model on two applications: first, we rapidly and

accurately predict major sites of hydrogen abstraction in the metabolism of drug-like

molecules, and second, we determine the dominant molecular fragmentation pathways

during soot formation.
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Nearly all chemical reactions of organic compounds involve
the breaking and formation of covalent bonds. Unsur-
prisingly, bond energies feature as an essential ingredient

in many predictive models of chemical reactivity. Homolytic
bond dissociation enthalpies (BDEs) are defined by the enthalpy
change for the gas-phase reaction at 298 K:

A� B ! A � þB� ð1Þ
The cumulative difference between BDE values of all bonds

broken and formed in a chemical reaction thus provides an
estimate of the overall reaction enthalpy1. BDE values are ther-
modynamic quantities but they are also used widely to predict
reaction kinetics. For example, BDE values are used to predict
relative reaction rates using well-established Evans–Polanyi-type
correlations with bond strengths in radical hydrogen atom
abstractions2. BDEs also provide insight into thermodynamically
accessible reaction mechanisms for a given compound, and their
calculation is often the first step in characterizing dominant
pathways in combustion3, polymer synthesis4 and thermal
stability5,6, lignin depolymerization7, drug metabolism8–10,
explosives11, organic synthesis planning12,13, and other applica-
tions to energy-related materials14.

The accurate measurement and calculation of BDEs underlies
numerous applications in organic chemistry. Experimental mea-
surement of BDEs for polyatomic molecules are difficult, but a
variety of techniques exist15 with a typical uncertainty of ±1–2
kcal mol−116. Calculation of BDEs with ab initio quantum
chemistry methods is possible, however, the choice of method is
known to greatly affect the resulting computational accuracy17.
Despite this, density functional theory (DFT) computations using
M06-2X and M05-2X functionals have been shown to achieve
accuracies comparable to the uncertainties of the underlying
experimental measurements18. As a result, quantum mechanical
(QM) methods play an integral role in calculating radical
enthalpies and proposing reaction mechanisms. However, even
relatively efficient QM methods such as DFT scale exponentially
with basis set size, often taking hours or days to obtain a single
BDE value. This conventional workflow requires the geometry of
a reactant and its radical products to be optimized and the
Hessian of each species evaluated. For flexible compounds this
process must be repeated for several alternative conformations.
The integration of BDE calculations in molecular design efforts,
including quantitative structure–property relationship (QSPR)
models, has thus been limited by these computational demands,
and the use of BDE calculations for the screening of thousands or
millions of candidate structures remains impractical. In this
manuscript we describe a new computational workflow that
overcomes these limitations.

The rise of machine learning (ML) in quantum chemistry has
led to the development of highly-accurate empirical models19 that
have accelerated traditionally difficult QM calculations for pre-
dicting enthalpy20, optoelectronic properties21, and forces22. In
particular, the rise of graph neural networks (GNNs)23 in mod-
eling chemical properties has enabled ‘end-to-end’ learning on
molecular structure: a ML strategy where traditional feature
engineering is replaced by feature learning from a graph-based
molecular representation19. These approaches have led to best-in-
class prediction accuracies on a range of applications, especially as
the amount of available training data grows24,25. An open ques-
tion in molecular machine learning is whether optimized 3D
coordinates are required as inputs to the ML algorithm to reach
optimal accuracies. For enthalpy prediction on the QM9 dataset,
consisting of all small molecules satisfying known valence rules,
3D coordinates appear to lead to superior prediction perfor-
mance20. However, a recent study has shown that for some
molecules and properties, 3D coordinates did not necessarily lead

to improved results over more simple representations of 2D
connectivity and atom types (i.e., SMILES26 notation)21. In
addition, while precise, absolute QM-derived atomization ener-
gies are often inaccurate by up to a full Hartree for common
molecules (627 kcal mol−1)27. Direct prediction of reaction
energies may therefore be more reliable when compared with
experimental values.

For the prediction of BDEs, a previous study leveraged >12,000
DFT calculations and an associative neural network to achieve a
mean absolute error (MAE) of 3.4 kcal mol−1 for unseen bonds
relative to DFT results28. This model is based on fixed molecular
descriptors calculated for each target bond, and thus does not
allow the model to learn more detailed descriptions of each bond
as more molecular structures and data is added. B3LYP values
were used to train this model, however, this functional poorly
captures the enthalpies of radical reactions29. In our own
benchmarking studies this level of theory has an average error 2
kcal mol−1 larger than other DFT methods against experimental
BDE values (see below, Fig. 1a). Other existing work has used
neural networks to predict the contribution of each bond to the
overall atomization energy of closed-shell molecules without
explicitly calculating radical enthalpies30. While this technique
reproduces general trends in overall bond strength, quantitative
comparison with experimental BDEs results in MAEs of ~10 kcal
mol−1. More generally, the use of atomization energies as a
benchmark for ML algorithms does not guarantee accuracy in
predicting more chemically-relevant reaction energies31,32. The
development of an accurate ML pipeline to quickly estimate
BDEs, with acceptable accuracy compared with experimental
values, thus remains a challenge.

In this study, we develop A machine-Learning derived, Fast,
Accurate Bond dissociation Enthalpy Tool (ALFABET) to predict
homolytic BDEs at close to chemical accuracy with sub-second
computational cost. To accomplish this, we first benchmark
several quantum chemistry methods on a database of experi-
mentally measured BDEs33, finding that the M06-2X/def2-TZVP
level of theory has the optimal trade-off between empirical
accuracy and computational efficiency. A database of 42,577
closed-shell compounds with nine or fewer heavy atoms and
consisting only of C, H, O, and N atoms is then curated from
PubChem34. Each single bond in the database that was not pre-
sent in a ring is cleaved to yield two open-shell radicals. DFT
enthalpy calculations are then performed on all open and closed-
shell molecules to yield 290,664 unique BDEs, representing over
80 days of total CPU time. We then train a graph neural network
on a subset of these results, achieving a MAE of 0.58 kcal mol−1

when predicting BDEs for unseen closed-shell molecules (com-
pared with DFT results). When compared against experimental
values for large molecules not included in the training set, the ML
method adds only 1 kcal mol−1 to the MAE of the DFT approach,
while completing in less than a second (compared with over a day
per molecule for DFT). The utility of the developed prediction
tool is subsequently demonstrated on two separate applications
where fast, accurate prediction of the weakest bond in a molecule
is required. First, the model is used to rapidly and accurately
predict the site of C–H oxidative degradation in large, drug-like
molecules. The model replicates the results of much more
expensive DFT calculations with an MAE of 1.14 kcal mol−1, and
95% of metabolic sites occur at bonds within 2 kcal mol−1 of the
weakest bond in the molecule. Second, the model is used to
predict the dominant radicals formed during combustion of fuel
molecules, and the identities of these radicals are used as features
for a QSPR model of soot formation pathways. These applications
demonstrate the broad applicability of the developed tool and
demonstrate that bond strength prediction for organic molecules
can be reliably performed using fast ML techniques.
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Results
Evaluation of QM methods for calculating homolytic BDEs. In
order to ensure that the resulting ML method closely reproduced
experimentally determined BDEs, we performed a benchmark
study of common DFT and ab initio methods. Computed gas-
phase BDE values include unscaled vibrational zero-point ener-
gies and thermal corrections to the enthalpy at 298 K and 1 atm,
using optimized geometries obtained following a conformational
search (see below). For a set of 368 experimentally measured
BDEs from the iBond database33, combinations of three different
DFT functionals (B3LYP-D335,36, ωB97XD37, and M06-2X38)
and two basis sets (6-31G(d) and def2-TZVP) were compared
with DLPNO-CCSD(T)/cc-pVTZ calculations (Fig. 1a). As
expected, the CCSD(T) calculations took the longest to perform
and were the most accurate. Of the DFT methods, the choice of
basis set appeared to have the greatest impact on accuracy, with
the M06-2X/def2-TZVP combination coming very close to CCSD
(T) accuracy. MAEs of the three density functionals followed the
order of B3LYP-D3 > ωB97XD >M06-2X for both basis sets. This
is consistent with previous benchmarks against the stabilization
energy of 43 radical species calculated using CCSD(T)/
CBS31,39,40. The observed MAE of top performing methods
approaches the underlying uncertainty in the experimental
measurements.

Conformer sampling was performed using the RDKit library41,
using the MMFF94s force field42. Between 100 and 1000
conformers were generated for each molecule, depending on
the number of rotatable bonds. The lowest-energy conformer
identified by force-field calculations was then used as an initial
guess for subsequent geometry optimization at the higher level of
theory. For radicals, initial structures were generated by
temporarily replacing the radical with a bonded H atom during
force field optimizations. The enthalpy of formation of this first
conformer was denoted ΔHf ;0. As a reordering of conformational
energies often occurs upon reoptimizing MM geometries with a
higher level of theory, we analyzed the typical error introduced by
only optimizing the MM global minimum energy conformer at
the higher level of theory. By optimizing additional higher-energy
(i.e., local minima) MM conformers we can calculate the
difference between our initial enthalpy estimation, ΔHf ;0, and
the Boltzmann-weighted enthalpy (at 298 K) of the entire
conformer ensemble, hΔHf i. The difference between these
quantities is plotted in Fig. 1b, indicating that the median error

introduced by only optimizing a single conformer (versus an
ensemble of over 100) is only ~0.5 kcal mol−1, while requiring 1/
100th the computational resources. We therefore proceeded with
database construction at the M06-2X/def2-TZVP level of theory
and the computational pipeline described above (and in more
detail in the methods section), optimizing only the most stable
MM conformer.

Construction of a machine-learning compatible BDE database.
We next developed a large database of BDE values, BDE-db, on
which to train ALFABET. To maximize the variety of bond
strengths for a minimum computational effort, we limited the
initial database construction to molecules with 10 or fewer heavy
atoms. In addition, smaller molecules reduce the risk of the
geometry optimization finding a local energy minimum sub-
stantially higher than the true global minimum.

Construction of BDE-db began with 42,557 parent CxHyOzNm

molecules taken from the PubChem Compound database
(Fig. 2a). Only neutral molecules with assigned CAS numbers
were used during database construction. Each single, non-cyclic
bond in these molecules was then cleaved to generate two child
radicals which were also added to the database. Canonicalized
SMILES strings with specified configuration at stereogenic centers
were used to represent these molecules and remove duplicates
(Fig. 2b). Child radicals were frequently the product of multiple
BDE reactions, reducing the number of DFT calculations
required. However, this use of the SMILES language presents
some complications for database construction. Specifically, bond
cleavage occurring within an enantiotopic or diastereotopic group
(that are not differentiated by SMILES) forms radicals with a new
and unspecified stereocenter in relation to the parent molecule.
The creation of new diastereomeric relationships in the products
gives rise to non-equivalent BDE values dependent upon the
choice of relative configuration. Dissociations resulting in a new
stereocenter were omitted from the database.

DFT calculations were then performed for the parent
molecules and unique child radicals. A variety of convergence
checks were performed to ensure the DFT optimization
converged to a stable structure, including checks for imaginary
frequencies and ensuring that the molecule did not further
decompose into disconnected molecules (e.g., radical fragmenta-
tion of an alkoxyacyl radical into an alkyl radical by loss of CO2)
or suffer an intramolecular rearrangement (e.g., by a [1,n]-H
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Fig. 1 Benchmark study of DFT methods. a Trade-off between accuracy (left axis, blue) and computational cost (right axis, orange) for a selection of
common QM methods. M06-2X/def2-TZVP was selected for subsequent calculations. MAE and CPU time were averaged over 368 different bonds.
b Effect of conformer sampling. Molecules were optimized with MMFF94s, and the lowest-energy conformers were used to initialize DFT calculations. The
plot shows the difference between the Boltzmann average enthalpy for the entire ensemble and the DFT-calculated enthalpy of the first conformer as a
function of the number of optimizations performed. Exhaustive conformer sampling only changes the median resulting enthalpies by <0.5 kcal mol−1, with a
relatively narrow inner-quartile range (IQR).
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shift). Approximately 10% of attempted DFT calculations were
discarded, primarily due to imaginary frequencies. A total of
249,374 successful calculations were used to build the BDE-db.
These calculations resulted in 484,907 total calculated BDEs, of
which 290,664 were unique (methane has only one unique BDE
value). These numbers highlight the efficiency gains achieved
through calculating a large database in parallel and reusing
calculation results for child radicals, as typically three QM
calculations are required per one BDE.

Development of a graph neural network for predicting BDE. A
graph neural network (GNN) was developed to predict BDE
directly from molecular structure. GNNs in the past have been
used to predict the enthalpy of molecules from their optimized
3D structure, with MAEs close to 0.3 kcal mol−122. The applica-
tion of this technique for the proposed target would require
optimized 3D structures of both the parent molecule and child
radicals, and prediction errors would likely compound when

summing together three separate predictions. We instead sought
to develop a model that only required the 2D structure (i.e.,
SMILES string) of the parent molecule as input. SMILES strings
were converted to a graph representation using RDKit (with
atoms as nodes and bonds as edges). Each bond in the molecule
was represented by two directional edges, pointing in reverse
directions between the two bonded atoms.

GNNs operate by mixing information between neighboring
nodes and edges. By iteratively updating node and edge internal
states depending on the internal states of their neighbors,
embedding vectors are generated that serve as a finite-
dimensional description of each atom or bond’s local environ-
ment (Fig. 2d). For BDE prediction, bond embedding vectors at
the final layer are reduced through a linear layer to predict the
BDE (predictions from both the forward and backward bond edge
are averaged together). The overall network structure was
inspired by a model from Jørgensen et al.43, but with a simplified
interaction structure. As only 2D inputs are used, atom and bond

Pubchem
Neutral molecules
≤ 10 heavy atoms

C,H,N,O only

42,577

Break single,
noncyclic bonds

Radical
fragments

206,797

Quantum
mechanical
calculations

249,374

484,907
BDEs

290,664
unique
BDEs

BDE-db

Embedding, 128 Embedding, 128

Atom state Bond state

symbol, aromatic state,
ring state

bond type, start atom,
end atom, ring state 

Start atom

End atom

Concatenate

Dense, 256, relu

Dense, 128

+

Dense, 128

+

Dense, 128, relu

Dense, 128

+

Message 
block ×6

BDE
prediction

Dense, 1

+Embedding, 1

Bond state

O

O
+

O

O

TFD TFD

 –228.34 Ha)] = 107.3 kcal mol–1 +(–231.44 Ha 
Δf H° Δf H° Δf H°

DFT DFT

–[–459.96 Ha

Parent SMILES string
COC(=O)c1ccccc1

CO[C]=O[c]1ccccc1
Radical
SMILES

a

b

d

e

Bond embeddings
(2D representation)

c

–1

Fig. 2 Overview of database construction and GNN structure. a Size of key elements of BDE-db. b Indexing and calculation of a single BDE reaction. For a
given cleaved bond, SMILES strings of the parent molecule and two resulting radicals are passed for DFT optimization. c Learning curve for the model,
plotting MAE (in kcal mol−1) on dev set BDEs against the number of molecules included in the training database. Both x and y axes are log-scaled, and error
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are updated through a series of six message passing blocks. The final embedding layer is then used to predict the BDE of each bond.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16201-z

4 NATURE COMMUNICATIONS |         (2020) 11:2328 | https://doi.org/10.1038/s41467-020-16201-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


vectors are initialized with embedding layers based on a number
of properties inferred via RDKit (Fig. 2e). In each message passing
layer, bond states are first updated with information from
neighboring atoms, and atom states are then updated with
information from neighboring bonds. Residual connections were
used for each message passing layer in order to aid convergence
of deeper models44. Six message passing layers were used in the
final model, as no improvement in accuracy was seen for
additional layers. The final model structure contains 1.06 M
parameters. Bond states from the final message passing layer are
reduced to a single BDE prediction by passing them through a
linear layer. Following SchNet22, these predictions were added to
a single mean BDE value for each bond class to generate the final
prediction. BDE predictions are therefore generated simulta-
neously for each bond in the input molecule.

Validation (dev) and test sets were each constructed from all
BDEs associated with 1000 parent molecules. The training set
thus consisted of 40,577 unique parent molecules and 276,717
unique BDEs. A learning curve for the model, comparing
performance against the 1000 molecule dev set while varying
the number of molecules in the training set, shows a linear
log–log relationship (Fig. 2c). This trend suggests that model
accuracies could be further improved through the collection of
additional BDE data. Performance of the final model was tested
against the held-out test set, consisting of 6948 unique BDEs. The
MAE on these bonds was 0.58 kcal mol−1 (vs DFT), with 95% of
predictions falling within 2.25 kcal mol−1 of their DFT-calculated
values (Fig. 3a). A breakdown of the model’s performance on
each individual bond type is shown in Table 1. Since the goal of
the method is ultimately to reproduce experimental BDE
measurements, the speed and accuracy of the GNN in predicting
experimental BDEs from the iBond database was compared with
similar predictions generated via the DFT method (Fig. 3b,
Supplementary Data 1). For molecules that were a part of the
training set, the ML method achieves prediction accuracies versus
experimental measurements that rival those of the DFT approach
(2.4 kcal mol−1 for ML, 2.1 kcal mol−1 for DFT). These results
compare favorably with previous ML predictions of BDE
(Supplementary Fig. 1). However, a more difficult test of the
ML approach is for molecules larger than 10 heavy atoms that
were not a part of the training database. For these larger
molecules, typical DFT calculations required more than a day per
molecule. However, the accuracy of the ML method remained

acceptable, adding <1 kcal mol−1 to the MAE of the DFT method
(3.4 kcal mol−1 for ML, 2.5 kcal mol−1 for DFT) when compared
against experimentally measured BDEs. For these molecules,
ALFABET was able to predict BDEs for all the bonds in the
molecule in under 1 ms per molecule.

Analysis of ALFABET prediction outliers. During construction
of BDE-db and ALFABET, we conducted error analyses of pre-
liminary data and models to refine the GNN structure and correct
common DFT errors. In this section, we present a more extensive
analysis of the remaining large prediction errors (>10 kcal mol−1)
for bonds in the training, validation, and test sets (Fig. 4, Sup-
plementary Table 1, Supplementary Data 2). In evaluating errors
in DFT and ML calculations, additional BDE calculations were
performed at the composite G4 level of theory to serve as a
ground-truth reference45. G4 radical formation enthalpies lie
close to experimental values (4.5–6.2 kJ mol−1), albeit at an
increased computational cost relative to DFT39.

ML predictions using deep neural networks have been
criticized as being black-box in nature. However, in this study
we use the bond embedding vectors from the final message
passing layer to interpret the ALFABET predictions, generating a
quantitative similarity score to bonds contained in the training
database (see methods). These embeddings are subsequently
reduced to a single BDE prediction, and thus neighboring bond

Performance on held-out test seta b Performance on experimental iBond data
bonds in training

set (n = 545)
bonds not in training

set (n = 212)

MAE
CPU

M062X
def2-TZVP

M062X
def2-TZVP

ALFABET ALFABET

Held-out test set:
1,000 molecules

6,948 unique BDEs
MAE: 0.58 kcal mol–1

Bond type

Fig. 3 Performance of the ML BDE prediction algorithm. a Performance on the held-out, DFT-generated test set. (left) Parity plot of ALFABET predictions
vs DFT calculations. BDE points are colored by their bond type. (right) Histogram of prediction errors. The model achieves an MAE of 0.58 kcal mol−1

relative to DFT-calculated values of unseen molecules. b Performance of the model on experimentally measured BDEs from the iBond database. Prediction
accuracy was quantified separately for bonds inside the training database (left) and those outside it (right). Molecules and bonds outside the training set
tended to be much larger, thus resulting in larger DFT error and long DFT computational times.

Table 1 MAEs and counts for bonds in the training and test
databases.

Bond type MAE
(train)

Count
(train)

MAE (test) Count (test)

C–H 0.20 306,404 0.52 7735
C–C 0.22 67,822 0.45 1679
N–H 0.35 25,981 1.02 687
C–N 0.31 23,493 0.80 594
C–O 0.33 23,243 0.78 546
O–H 0.44 11,306 1.04 290
N–O 0.47 1557 0.64 43
N–N 0.56 1528 1.14 38
O–O 0.56 283 0.96 10

MAEs comparing DFT-calculated BDEs to ML predictions are shown along with the number of
bonds for which the error was computed. MAEs are in kcal mol−1.
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BDEs indicate how the GNN interprets the input molecule. We
found that significant errors can arise in either DFT reference
data or the ALFABET predictions due to several recurring
structural motifs. In this section, we present examples of several
classes of errors that lead to disagreement between DFT
calculations and predicted BDEs.

The loss of stabilizing non-covalent interactions such as
intramolecular hydrogen bonds by bond dissociation result in
prediction errors (Fig. 4a). Relative to the internally H-bonded
conformer 1a, the G4 BDE value is 90.8 kcal mol−1. Our DFT
reference value was correctly generated using this more stable
conformation. However, ALFABET underpredicts this C–H bond
strength by 15 kcal mol−1, and is much closer to the hypothetical
BDE value of 79.0 kcal mol−1 for the less stable conformer (1b)
lacking an H-bond. We can attribute this prediction error to a
failure to account for this strong H-bond in the parent
compound. Inspection of nearest neighbor structures in the

training database (including a similar bond for a 7-membered
cycloheptanone) confirm this to be the case, since optimized
structures for these molecules lacked internal H-bonds and have
DFT values in the ~80 kcal mol−1 range (Fig. 5a). For molecules
where an intermolecular H-bond is lost or disrupted upon bond
cleavage, predictions will tend to underestimate the true BDE
value.

Conversely, the development of new stabilizing interactions in
radical products result in anomalously low BDE values that are
overestimated by ALFABET predictions (Fig. 4b). For example,
the carboxyl radical formed from cis-3 undergoes ring-closure to
form a stabilized radical that results in an anomalously small BDE
value of 51.4 kcal mol−1. While the DFT value lies close to this,
the prediction is an overestimate by more than 40 kcal mol−1.
However, trans-3, which differs only by the configuration of the
central C=C bond, has a BDE value of 88.0 kcal mol−1. Ring-
closure cannot occur in this case. The BDE prediction lies close to
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this value and the failure for cis-3 can be attributed to the
occurrence of radical cyclization.

In constructing the BDE-db database, we omitted reactions
where a bond dissociation resulted in an unstable radical that
further decomposed into smaller species. While G4 calculations
(which use uB3LYP/6-31G(2df,p) geometries) suggest that O–H
dissociation of a carbamic acid group (Fig. 4c), results in the
spontaneous loss of CO2, M06-2X calculations result in a weakly-
bound adduct with a N–C bond length of 1.63 Å. Relative to the
G4 value, both DFT and ML predictions in this case are
inaccurate.

Another scenario resulting in BDE prediction outliers arises
from difficult-to-converge electronic structure calculations for
strongly delocalized systems (Fig. 4d). The O–H BDE values for
phenols 7 is predicted by ALFABET as 89.2 kcal mol−1, whereas
the reference DFT value is much higher at 108.3 kcal mol−1. The
G4 value is much closer to the predicted BDE and suggest that in
this case, it is the DFT value that is erroneous. Indeed, phenolic
O–H bonds of neighboring molecules in the database have similar
BDEs to the predicted value and further indicate that the DFT
result is the outlier (Fig. 5b). The overestimate by DFT results
from the convergence of open-shell structures to an incorrect
electronic state. We found this was sensitive to the input structure
used for geometry optimization and difficult to filter automati-
cally (calculations are fully converged with a stable wavefunction)
without prior knowledge of an expected BDE value.

In general, the most egregious ML-DFT prediction errors arise
for conformations or electronic structures atypical with respect to
the rest of the training database. Inspection of neighboring BDE
values is therefore a qualitative method of determining whether a
given BDE prediction is trustworthy: BDEs with several, similar
neighbors with consistent BDEs lends additional confidence that
a prediction is valid. The ALFABET webtool therefore includes
the option to search for neighboring bonds from the training
dataset. Using 3D features as inputs to the ML model might
alleviate some of these prediction errors, although this would
increase the computational cost of the ML predictions (as 3D
coordinates would be required to generate predictions) and the
possibility would remain of passing sub-optimal 3D inputs to the
ML model and generating correspondingly poor DFT predictions.
Additional filtering of DFT results might allow more accurate
ALFABET predictions. However, ML prediction methods will
likely never be able to appropriately predict the results of

medium- to long-range intramolecular interactions without
sufficient training examples.

Application to bond dissociation in large molecules. We used
ALFABET to predict the C–C, C–O, and C–H bonds in methyl
linolenate, an unsaturated fatty acid methyl ester found in bio-
diesel (Fig. 6). BDE values of biodiesel molecules are difficult to
obtain experimentally and computational estimates are important
for characterizing combustion chemistry, particularly the initial
stages of pyrolysis. DFT BDE values have been obtained previously
for methyl linolenate, in addition to multireference averaged
coupled-pair functional (MRACPF2) values, which due to the
large molecular size, were estimated using small surrogate models.
The presence of C(sp3)–H, C(sp2)–H, C(sp3)–O, C(sp3)–C(sp3),
and C(sp3)–C(sp2) bond types and carbonyl and olefin functional
groups provides a good opportunity to test model performance.
Pleasingly, our model provides BDE values very close to M08-HX/
ma-TZVP (MAE of 0.97 kcal mol−1, R2 of 0.98746) and
MRACPF2/CBS (MAE of 1.99 kcal mol−1, R2 of 0.95742), across
33 single bonds ranging in strengths by 34 kcal mol−1. The BDE
values of weaker C–C and C–H bonds α-to the carbonyl and in
allylic (and doubly-allylic) positions, along with those of stronger
C(sp2)–C and C(sp2)–H bonds are all correctly described. This
prediction, taking less than a second to complete, demonstrates
the utility and accuracy of ALFABET for BDE prediction of larger,
flexible hydrocarbons that are challenging to study by DFT and
impossible for ab initio methods.

Application to prediction of major sites of drug oxidation. The
main advantage of the proposed method is that, due to its
computational speed, it can be used in forward screening appli-
cations where DFT calculations would be infeasible. We therefore
demonstrate the method’s applicability to two design challenges
where BDEs play an important role in determining a molecule’s
suitability. The first application is the pharmaceutical develop-
ment of drug molecules, where predicting how a compound is
likely to be metabolized can reduce failure rates in clinical trials47.
Many xenobiotics are degraded by the cytochrome P450 enzyme,
where the site of metabolism has been shown to correlate with the
weakest C–H bond in the molecule9.

Calculation of C–H BDEs in drug screening, however, is a
computationally expensive task, and we thus determined whether
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ALFABET demonstrates similar accuracy to a DFT-based
calculation approach. We constructed a database of 28 drugs
and their sites of oxidative degradation8,9,48–51. Drugs considered
ranged in size from 6 to 32 heavy atoms. DFT calculations were
then performed to determine the BDEs of all C–H bonds, and
BDEs were also predicted using the developed GNN (Fig. 7a).

We then developed a site of metabolism classifier using the
calculated BDEs. The weakest bonds in the molecule, within a
certain energy tolerance, were predicted as possible targets for
oxidation. The accuracy of the classifier, for BDEs derived both
from DFT and from ALFABET, were quantified using a receiver
operating characteristic (ROC) curve, Fig. 7b. This curve plots the

true positive rate versus the false positive rate as the classifier
tolerance is adjusted. The area under the curve (AUC) of the ROC
curve thus represents a quantitative measure of the classifier’s
performance, ranging from 0.5 (random guessing) to 1.0 (perfect
predictions). The AUC for the DFT and ML-based classifiers was
0.86 and 0.87, respectively, indicating that the developed GNN is
as accurate as DFT-based methods for predicting the site of
metabolism, while requiring a fraction of the computational cost.
In addition to an ROC curve, we also calculate precision and
recall statistics for classifiers based on both DFT and ML bond
strengths (Fig. 7c). Higher precision values indicate that the site
of metabolism is present among only a few flagged candidate
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locations, while high recall values indicate the metabolic sites for
most drugs are included among the predicted candidates. DFT-
derived bond strengths appear yield a slightly higher maximum
precision for tolerances <1 kcal mol−1, which likely represents the
additional uncertainty imposed by the ML prediction. However,
beyond this threshold precision and recall curves for both DFT
and ML-derived bond strengths are similar, despite the
substantially lower computational cost of ML. We note that our
suggestions for the site of drug oxidation are only based on
weakest bonds that do not explicitly account for accessibility of
sites to the enzyme. These predictions could be further enhanced
by incorporating accessibilities scores52,53.

To verify that ALFABET predictions are accurate for BDEs of
drug molecules much larger than those used to construct the
training set, DFT calculations then performed for 82 top-selling
drug molecules54. These molecules ranged in size between 8 and
34 heavy atoms. Only H-atom BDEs were considered, resulting in
748 unique bonds broken. Despite only being trained on smaller
molecules, the GNN successfully predicts the BDEs for much
larger species, resulting in a MAE of 1.14 kcal mol−1 (Fig. 7d).

Predicting combustion mechanisms from weakest bonds. In
addition to metabolite decomposition, BDEs are essential in
determining predominant combustion kinetic mechanisms. We
next applied ALFABET to construct a mechanistically-inspired
model of soot formation during combustion of new fuel che-
mistries. The yield sooting index (YSI) is an experimental mea-
surement of the amount of soot a substance forms during
combustion in a test flame55,56, and is an important parameter to
consider during selection of potential fuel blendstocks57. While
methods to predict YSI quickly from molecular structure
exist56,58, these models do not leverage recent mechanistic
understandings of how soot formation proceeds. Specifically,
formation and growth of polyaromatic hydrocarbons (PAHs), the
main component of particulate matter, is governed by the
recombination of radicals formed in the combustion process.

In this study, we use our newly developed ML approach to
predict the weakest bond in each of a set of 217 different fuel
molecules with measured YSI values. The identities of the two
radicals that form are then used to construct a QSPR model to
predict soot formation. Instead of a series of descriptors or
functional groups, each molecule was represented by only two

parameters: one for each of the two radicals formed during
cleaving of the weakest bond. These parameters are shared
between molecules that decompose to form identical radicals
(Fig. 8a). Molecules were chosen such that each radical was the
result of at least two molecule decompositions.

We performed a leave-one-out cross-validation to determine
the ability of the model to predict YSI for unseen molecules. In
each cross-validation fold, a single compound was removed from
the dataset and a weighted least-squares regression (with data
weighted by their experimental uncertainty) was performed on the
remainder of the data. Fitted radical weights are then used to
predict the YSI of the held-out molecule. The cross-validated
predictive accuracy of the new model, based on ALFABET
predictions, achieves a weighted least-squares loss less than half
that of a recently developed group-contribution model on the
same dataset (Fig. 8b)56. These results demonstrate that AFLABET
predictions can improve forward screening approaches in which
bond energy is an important parameter.

We further verified that ALFABET is accurate for larger
molecules outside the training set considered in this application.
For the 91 molecules with YSI measurements and between 11 and
20 heavy atoms, DFT calculations were performed to confirm the
predicted BDEs. The resulting prediction error was even lower
than for the withheld test set predictions (Fig. 8c), demonstrating
the ability of the model to scale to larger molecules.

Discussion
In this study, we have developed a ML prediction tool to quickly
calculate homolytic BDEs for organic molecules containing C, H,
O, and N atoms, at an accuracy comparable with state-of-the-art
DFT approaches. An interface for the developed prediction tool is
available online at https://ml.nrel.gov/bde. Because BDEs are
intrinsic properties of covalently bonded molecules, their relative
strengths are important parameters in a wide range of chemical
studies. We therefore expect our tool to enable high-throughput
and accurate development of novel compounds for applications
where elemental compositions are restricted to C, H, N, and O
atoms and critical properties are determined by the strengths
of single, non-ring bonds. Beyond the application areas to
drug design and combustion pathways considered in this
paper, we expect our tool to be useful in understanding polymer
thermal stability, lignin depolymerization pathways, explosives,
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and high-performance energy-related materials. Future work will
expand the training database to include other elements, bond
types, and bonds in rings. As has been shown in a recent study,
transfer learning may also permit improved accuracies through
the incorporation of BDEs from well-curated experimental
results59. While we have shown that high-accuracy CCSD(T) do
not substantially improve accuracy over the chosen M06-2X
method, databases of experimental bond dissociation energies do
exist33. However, careful selection and fitting of experimental
data will be required, as experimental BDEs measurements are
biased toward the weakest bonds a molecule and sometimes have
high uncertainty. More broadly, this study demonstrates the
potential for deep learning techniques to accelerate quantum
mechanical investigations where high-throughput computations
are possible but time-consuming. Future work will look to expand
these approaches to transition state structures.

Methods
Computational details for calculating homolytic BDEs. To sample radical con-
formations, H atoms were added to radical centers prior to MMFF structure
optimization and removed afterward. MMFF94s performs well in conformational
and non-covalent benchmarks involving neutral, closed-shell molecules60, how-
ever, it was not parametrized for radicals42. Unrestricted Kohn–Sham DFT cal-
culations of radicals were carried out with careful consideration of electronic
structures because M06-2X showed less accurate results in some aromatic
radicals61,62. Specifically, spatial and spin symmetry of orbitals were broken by
using the initial guess of mixed HOMO-LUMO with assuming no point-group
symmetry of the structure. The stability of wavefunctions was also analyzed to
confirm that the most stable electronic state had been found63. Convergence to the
wrong electronic state occurred most frequently for aromatic radicals. Gaussian
1664 was used for all DFT calculations with a default ultra-fine grid for all
numerical integration and for the G4 calculations to analyze outliers. DLPNO-
CCSD(T) calculations were carried out with ORCA 4.0 as a single-point energy
correction to the B3LYP-D3/6-31G(d) enthalpy using optimized geometries from
B3LYP-D3/6-31G(d)39.

All optimizations were checked for convergence to an energy minimum, which
included checking for proper termination flags from Gaussian and ensuring the
resulting structure had no imaginary vibrational frequencies. In addition, we
verified that the molecule did not decompose into separate molecules during the
Gaussian optimization by ensuring that all bond lengths (expected from the Lewis
structure) were <0.4 Å plus the sum of the covalent radii of the participating atoms.
Finally, statistical tests on the completed database were used to screen for
molecules with abnormally large enthalpies. For a given chemical formula (i.e.,
elemental composition), a linear model was used to predict overall molecule
enthalpy. If residuals from this linear fit were >3 inner-quartile ranges from the
predicted enthalpy, the molecule was discarded. This step removed a handful of
high-energy, hypothetical molecules or ones that converged to unreasonable
geometries. The BDE-db dataset has been published in an open-source database
available on Figshare65.

Graph neural network development. Determining the optimal inputs and
structure to the GNN developed in this study was an iterative process in order to
find one that yielded the lowest validation error. Nodes and edges were assigned to
independent classes depending on a number of features. For nodes, unique classes
were assigned based on an atom’s symbol, chirality tag, aromaticity, presence in
ring (3, 4, 5, or ≥6), number of neighbors, and number of neighbor H’s. Edge
classes were assigned based on the start atom symbol, end atom symbol, and
presence of the bond in ring (3, 4, 5, or ≥ 6). The edge interaction network and
atom state updating layers from Jorgensen et al.43 were simplified by removing
layers until losses began to increase, and residual connections were added to the
end of each message passing layers while batch normalization layers66 were added
to the beginning of each message passing layer. The number of message passing
layers was varied between 2 and 12, with validation losses not decreasing after six
layers. Since the number of atoms for molecules in the training set was capped at
nine, this allows messages to traverse the entire molecule except in a few
select cases.

The loss function optimized the mean absolute error of all BDEs in the
molecule, masking bonds for which DFT values were not available. Since edges in
the model are directional, each bond has two corresponding edge states. During
training, the BDE prediction of each directional edge is separately scored, while at
test time the BDE prediction from both edges is averaged. The model was trained
for 500 epochs using a batch size of 128 molecules with the ADAM optimizer using
a learning rate of 1E−3 and a decay rate of 1E−5.

GNN implementation. GNN models were implemented using the Python nfp
library (https://github.com/nrel/nfp), which provides extensions to the Keras deep

learning framework for modeling graph-valued systems. Models were trained using
a single Nvidia Tesla V100 GPU for ~10–12 h.

Calculating neighboring bonds. Intermediate layers in the GNN could be used to
search for similar bonds in the DFT database for a given query bond. Embedding
vectors for all bonds with calculated BDE values were generated from the output of
the final message passing layer, a 128-dimensional vector. For computational
efficiency, these vectors were reduced to a 10-dimensional vector through a prin-
cipal component analysis (PCA). A nearest-neighbors search was then used to find
the 10 closest bonds in the BDE-db database. The scikit-learn library67 was used to
perform the PCA and nearest-neighbors searches.

Data availability
The datasets generated and/or analyzed during the current study are available on figshare
with the identifier https://doi.org/10.6084/m9.figshare.10248932.

Code availability
Weights for the final trained model and python scripts to generate predictions for new
molecules has been made available through a Github repository (https://github.com/
NREL/alfabet). Python scripts to train the model and Jupyter notebooks to create the
figures in the paper are available at https://github.com/pstjohn/bde_model_methods.
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