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Abstract

Podocytes, a type of highly specialized epithelial cells, require substantial levels of energy to maintain glomerular
integrity and function, but little is known on the regulation of podocytes’ energetics. Lack of metabolic analysis during
podocyte development led us to explore the distribution of mitochondrial oxidative phosphorylation and glycolysis,
the two major pathways of cell metabolism, in cultured podocytes during in vitro differentiation. Unexpectedly, we
observed a stronger glycolytic profile, accompanied by an increased mitochondrial complexity in differentiated
podocytes, indicating that mature podocytes boost both glycolysis and mitochondrial metabolism to meet their
augmented energy demands. In addition, we found a shift of predominant energy source from anaerobic glycolysis in
immature podocyte to oxidative phosphorylation during the differentiation process. Furthermore, we identified a
crucial metabolic regulator for podocyte development, pyruvate kinase M2. Pkm2-knockdown podocytes showed
dramatic reduction of energy metabolism, resulting in defects of cell differentiation. Meanwhile, podocyte-specific
Pkm2-knockout (KO) mice developed worse albuminuria and podocyte injury after adriamycin treatment. We identified
mammalian target of rapamycin (mTOR) as a critical regulator of PKM2 during podocyte development.
Pharmacological inhibition of mTOR potently abrogated PKM2 expression and disrupted cell differentiation, indicating

the existence of metabolic checkpoint that need to be satisfied in order to allow podocyte differentiation.

Introduction

Podocyte is a highly differentiated neuron-like epithelial
cell with limited capacity for cell division. These cells
possess unique, sophisticated foot processes, and slit
diaphragm, one of the principal components of glo-
merular filtration barrier'™. Disruption of podocyte
integrity can result in development of proteinuria and
glomerulosclerosis®™®. It has been reported that induction
of podocyte differentiation by retinoic acids (RA) has
renal protective effects in several experimental models of
kidney disease®’. These studies provide a strong scientific
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basis supporting that understanding how these cells
maintain their differentiated structure and function may
be the first step in preventing podocyte loss.

Cellular differentiation involves dynamic epigenetic,
transcriptional, and metabolic remodeling as cells tran-
siting®. Evidence is mounting that metabolic changes
could not only be necessary for differentiation, but may
also control it>~*'. Mitochondrial oxidative phosphoryla-
tion (OXPHOS) and glycolysis are two major pathways for
cellular energy generation. The activities of these two
metabolic pathways are exquisitely controlled to guaran-
tee the optimal resource distribution and cell function.
Malfunction of energy metabolism was found participated
in the processes of kinds of glomerular diseases, but the
pathogenesis studies are still required'*'?. Therefore, it is
imperative to characterize how metabolic profiles of
podocytes been set up during differentiation, maintained
in adult life, and altered in glomerular diseases. Under-
standing how specific metabolic processes influence
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Fig. 1 Metabolomics analysis revealed higher lactate production in differentiated podocytes. a Immunofluorescence staining for nephrin
(red), phalloidine for F-actin (green) and DAPI for nuclear (blue) in undifferentiated podocytes (UDPs) or differentiated podocytes (DPs) as indicated
(n=15). Scale bar=5 um. b Representative western blotting results of nephrin, podocin and synaptopodin confirm the differentiation of podocytes
(n=3). ¢ Representative map of 'H-NMR spectra in the extracellular medium incubated with the presence of different podocytes (n = 6). UDM:
undifferentiated podocyte medium; DM: differentiated podocyte medium. The map shows the significance of metabolites variations between these
two classes. Peaks in the positive direction indicate metabolites that are more abundant in the UDM groups. Consequently, metabolites that are more
abundant in DM are presented as peaks in the negative direction.

podocyte may offer novel therapeutic approaches in the
clinic.

Pyruvate kinase (PK), a rate-limiting glycolytic enzyme,
catalyzes the last step of glycolysis by converting phos-
phoenolpyruvate (PEP) to pyruvate. Mammalian cells
contain two PK genes: Pkrl and Pkm. The Pkrl gene
encodes the PKL and PKR isoforms, expressed in the liver
and red blood cells, respectively. The Pkm gene encodes
PKM1 and PKM2, expressed in most tissues'®. Despite
that PKM1 and PKM2 are generated by exclusive alter-
native splicing from one transcript, they have very dif-
ferent catalytic and regulatory properties. PKM1 subunits
form stable tetramers and exhibits high constitutive
enzymatic activity, whereas PKM2 exists as inactive
monomer, less active dimer, and active tetramer. While
the PK activity of PKM2 tetramers promotes the flux of
glucose-derived carbons via oxidative phosphorylation,
the dimeric PKM2 diverts glucose metabolism towards
anabolism through aerobic glycolysis'>'®. The tetramer/

Official journal of the Cell Death Differentiation Association

dimer ratio of PKM2 are controlled by cellular ATP,
fructose-1,6-bisphosphate (FBP) and interactions with
signaling proteins'”'®. The intracellular location of
PKM2 can also be exquisitely arranged in order to reg-
ulate multiple metabolic pathways'®?. Thus, these reg-
ulations of expression, allosterism, and translocation of
PKM2 allow metabolic flexibility for cells to adapt to
different microenvironments, and makes it an excellent
regulator of metabolic changes. It has been reported that
Pkm-knockdown immortalized mouse podocytes had
higher levels of toxic glucose metabolites and mito-
chondrial dysfunction®’. However, no role has been
described for PKM2 in podocyte bioenergetics during
differentiation to date. Here, we evaluate the metabolic
profiles of podocytes in different developmental stages,
and we report an important role of PKM2 in regulating
podocyte’s energy metabolism and cell differentiation. In
addition, we show that PKM2 expression was regulated
by mTOR in podocyte. Pharmacological inhibition of
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mTOR results in decreased PKM2 level and disrupted
podocyte differentiation.

Results
Metabolomics analysis revealed higher aerobic glycolysis
in differentiated podocytes (DPs)

To study the metabolic alterations caused by differ-
entiation, we used a transformed mouse podocyte cell
line®>, Upon the induction of differentiaton for 14 days,
the immature podocytes gradually transformed into large,
nonproliferating, frequently multinucleated cells. These
cells showed many of the specialized characteristics of
mature podocytes, including cell flattening, cortical F-
actin and interdigitating actin-rich foot processes
(Fig. 1a), as well as the expression of specialized proteins
associated with slit diaphragm: nephrin, podocin, and
synaptopodin (Fig. 1b).

During routine culture, DPs acidified the medium faster
than undifferentiated podocytes (UDPs) (data not shown).
The changes of extracellular pH are an indicator of altered
metabolic pattern. To determine which metabolic path-
ways were altered in these cells, we performed a metabo-
lomic profiling of the conditional medium of DPs and
UDPs by using nuclear magnetic resonance (NMR) spec-
troscopy (Fig. 1c). The results showed that the metabo-
lomic profile of DPs differed significantly from that of
UDPs, with the most prominent alteration being lower
glucose concentration and higher lactate production. To
determine whether this metabolic increase was prolifera-
tion-dependent, we performed Flow Cytometer and found
that DPs were growth-arrested (Fig. S1A), suggesting this
lactate production was proliferation-independent.

As lactate is the end product of glycolysis®, the over-
production of lactate prompted us to examine the gly-
colytic changes of mature podocytes. The schema in Fig.
2a illustrates the primary enzymes involved in glycolysis.
Previous studies demonstrated that transcriptional chan-
ges can regulate the glycolytic response in cells**~%°. In
line with this, real-time PCR analysis was performed and
revealed that DPs showed a transcriptional increase of
glycolytic enzymes (Fig. 2b), and these elevations were
further confirmed by immunoblot analysis (Fig. 2c, d).
Moreover, we found increased expression at the protein
and mRNA level of glucose transporter isoform 1 and 4
(GLUT1/4). As GLUT1 and GLUT4 comprise the major
glucose transporters in podocytes®’, the increased
GLUT1/4 expression would be expected to increase glu-
cose uptake. These findings together suggest higher
aerobic glycolysis in DPs.

Podocyte differentiation promoted mitochondrial fusion
and biogenesis

Cell differentiation was often accompanied by mito-
chondrial remodeling®®*’. In order to investigate whether
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mitochondrial metabolism was associated with podocyte
differentiation, mitochondrial morphology was first
examined. MitoTracker Red staining and electron
microscopy (EM) showed that mitochondria in DPs dis-
played higher elongation and interconnectivity, indicating
a higher energetic potential per mitochondria volume,
whereas UDPs had small and round mitochondria
(Fig. 3a). In addition, by analyzing EM pictures, the
average area and density of mitochondria were both found
increased (Fig. 3b, c). In line with the morphology chan-
ges, elevations of mitochondrial mass and mitochondrial
membrane potential (MMP) were also observed (Fig. 3d,
e), suggesting a stronger mitochondrial function.

Then, as the shape of mitochondria dynamically chan-
ged, both fusion and fission makers were measured. The
transcription level of optic atrophy 1 (Opa-1), a mediator
of mitochondrial fusion®’, was increased in mature
podocytes, meanwhile, dynamin-related protein-1 (Drp-
1), an essential protein for mitochondrial fission, was
reduced, indicating an improvement in mitochondrial
fusion (Fig. 3f). Markers for mitochondrial biogenesis
were further investigated. Peroxisomal proliferator-
activated receptor coactivator la (Pgc-1a), a critical
transcription factor that regulates mitochondrial biogen-
esis®’, presented an increased mRNA level, and the
mitochondrial transcription factor A (Tfam), a direct
regulator of mitochondrial (mt)DNA replication®?, was
upregulated simultaneously (Fig. 3g). Thus, mitochondrial
biogenesis is apparent in DPs. Protein levels were further
examined by immunoblot analysis, and showed the same
trendency with the transcripts (Fig. 3h, i). From all these
data, we conclude that differentiation of podocytes pro-
moted mitochondrial fusion and stimulate their
biogenesis.

Differentiated Podocytes preferentially relied on OXPHOS
for their energy demands

To further define the metabolic profile quantitatively,
we examined the oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR), respectively. First,
we found that the basal respiration of DPs was higher than
that of immature podocytes, as shown in Fig. 4b. Then we
assessed the function of electron transfer chain (ETC)
complexes by sequentially adding pharmacological inhi-
bitors. When oligomycin A was added, the ATP-coupled
oxygen consumption was significantly increased after
differentiation (Fig. 4c). Next, we determined the maximal
OCR that cells can sustain by adding carbonyl cyanide 4-
(trifluoromethoxy) phenylhydrazone (FCCP). This treat-
ment resulted in a stimulation of OCR, which was much
higher in differentiated cells as shown in Fig. 4d. In
addition, reserve respiration capacity, the difference
between maximal and basal respiration was also increased
(Fig. 4e). Finally, we added Rotenone and Antimycin into
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Fig. 2 Glycolysis-related genes and proteins were upregulated in differentiated podocytes. a Glycolytic pathway with the assayed glycolytic
genes in dark blue. b Real-time PCR analysis of glycolysis-related mRNAs performed in UDPs and DPs. mRNAs were normalized to actin and
compared to UDPs (n = 3). ¢ Representative blot images of glycolysis-related proteins (n = 3). d All proteins were normalized to tubulin and
compared to UDPs. *P < 0.05, **P < 0.01, determined by t test. Data are shown as the means + SD.

podocytes, and no significant differences were observed in
non-mitochondrial respiration (Fig. 4a). Taken together,
all these results demonstrated an increased OXPHOS
activity in DP.

ECAR analysis provided a quantification of glycolytic
flux. First, we found that non-glycolytic acidification rate
was unchanged during differentiation (Fig. 4f). Never-
theless, the acidification rate was increased higher after
glucose and oligomycin A injection in mature podocytes,
indicating a significant improvement in glycolysis and
maximum glycolytic capacity (Fig. 4g, h). Glycolytic
reserve, the difference between glycolytic capacity and
glycolysis, was also increased (Fig. 4i). These findings
confirmed an increase of glycolysis activity at the
differentiation stage.

As both OXPHOS and glycolysis activity were
enhanced, these changes translated into higher ATP
generation. The intracellular ATP level was upregulated
about 80% in mature podocytes, as shown in Fig. 4j. Next,
we assessed the contribution of the distinct ATP gen-
erating pathways to the overall ATP production in
podocytes. Oxamate, a lactate dehydrogenase inhibitor,
reduced ATP content by 40% in DPs, while reduced ATP
>65% in UDPs (Fig. 4k), indicating glycolysis inhibition
abrogated higher ATP content in immature podocytes.
These data suggest that UDPs preferentially rely on
aerobic glycolysis for their energy demands. We then
treated podocytes with rotenone, and found that rotenone
lowered nearly half of the ATP content in DPs, but had
only less effect in immature cells (Fig. 41). Accordingly, the
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ratio of lactate and pyruvate was also decreased in mature
podocytes (Fig. 4m), indicating that less intracellular
pyruvate was catalyzed to lactate. These data together
suggest that OXPHOS is the primary source of energy in
DPs. To gain further insights in the relative contributions
of glycolysis and OXPHOS to ATP production under
physiological conditions, we isolated primary podocyte
from C57BL/6 mice, and treated them with oxamate and
rotenone, separately. As Fig. 4n, o shows, similar with
transformed cells, rotenone abrogated more ATP content
than glycolysis inhibitor in primary podocyte.

So far, these results demonstrate that DPs are capable of
reprogramming their metabolism, including facilitating
stronger glycolytic profile and increased mitochondrial
respiration. In addition, it appears that there is a major
switch of the key energy producer from anaerobic glyco-
lysis to mitochondrial oxidative metabolism during dif-
ferentiation. We first report that glycolytic metabolism,
while sufficient for immature podocytes, should be
transformed into more efficient OXPHOS to secure the
augmented energetic requirements needed by DPs.
However, how this energetic switch be programmed was
elusive.

Regulation of PKM2 during in vitro podocyte
differentiation

Among the metabolic enzymes elevated in DPs, PKM2
was of particular interest not only because its transcripts
and protein level were upregulated dramatically
(Fig. 5a—c), but also because it is a well-studied enzyme
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Fig. 3 Differentiation of podocytes stimulated mitochondrial function. a Representative confocal and electron microscopy (EM) images
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that can simultaneously modulate glycolysis flux and
mitochondria function®'. To determine the role of PKM2
in podocyte development, we first determined whether
PKM2 is the predominant isozyme. Although the upre-
gulation of PKM1 protein level was greater than PKM2
(Fig. 5b), Pkm1 transcripts was thousands of times less
(Fig. 5¢). Thus, we considered that the part PKM1 con-
tributed to total PK content was negligible. We also stu-
died another isozyme, PKLR, and we did not observe any
significant change in its mRNA and protein level during
differentiation. Taken together, we suggest that PKM2 is a
predominant isoform of PK in podocyte.

PKM2 has been shown to play a central regulative role in
metabolic reprogramming by multiple pathways, including
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expression, activity, allosteric regulation, posttranslational
modification and translocation®®. Thus, in addition to
changes in PKM2 expression level, PK activity was deter-
mined. Consistent with the higher PKM2 expression, PK
activity was elevated (Fig. 5d). The mechanism of higher
PK activity could be an increase in the distribution of
PKM?2 tetramer, which is known to be more enzymatically
active than PKM2 dimer and monomer. Thus, in order to
assess the status of the allosteric regulation of PKM2, DSS
cross-linking studies were performed. The results showed
that the intracellular level of PKM2 tetramer was higher at
differentiation state (Fig. 5e, f).

From the DSS cross-linking studies, an induction of the
dimeric and monomeric configuration of PKM2 was also
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observed during differentiation. As phosphorylation of
PKM2 on Tyrosine 105 is an indicative of monomer/
dimer formation, concurrent p-PKM2 was measured and
showed increase (Fig. 5h). It has been reported that PKM2
monomer/dimer can translocate from cytoplasm to
organelles, regulating mitochondrial respiration or
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glycolysis®>**~®, Thus, here we sought to determine
whether its overexpression in mature podocyte is coor-
dinated with alterations of translocation. Immuno-
fluorescent analysis was performed to examine the
relocation of PKM2, and the result showed that PKM2

was colocated with mitochondria and nuclear in
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differentiation state (Fig. 5g), which was further supported
by subcellular fractionation analysis, showing that more
PKM2 was detected in mitochondrial and nuclear frac-
tions (Fig. 5i, j).

Thus, here we provide evidence for PKM2 induction in
response to podocyte differentiation. This induction not
only enhanced PKM2 expression, activity, but also pro-
moted relocation. But, whether these regulations of PKM2
were related to the increased glycolysis and mitochondrial
respiration in DPs was still unknown.
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The effect of Pkm2 deletion on podocyte differentiation,
mitochondria OXPHOS, and glycolysis

To further determine the effect of PKM2 dysregulation
on podocyte differentiation and bioenergetics, we gener-
ated a Pkm2-RNAi-lentivirus (shPkm2) to knockdown
PKM2 expression in cultured podocytes. As Fig. 6a shows,
the protein level of PKM2 was greatly downregulated after
shPkm2 treatment, while PKM1 was not significantly
changed (Fig. 6b). The mRNA level of Pkm2 were also
lower, with a relatively constant expression level of Pkm1
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glycolytic capacity and glycolytic reserve in ECAR.

Fig. 6 The effect of Pkm2 depletion on differentiation, mitochondria OXPHOS and glycolysis. a Representative western blotting results of
PKM2 and PKM1 in control (shCtrl) and Pkm2-knockdown (shPkm2) podocytes (n = 3). b Bar charts show means of optical density (O.D.), and
normalized to cells transfected with shCtr-RNAI lentivirus. ¢ Real-time PCR analysis of Pkm2 and Pkm1 mRNA levels in the absence or presence of
Pkm2-RNAI lentivirus (n = 3-6). d PK activity in different podocytes as indicated (n = 3). e ATP level was normalized by protein content, and used
shCtrl podocyte as control. f Representative western blotting results of nephrin and synaptopodin expression level in cultured podocytes as indicates
(n=13). g Representative western blotting results of PGC-1a and TFAM expression level (n = 3). h Representative blot images of OPA-1 and DRP-1
(n = 3). i Representative blot images of F6PK and LDHA (n = 3). j Immunofluorescence staining for nephrin (red), phalloidine for F-actin (green) and
DAPI for nuclear (blue). Scale bar=5 um. k Representative immunofluorescence and electron microscopy (EM) images showing alterations in
mitochondrial morphologies between different podocytes as indicated. In the immunofluorescence images, cells are labeled with MitoTracker Red
(red) for mitochondria and DAPI (blue) for nuclear. Left scale bar = 2 um. Right scale bar = 500 nm. Pictures show representative fields of over 10 cells
photographed. I-n Average mitochondrial area, mitochondrial mass and MMP. o, p Relative lactate production and glucose consumption in culture
medium derived from podocytes, and shCtrl podocyte was used as control (n = 3). q Effects of PKM2 on OCR in podocytes (n = 4). OCR traces were
obtained using a Seahorse XF96 Analyzer. r Statistical analyses of baseline respiratory capacity, ATP-coupled respiratory capacity, maximum
respiratory capacity and reserve respiratory capacity in OCR. s Effects of PKM2 on ECAR in podocytes (n = 4). t Statistical analyses of glycolysis,

(Fig. 6¢). This result illustrated that there was no com-
pensative expression of PKMI1. Notably, with a 60%
decrease in PKM2 expression, PK activity was equally
reduced (Fig. 6d). In the meantime, the intracellular ATP
level was also abrogated about 60% (Fig. 6e), indicating
that PKM2 knockdown was associated with PK activity
decline and ATP synthesis defect.

Concomitant with decreased ATP, the characteristic
markers of mature podocytes, nephrin and synaptopodin,
were downregulated simultaneously (Fig. 6f). Immunos-
taining showed that, although perinuclear distribution of
nephrin was most preserved, there was a markedly dis-
rupted pattern at the cell periphery, and phalloidin
staining for F-actin showed degeneration of actin fila-
ments bundles within the cytoplasm, indicating that
podocyte structure was to some extent disrupted with
shPkm2 treatment (Fig. 6j).

As DPs use OXPHOS as a main energy source, we
furthered determined the changes of mitochondria func-
tion after shPkm?2 transfection. First, mitochondrial bio-
genesis and dynamics were examined. The western
blotting in Fig. 6g shows that PGC-1a and TFAM, key
regulators of biogenesis, were decreased. The down-
regulation of OPA-1 and the opposite change of DRP-1
indicates the fragmentation of mitochondria (Fig. 6h),
which was further judged by MitoTracker Red staining
and EM (Fig. 6k). In the meantime, average mitochondria
area, mitochondrial mass and MMP were all decreased
significantly (Fig. 61-n).

Next, to investigate the effect of Pkm2-knockdown on
glycolysis, we examined the expression level of Fructose-
6-phosphate Kinase (F6PK) and Lactate Dehydrogenase A
(LDHA), two important proteins involved in glycolytic
pathway. Their protein levels were both downregulated
(Fig. 6i), accompanied by a decrease of relative lactate
production (Fig. 60) and glucose consumption in the
culture medium (Fig. 6p). OCR and ECAR were further
measured, and the results revealed dramatically
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downregulation of OXPHOS and glycolysis activity in
Pkm2-knockdown podocytes (Fig. 6q—t). These data
together suggest that PKM2 has a vital effect on ATP
production, podocyte differentiation, mitochondrial
OXPHOS activity and glycolysis function.

Pkm2 deletion in podocytes aggravated adriamycin-
induced podocyte injury

Given the effect of shPkm2 on cell structure and
metabolic reprogramming of cultured podocytes, we
sought to determine the functional and metabolic con-
sequences of Pkm2-knockout in primary podocytes. To do
this, we used primary podocytes generated from mice
carrying a Pkm2 conditional allele with NPHS2-Cre
(Pkm2~"~) and matched wild-type controls (Pkm2™.
Western blotting revealed that PKM2 was almost totally
eliminated in Pkm2  -podocytes (Fig. 7a, b), and the
trace amount of PKM2 appeared probably because of the
purity (295%) of the primary cells (Fig. S2A). Be different
from  transformed podocytes, Pkm2 ’-podocytes
revealed compensatory greater level of PKM1, indicating a
switch from PKM2 to PKM1 in primary cells (Fig. 7a—c).
Thus, PK activity in the mutant cells were normalized to
WT level (Fig. 7d), in keeping with previous character-
ization of Pkm2-KO podocyte®'. But despite the com-
pensatory expression of PKMI, total intracellular ATP
were decreased (Fig. 7e). The mRNA levels of proteins
involved in glycolysis (Fig. 7f), mitochondria biogenesis
and fusion (Fig. 7g) were reduced as well. MitoTracker
Red staining and EM revealed mitochondrial fragmenta-
tion (Fig. 7h). These results suggest that the compensation
of PKM1 protein or PK activity could not make up for
PKM2 on the regulation of podocyte bioenergetics, and
that PKM2 might has a more potent and unique glycolytic
and mitochondrial effect than PKM1.

However, beyond our expectation, despite the lower
energy supply, the morphology of primary Pkm2 '~
podocytes was not changed much, including the
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Fig. 7 Pkm2 deletion in podocytes aggravated adriamycin-induced podocyte injury. a Representative western blotting results of PKM2 and
PKM1 in primary podocytes isolated from Pkm2"" and Pkm2~/~ mice (n = 3). b Bar charts show means of optical density (O.D), and normalized to
Pkm2™" podocytes. ¢ Real-time PCR analysis of Pkm2 and Pkm1 mRNA levels (n = 5-6). d PK activity in different podocytes as indicated (n =5). @ ATP
level was normalized by protein content, and used Pkm2"" podocyte as control (n = 5). f Real-time PCR analysis of glycolysis-related mRNAs. mRNAs
were normalized to actin, and Pkm2™"" podocyte was used as control (n = 6). g Real-time PCR analysis of mRNAs involved in mitochondrial biogenesis
(Pgc-1a and Tfam) and mitochondrial dynamics (Opa-1 and Drp-1) in primary podocytes (n = 6). h Representative immunofluorescence and electron
microscopy (EM) images showing alterations in mitochondrial morphologies between different podocytes as indicated. In the immunofluorescence
images, cells are labeled with MitoTracker Red (red) for mitochondria and DAPI (blue) for nuclear. Pictures show representative fields of over 10 cells
photographed. Left scale bar=2 um. Right scale bar=500 nm. i Immunofluorescence staining for nephrin (red), phalloidine for F-actin (green) and
DAPI for nuclear (blue) in primary podocytes as indicated. Scale bar=5 pm. j Effects of PKM2 on ECAR in primary podocytes. k Statistical analyses of
glycolysis, glycolytic capacity and glycolytic reserve in ECAR. | Effects of PKM2 on OCR in primary podocytes. m Statistical analyses of baseline
respiratory capacity, ATP-coupled respiratory capacity, maximum respiratory capacity and reserve respiratory capacity in OCR. n Urinary albumin levels
in podo-Pkm2™" and podo-Pkm2~/~ mice after ADR injection (25 mg/kg body weight) at day 5 (n = 4-6). o Quantitative determination of WT1-
positive cells in the glomeruli in different groups as indicated. p Immunofluorescence staining for Wilm’s tumor 1 (WT-1) and nephrin in different
groups as indicated. Scale bar=20 um. g Representative electron microscopy (EM) shows podocyte foot process effacement after ADR injection. Top

scale bar=1 um. Bottom scale bars =500 nm.

distribution of nephrin and the arrangement of F-Actin
(Fig. 7i). These results demonstrate that compensatory
PKM1 seems to be enough for podocyte maturation and
maintaining glycolysis activity (Fig. 7j, k), under normal
physiologic conditions. Nevertheless, knockout of PKM2
dramatically decreased the capacity of mitochondrial
respiration (Fig. 71, m). In order to sustain the complex
cellular morphology of interdigitating foot processes,
podocytes usually rely on a constant energy supply and
reservoir’’. The reduced OXPHOS capacity suggests that
these cells might be more vulnerable to extracellular
stimuli.

To confirm our hypothesis, we challenged podo-Pkm2 "~
mice with adriamycin (ADR), an agent that specifically
damages glomerular podocytes. As shown in Fig. 7n,
compared with the control littermates, podo-Pkm2 ™~ mice
developed more severe albuminuria at day 5, after intrave-
nous injection of ADR at a dose of 25 mg/kg body weight.
We further examined the expression of WT-1, a molecular
signature of podocytes. ADR caused a significant decrease
in the number of the WT-1-positive cells in podo-Pkm2™"
mice. However, Ablation of Pkm2, markedly exacerbated
WT-1 loss (Fig. 70). Immunofluorescent staining revealed
that levels of nephrin were reduced and its distribution was
changed from a linear to granular pattern after ADR injury,
and these lesions were more severe in mutant mice (Fig.
7p). We also examined the ultrastructure of podocyte foot
processes and slit diaphragm by EM. As shown in Fig. 7q,
more severe lesions of foot process and slit diaphragm were
observed in podo-Pkm2 "~ mice, suggesting that PKM?2 has
an important role in podocyte survival after injury.

mTOR signaling pathway regulated PKM2 expression and
podocyte differentiation

It has been reported that podocyte-specific constituent
loss of mTORC1 (Raptor ") developed significant albu-
minuria at 4 weeks of age®®. However, ablation of
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podocyte Raptor in already matured glomeruli results in
only a mild phenotype®. These findings suggest that
mTORCI activity is particularly important in developing
podocytes. Moreover, mTOR pathway is a critical reg-
ulator of cellular metabolism in kinds of tissues*®*'.
Therefore, we asked whether mTOR participates in the
metabolic changes observed during podocyte differentia-
tion. To test this hypothesis, we first examined the
phosphorylation levels of S6, a downstream target of
mTORCI1 that is frequently used as an indicator for
mTORC1 activity, in podocyte during different differ-
entiation stages in vivo. The results in Fig. 8a show that
p-S6 was hardly detected in podocyte at postnatal day 1,
but was clearly detected at postnatal day 14. Western
blotting also showed increased p-S6 expression during
postnatal development (Fig. 8b). To confirm this increase
in podocyte in vitro, we assayed the protein level of p-S6,
and found that p-S6 was increased in mature podocytes
(Fig. 8c). Thus, we demonstrated that mTORCI activity
was progressively and significantly increased during
podocyte differentiation.

To address whether activation of mTORC1 in podo-
cytes contributes to PKM2 expression, we generated a
podocyte-specific TscI-KO mice. Because TSC1 is an
upstream negative regulator of mTORCI, loss of
TSC1 should result in activation of the mTORC1 path-
way*®, TscI™’~-podocytes showed increased p-S6 and
PKM2 expression than Tsc P cells (Fig. 8d). In contrast,
pharmaceutical inhibition of mTORC1 with rapamycin
downregulated p-S6 and PKM2 level simultaneously
(Fig. 8e). These data suggest mTOR as a positive regulator
of PKM2 expression. Furthermore, treatment of podo-
cytes with rapamycin resulted in a significant down-
regulation of nephrin and synaptopodin in podocyte
(Fig. 8f). All these data together suggest that induction of
PKM2 during differentiation, was at least partially acti-
vated by mTORC1 pathway. Moreover, suppressing
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Fig. 8 mTOR signaling pathway regulated PKM2 expression and podocyte differentiation. a IHC detection of p-56 in renal cortex during
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immunoblot analysis of p-S6 in cultured podocyte during differentiation. d Western immunoblot analysis of p-56 and PKM2 expression in Tsc1™” and
Tsc]’/*—podocytes. e Rapamycin caused a significant reduction in the protein levels of p-S6 and PKM2 in cultured podocyte. f Western immunoblot
analysis of nephrin and synaptopodin with 10 nM rapamycin treatment for 14 days.

mTOR pathway with rapamycin can inhibit PKM2
expression and disrupt podocyte differentiation.

Discussion

Differences in energy status from distinct physiologies
can distinguish differentiated cells from undifferentiated
ones*®>. Thus, metabolism could provide a relatively
unexplored distinguishing feature between mature and
immature cells. Conversely, metabolic studies on podo-
cytes have mainly been conducted on mature podocyte in
physiological or pathological conditions. In 2010, Abe™
provided first experimental evidence for a critical role of
mitochondria in podocyte. Ozawa® suggested that both
glycolytic and OXPHOS pathways contribute to podocyte
energy supplements. Recently, Paul®” highlights the
podocytes’ independence from mitochondrial energy
sources, but no one have been focused on changes of
podocyte’s metabolic profile during differentiation. Here
we report for the first time a global metabolic profile in
cultured podocyte during in vitro differentiation.

Although the model of in vitro terminal differentiation
of cultured podocyte has some limitations, we have cho-
sen it to avoid any contribution from other glomerular
cells to the metabolic profile of podocyte. Glycolysis and
oxidative phosphorylation (OXPHOS) are the two major
cellular pathways to produce energy. Most cells may
switch between these pathways in order to cope with
changing energy demands. After 14 days differentiation,
we observed an activation of glycolysis in cultured
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podocyte. Usually, differentiated cells have repressed
glycolysis, as they mostly rely on OXPHOS for energy
demand***®. However, podocytes showed that their
in vitro differentiation were associated with increased
glycolysis owing, at least in part, to increased expression
of GLUT1/4 and of enzymes in the glycolytic pathway. It
is known that glycolysis can provide intermediate meta-
bolites for amino acids, lipids and nucleic acids bio-
synthesis*”. Thus, mature podocytes might require a
higher glycolytic flux probably for synthesizing slit dia-
phragm proteins and GBM components, which are
important for maintaining their phenotype.

As the distribution, abundance and fusion—fission status
of mitochondria regulates bioenergetics®®*~>, the mor-
phology and abundance of mitochondria were assessed for
changes with differentiation. Mitotracker Red staining has
made it clear that DPs have rich mitochondria to support
their higher demand for energy. Mitochondria from UDPs
were structurally undeveloped, consisting of small and
spherical structures. However, as podocyte differentiated,
a more filamentous and branched mitochondrial network
was formed, with an increased capacity to produce ATP
from OXPHOS*""*2. Thus, these results here collectively
show that DPs can boost both glycolysis and mitochon-
drial metabolism to meet their augmented energy
demand. However, the regulation of these differences in
bioenergetics is still unknown.

It has been reported that PKM2 can regulate energy
metabolism of both mitochondria®! and glycolysis®?. In
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this study, we demonstrated that PKM2 expression was
increased with podocyte differentiation. In order to
delineate the role of PKM2 in podocyte, we knocked
down PKM2 in podocytes via transfection with a Pkm2-
RNAi-Lentivirus (shPkm?2), and found out that shPkm?2
prevented podocyte differentiation, as manifested by
nephrin and synaptopodin suppression, and led to
glycolysis decrease and mitochondrial dysfunction,
based on the reduction of ECAR and OCR. The data
thus far showed that shPkm2 prevented podocye dif-
ferentiation, at least partially by ruining glycolysis and
mitochondrial function. However, in striking contrast,
it has been reported that PKM2-Oct-4 can stimulate
the undifferentiated pluripotent state of embryonic
stem cells®*. Thus, we suggest that the role of PKM2 on
cell differentiation may depend on cell types and
context.

Although our results showed vital function of PKM2 in
cultured podocyte differentiation, it has been reported
that Pkm2-null and podocyte-specific Pkm2-KO mice are
both viable and fertile*"*®. This phenomenon might be
due to the potential compensatory effects of the conven-
tional genetic ablation approaches>®. In order to figure out
the difference between transformed and primary podo-
cyte, we next extended these findings to primary Pkm2 ™’
“-podocytes. In fact, the compensatory expression of
Pkml in Pkm2 ' -podocytes seems compatible for
podocyte maturation under normal physiologic condi-
tions. Nevertheless, knockout of PKM2 developed more
severe albuminuria and aggravated adriamycin-induced
podocyte injury dramatically, suggesting that PKM2 has
an important role in podocyte survival after injury. Thus,
in our experimental conditions, the compensatory
increased transcript levels of Pkm1 weren’t sufficient for
Pkm2 " podocytes to resist stress under pathological
condition. Notably, podocyte-specific Pkm2-KO mice
with diabetes also developed worse albuminuria and glo-
merular pathology'. The defects of the traditional genetic
ablation approach probably make researchers ignore the
importance of PKM2 during differentiation. However, the
CRISPR gene-editing or Tet-On mice are needed to fur-
ther proved this hypothesis.

In the present study, we first described the metabolic
reprogramming of cultured mouse podocytes, includ-
ing a strong glycolytic profile and increased mito-
chondrial metabolism, during in vitro differentiation,
and we demonstrated the vital role of PKM2 in this
progress. Our findings further support the role of
mTOR pathway in the regulation of PKM2 expression
and podocyte differentiation. In addition, our work has
implications not only for the fundamental under-
standing of podocyte development, but also for the
importance of PKM2-mediated metabolic defects in
in vivo podocyte loss.
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Materials and methods
Animal models

Animal studies were conducted in strict accordance
with the principles and procedures approved by the
Committee on the Ethics of Animal Experiments of
Nanjing Medical University. Pkm2™" (stock #024048),
Tsc"? (stock # 005680) and podocin-Cre (stock
#008205) mice were purchased from the Jackson
Laboratory. All mice were backcrossed to a C57BL/6
background. For podocyte-specific Pkm2-KO mice, we
cross bred Pkm2™" mouse strain with the podocin-Cre
mice. For podocyte-specific TscI-KO mice, we cross bred
Tsc " mouse strain with podocin-Cre mice. All experi-
ments were performed with genetically appropriate lit-
termate controls. In ADR-induced proteinuria mouse
studies, male mice at 8 weeks old received a single, slow
tail vein injection of either saline or 25mg/kg ADR
(Doxorubicin  hydrochloride, D1515, Sigma-Aldrich,
USA). Mice were sacrificed and kidneys were harvested
for the analysis at day 5.

Cell culture and treatment

Conditionally immortalized mouse podocyte cell lines
was kindly provided by Dr Zhihong Liu (Nanjing Uni-
versity, Nanjing, China). UDPs were seeded at 5.0x10*
cells per well in 6-well plates and cultured at 33°C in
RPMI-1640 medium with 10% fetal bovine serum (FBS,
Gibco) and 10 U/ml recombinant mouse y-interferon (y-
IEN, R&D Systems, MN, USA). To induce differentiation,
cells were transferred to non-permissive conditions at
37 °C and incubated with 1 pM RA in the absence of y-
IEN for 14 days (replace the growth medium every
3 days). Lentivirus of Pkm2-RNAi (shPkm2) were perch-
ased from Genechem (Shanghai, China) and the sequence
was: 5'-GGCCATTATCGTGCTCACCAA-3'. For trans-
fection, cells were infected with lentivirus for 12h
according to the manufacturer’s instructions, and then the
medium were replaced with complete medium for
indicated time.

Primary culture of podocytes

This procedure was adapted from a standard operating
protocol by Azeloglu Lab. The isolated glomeruli were
plated on collagen-type-I-coated dishes at 37 °C in RPMI
1640 medium with 10% FBS. Do not touch for minimum
of 3—4 days to allow glomeruli to settle with gravity and
stick to the collagen-coated surface and for podocytes to
move onto the culture plate. On day 4 of culture, unat-
tached glomeruli were washed away. Podocytes were used
for experiments on day 6-8 of culture.

Urinary albumin
Urine albumin level was measured by using a mouse
Albumin ELISA Quantification kit, according to the
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manufacturer’s protocol (Bethyl Laboratories, Mon-
tgomery, TX, USA).

Transmission electron microscopy

EM of kidney samples was carried out by routine pro-
cedures as described previously. Briefly, mouse kidneys
were perfusion fixed with 2.5% glutaraldehyde in phos-
phate buffered saline and post-fixed in aqueous 1% OsOy.
Specimens were dehydrated in increasing concentrations
of alcohol, infiltrated in a 1:1 mixture of propylene oxide/
Polybed 812 epoxy resin, and then embedded. Sections
(100 nm thick) were cut using a Leica (Solms, Germany)
UC6 ultramicrotome and stained with 2% uranyl acetate
for 10 min, followed by 1% lead citrate for 5 min at room
temperature. Sections were then observed and photo-
graphed using a FEI Tecnai T20 transmission electron
microscope, operated at 120 kV.

Cross-linking of PKM2

In cell culture, we used 500 uM DSS (Disuccinimidyl
suberate, 21655, Thermo Fisher Scientific) to cross-link
for 30 min at room temperature. Lysates were analyzed
by western blot. After transfer, membranes were incu-
bated with 0.4% paraformaldehyde in PBS for 30 min at
room temperature before PKM2 antibody was added
for detection of tetramers, dimers and monomers
of PKM2.

PK activity assays

We measured PK activity by using a PK activity assay kit
(K709, BioVision, USA). In brief, PEP and ADP were
catalyzed by PK to generate pyruvate and ATP. The
generated pyruvate is oxidized by pyruvate oxidase to
produce color (at A =570 nm) and fluorescence (at Ex/Em
= 535/587 nm). The PK activity was accurately measured
by a microplate reader.

Mitochondrial morphology

To observe mitochondrial network morphology, Mito-
Tracker Red CMXRos 100 nM (Cat. no. M7512, Invitro-
gen) was added to culture medium and cells were
incubated at 37 °C for 30 min. After that, cells were gently
washed, fixed, and double-stained with DAPI to visualize
the nuclei. Then, slides were imaged under the confocal
microscope (CarlZeiss LSM710).

Mitochondrial membrane potential

MMP was assessed by measuring the potential-
dependent accumulation of 5,5,6,6’-tetrachloro-1,1',3,3'-
tetraethylbenzimdazol carbocyanine iodide (JC-1, C2005,
Beyotime, China). Podocytes were washed twice with
HBSS (Sigma-Aldrich, USA) and then incubated in the
dark with JC-1 for 30min at 37°C. Fluorescence in
podocytes was detected with FACS.
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Measurements of OCR and ECAR

A Seahorse Bioscience XF24-3 Extracellular Flux Ana-
lyzer was used to measure the rate change of dissolved O,
and pH in medium immediately surrounding adherent
cells cultured in a XF24-well cell culture microplate
(Seahorse Bioscience, North Billerica, MA, USA). Cells
were seeded in XF24-well microplates at 2.0x10* cells per
well in 200 pl of growth medium, then growth medium
was replaced with assay medium.

For OCR, the analyzer plotted the value as the cells were
treated by sequential injection of the following com-
pounds: oligomycin (1 umol/L), carbonyl cyanide-4 (tri-
fluoromethoxy) phenylhydrazone (FCCP, 1.5 umol/L), and
antimycin A (1 umol/L) plus rotenone (1 pmol/L). For
ECAR, the analyzer plotted the value as the cells were
treated by sequential injection of the following com-
pounds: glucose (10 mmol/L), oligomycin (2 pmol/L) and
2-deoxy-glucose (2-DG, 100 mmol/L). The results were
automatically calculated, recorded, and plotted by Sea-
horse XF24 software version 1.8 (Seahorse Bioscience).
Data were normalized for protein concentration per well.

ATP quantification

Podocytes were seeded in 12-well microplates (Corning,
NY, USA) at 2.0x10* cells per well. Cells were then
exposed to vehicle or compounds for 45 min before the
ATP assay started. The quantity of ATP present in the test
cells in each well was measured by ATP bioluminescent
somatic cell assay kit (Cat. no. FLASC, Sigma-Aldrich,
St. Louis, MO, USA). The ATP assay was performed
according to the manufacturer’s instruction. Lumines-
cence intensity from each well was measured with a
Glomax Luminometer (Promega). Data were normalized
for protein concentration per well.

Western blotting

Cells lysed with RIPA buffer were separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis, and
electrotransferred onto polyvinylidene fluoride mem-
branes. After overnight incubation with primary antibody
at 4°C, the membranes were incubated with HRP-
conjugated anti-mouse or anti-rabbit (Sigma-Aldrich,
St. Louis, MO, USA) secondary antibody for 1 h at room
temperature, followed by addition of ECL prime (Vazyme,
Nanjing, China) to detect bands using a Bio-Rad gel
documentation system (Bio-Rad, CA, USA). Primary
antibodies were detected against Nephrin (ab80298,
Abcam), Podocin (P0372, Sigma), Synaptopodin (NBP2-
39100, Novus), GLUT1 (ab115730, Abcam), GLUT4
(NBP1-49533, Novus), HK2 (NBP2-02272, Novus), F6PK
(ab154804, Abcam), PKM1 (7067 S, CST), p-PKM2
(3827S, CST), PKM2 (4053 S, CST), PKLR (ab137787,
Abcam), LDHA (35585, CST), PGC-la (ab54481,
Abcam), TFAM (ab131607, Abcam), OPA-1 (ab42364,
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Abcam), DRP-1 (ab184247, abcam), VDAC (4866 s, cst),
PCNA (ab18197, abcam), p-S6 (4858s, cst), S6 (2217s,
cst), and Tubulin (T9026, Sigma) at a dilution of 1:1000.
Quantification was performed by measurement of the
intensity of the signals with the use of Image] (NIH,
Bethesda, MD, USA).

Lactate, Pyruvate assay

Lactate concentration of cell extracts was measured
using Lactate Colorimetric/Fluorometric Assay Kit
(K607-100, Biovision, USA). Pyruvate concentration of
cell extracts was measured using Pyruvate Colorimetric/
Fluorometric Assay Kit (K609-100; Biovision, USA).

Quantitative RT-PCR analysis

Total RNA was extracted using TRIzol reagent (Invi-
trogen) according to the manufacturer’s instructions.
cDNA was synthesized with 1 pg of total RNA. Gene
expression was measured by a real-time PCR assay
(Vazyme, Nanjing, China) and 7300 Real-Time PCR Sys-
tem (Applied Biosystems, CA, USA). The relative amount
of mRNA to internal control was calculated using the
expression 2/\CT, in which ACT = CTgene - CTeontrob
and CT is cycle threshold.

Immunofluorescent staining

Cells cultured on coverslips were washed twice with
cold PBS and fixed with cold methanol:acetone (1:1) for
10 min at —20 °C. Following three extensive washings
with PBS, slides were blocked with 0.1% Triton X-100 and
2% normal donkey serum in PBS buffer for 40 min at
room temperature and then incubated with the specific
primary antibodies previously described, followed by
staining with isothiocyanate-conjugated secondary anti-
body. Slides were triple-stained with DAPI to visualize the
nuclei. Paraffin-embedded mouse kidney sections (3 pm
thickness) were prepared similarly. At the end of the
process, slides were viewed with a Nikon Eclipse 80i
microscope equipped with a digital camera (DS-Ril,
Nikon). In each experimental setting, immuno-
fluorescence images were captured with identical expo-
sure settings.

Nuclear magnetic resonance

"H-NMR spectra of cell culture media were acquired
on a 600-MHz NMR Spectrometer (Bruker Avance I1I,
Bruker Corporation, Kalsruhe, Germany), using a
CPBBO detection probe. Acquisition parameters inclu-
ded a 1.70-s acquisition time and an interpulse delay of
3-s to ensure complete relaxation of all nuclei in the
sample. The results were analyzed by MestReNova
software (V9.0.1, Mestrelab Research, Santiago de
Compostela, Galicia, Spain).
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Lactate production and glucose consumption

The conditional media was centrifuged for 5min at
3000xg to remove debris and measured for glucose and
lactate content. Lactate concentration of cell supernatant
was measured by using Lactate Colorimetric/Fluoro-
metric Assay Kit (K607-100, Biovision). Glucose con-
centration of cell supernatant was measured by using
Glucose Colorimetric/Fluorometric Assay Kit (K606-100,
Biovision). Reactions with media samples without incu-
bating with cells were included as a negative control.

Statistical analysis

Animals were randomly assigned to control and treat-
ment groups. All images of Western blots and immuno-
fluorescence were representatives of at least three
independent experiments. RT-qPCR assays were per-
formed in triplicates. Data shown are the mean + SD for
three or more independent experiments. Differences were
considered statistically significant at *p <0.05 or **p <
0.01, assessed using Student’s ¢ test.
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