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Deep learning enables accurate clustering with
batch effect removal in single-cell RNA-seq
analysis
Xiangjie Li1,2,3, Kui Wang1,4, Yafei Lyu1, Huize Pan5, Jingxiao Zhang2, Dwight Stambolian6, Katalin Susztak 7,

Muredach P. Reilly5, Gang Hu 1,8✉ & Mingyao Li 1✉

Single-cell RNA sequencing (scRNA-seq) can characterize cell types and states through

unsupervised clustering, but the ever increasing number of cells and batch effect impose

computational challenges. We present DESC, an unsupervised deep embedding algorithm

that clusters scRNA-seq data by iteratively optimizing a clustering objective function.

Through iterative self-learning, DESC gradually removes batch effects, as long as technical

differences across batches are smaller than true biological variations. As a soft clustering

algorithm, cluster assignment probabilities from DESC are biologically interpretable and can

reveal both discrete and pseudotemporal structure of cells. Comprehensive evaluations show

that DESC offers a proper balance of clustering accuracy and stability, has a small footprint on

memory, does not explicitly require batch information for batch effect removal, and can utilize

GPU when available. As the scale of single-cell studies continues to grow, we believe

DESC will offer a valuable tool for biomedical researchers to disentangle complex cellular

heterogeneity.
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A primary challenge in scRNA-seq analysis is analyzing the
ever increasing number of cells, which can be thousands
to millions in large projects such as the Human Cell

Atlas1. Identifying cell populations is challenging in large datasets
because many existing scRNA-seq clustering methods cannot be
scaled up to handle them. Large scRNA-seq datasets often include
cells that are easy to cluster, and it is desirable to learn expression
patterns from these cells because they provide valuable infor-
mation on cluster-specific gene expression signatures. These cells
can further help improve clustering of cells that are hard to
cluster. As the number of cells grows in scRNA-seq studies,
another major challenge in analysis is batch effect, which is sys-
tematic gene expression difference from one batch to another2.
Batch effect is inevitable in studies involving human tissues
because the data are often generated at different times and the
batches can confound biological variations. Failure to remove
batch effect will complicate downstream analysis and lead to a
false interpretation of results.

ScRNA-seq clustering and batch effect removal are typically
addressed through separate analyses. Commonly used approaches to
remove batch effect include canonical correlation analysis (CCA)3,
mutual nearest neighbors (MNN) approach4, and the combination
of MNN and CCA as implemented in Seurat 3.05. After batch effect
removal, clustering analysis is performed to identify cell clusters
using methods such as Louvain’s method6, Infomap7, shared nearest
neighbors8, or consensus clustering with SC39. However, some
studies might deplete or enrich certain cell types, which can lead to
cell-type-specific batch effect10. Even when processed together, some
cell types might be more vulnerable to batch effect than others.
Haghverdi et al.4 found that consideration of cell-type-specific batch
effects rather than a globally constant batch effect for all cells leads
to improved batch effect removal.

Methods such as CCA, MNN, and Seurat 3.0 are based on
pairwise analysis in which cells from two batches are considered at a
time. For data with more than two batches, the first batch in order
will be used as the reference batch to correct cells in the second
batch, and the corrected values of the second batch are then added
to the reference batch. This procedure is repeated until cells in all
batches are corrected. As a pairwise procedure, the order in which
batches are corrected will affect the final results. Scanorama11 is also
pairwise based, although it does not require a reference batch. Other
methods such as scVI12 and BERMUDA13 explicitly incorporate
batch information in analysis, thus can jointly analyze cells from all
batches simultaneously.

Since clustering and batch effect removal are interrelated, an
ideal approach for batch effect removal should be performed
jointly with clustering. It is also desirable to have a method that
can simultaneously include cells from all batches in the analysis.
Here we present DESC, an unsupervised deep learning algorithm
that iteratively learns cluster-specific gene expression repre-
sentation and cluster assignments for scRNA-seq analysis. DESC
gradually removes batch effect over iterations, as long as technical
differences across batches are smaller than true biological varia-
tions (e.g., between cell types). We compared DESC with many
state-of-the-art methods for scRNA-seq analysis, including CCA,
MNN, Seurat 3.0, scVI, BERMUDA, and scanorama. Through
comprehensive analyses of datasets with various degrees of
complexities, we show that DESC is able to remove complex
batch effect, preserve biological variations, and can reveal both
discrete and pseudotemporal structure of cells.

Results
Methods overview. An overview of DESC is shown in Fig. 1a.
Using a deep neural network, DESC initializes parameters
obtained from an autoencoder and learns a nonlinear mapping

function from the original scRNA-seq data space to a low-
dimensional feature space by iteratively optimizing a clustering
objective function. This iterative procedure moves each cell to its
nearest cluster centroid, balances biological and technical differ-
ences between clusters, and gradually reduces the influence of
batch effect. DESC also enables soft clustering by assigning
cluster-specific probabilities to each cell, which facilitates the
clustering of cells with high confidence. The resulting maximum
probabilities for cluster assignment also provide valuable infor-
mation on cell transition for cells that originate from a genuinely
continuous process.

Application to macaque retina data with complex batch effect.
To evaluate the performance of DESC, we analyzed a scRNA-seq
dataset that includes 21,017 foveal and 9285 peripheral bipolar
cells from retina in four macaques10. Since 80% of total cells in
peripheral retina are rod photoreceptors, rods were depleted
(anti-CD73) and retinal ganglion cells were enriched (CD90+)
from peripheral samples before profiling. This dataset is complex
in that there are three levels of batch effect: animal level (four
macaques), region level (fovea and periphery), and sample level
(30 samples across macaques and regions). Peng et al.10 found
that CCA and MNN cannot completely remove batch effect,
collapsed distinct cell types, or have varying impact on different
cell classes. For this complex dataset, DESC is effective in
removing batch effect and yields high clustering accuracy
(adjusted Rand index (ARI) 0.919–0.970) (Fig. 1b–e). The cells
are mixed well regardless whether sample, region, or animal was
used to define batch in gene expression standardization, indi-
cating the robustness of DESC. In contrast, CCA, MNN, Seurat
3.0, scVI, BERMUDA, and scanorama are all sensitive to batch
definition, and the cells are separated by sample when region or
animal was used to define batch in analyses (Fig. 2 and Supple-
mentary Note 2).

In many studies, particularly those involving human tissues,
batch effect might be confounded with biological conditions.
To reduce the risk of removing true biological variations, it is
desirable to have a method that is agnostic to batch. To this end,
we further analyzed the data without using any batch informa-
tion. Among all methods we evaluated, only scVI allows the
analysis without the specification of batch in analysis. Figure 3a
shows that DESC yields high clustering accuracy (ARI 0.920) with
the cells well mixed when batch information was not utilized in
the analysis. However, cells from different samples are completely
separated in scVI when batch information was not provided
(Fig. 3b), and the ARI dropped to 0.242 (Fig. 1e), indicating its
strong reliance on how batch is defined in the analysis.

Application to pancreatic islet data from four protocols. Next,
we tested whether DESC can remove batch effect for data gen-
erated through different scRNA-seq protocols. We combined four
publicly available datasets on human pancreas generated using
Fluidigm C114, SMART-seq215, CEL-seq16, and CEL-seq217.
Figure 4a shows that cells in these four datasets mixed well in
DESC representation, and DESC yields the highest ARI value
(0.945), which is much higher than MNN (0.629), scVI (0.696),
BERMUDA (0.484), and scanorama (0.537) (Fig. 4b). Although
Seurat 3.0 also has high ARI (0.896), its classification accuracies
for α and β cells are only 92.1% and 88.1%, respectively, whereas
the accuracies are 96.5% for α cells and 98.3% for β cells in DESC,
respectively, (Supplementary Note 3). We also note that 2.32% of
the α cells and 11.3% of the β cells were misclassified as a single
cluster in Seurat 3.0, even though α and β cells are known to have
distinct gene expression profiles (Supplementary Fig. 5). Seurat
3.0 relies on anchor cells between pairs of datasets, which are
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Fig. 1 The workflow of DESC. a Overview of the DESC framework. DESC starts with parameter initialization in which a stacked autoencoder is used for
pretraining and learning a low-dimensional representation of the input gene expression matrix. The resulting encoder is then added to the iterative
clustering neural network to cluster cells iteratively. The final output of DESC includes cluster assignment, the corresponding probabilities for cluster
assignment for each cell, and the low-dimensional representation of the data; b–d The t-SNE plots of DESC for the macaque retina scRNA-seq data
generated by Peng et al.10 The plots are colored by macaque id (b), sample id (c), and region (d). e The ARIs of different methods. The ARIs were
calculated when taking different information (macaque id, sample id, region id) as batch in analysis, and “All” was calculated when no batch information
was provided in analysis.
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hypothesized to originate from the same biological state, to
remove batch effect. However, misidentification of anchors from
different batches might have led to reduced accuracy for the α and
β cells’ classification.

The main idea of DESC is to use “easy-to-cluster” cells to guide
the neural network to learn cluster-specific gene expression
features, while ignoring other unwanted noises such as batch
effect. Specifically, the auxiliary distribution P gives cells near the
cluster centroid, i.e., easy-to-cluster cells, higher probabilities, in

the process of optimizing the Kullback–Leibler (KL) divergence
between distributions P and Q. By doing this, DESC ignores
information unrelated to cell clustering by adjusting the network
weight using the gradient descent algorithm, and learns cluster-
specific information. Since DESC learns information on cell
clusters from those “easy-to-cluster cells,” while ignoring other
irrelevant information by constructing the auxiliary distribution P
and optimizing the KL divergence between P and Q, thus as long
as technical differences (e.g., between batches) are smaller than
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biological differences (e.g., between cell types), DESC can remove
batch effect successfully. A similar assumption has been made by
MNN4.

To illustrate that DESC gradually removes batch effect over
iterations, we generated t-SNE plots using the representation
obtained from the bottleneck layer in DESC every two epochs for
the combined pancreatic islet data. As shown in Fig. 4d, e, in the
initial clustering step (before iteration starts), there is significant
batch effect according to the t-SNE plot. However, during the
training of the network, DESC removes batch effect gradually
over iterations. Finally, after the algorithm converges, DESC
returns desired result with batch effect removed in the clustering.

Application to PBMC data with external stimulus. To
demonstrate that DESC preserves true biological variations, we
considered an even more complex situation in which technical
batches were completely confounded with biological conditions.
This is inevitable in disease studies involving human tissues
where samples need to be processed immediately to maintain cell
viability, resulting in the preparation of normal and diseased
samples in different batches. For data generated in such complex
settings, it is desirable to remove technical batch effect while
maintaining true biological variations so that disease specific
subpopulations can be identified. We analyzed a dataset that
includes 24,679 human PBMCs from eight patients with lupus18

(Supplementary Note 4). The cells were split into a control group

and a matched group stimulated with interferon-beta (INF-β),
which leads to a drastic but highly cell-type-specific response.
This dataset is extremely challenging because removal of technical
batch effect is complicated by the presence of biological differ-
ences, both between cell types under the same condition and
between different conditions for the same cell type.

Since batch completely confounds with biological condition, to
reduce the risk of removing true biological variations, we
analyzed the data without using batch information in DESC.
Figure 5a, b shows that DESC randomly mixed cells between
the control and the stimulus conditions for all cell types except
CD14+ monocytes. Results are similar when gene expression
standardization is performed within batch (Supplementary
Fig. 8a). Differential expression (DE) analysis revealed a marked
change in gene expression after INF-β stimulation for CD14+

monocytes (Fig. 5c). The number of differentially expressed genes
and the magnitude of DE, as measured by p value and fold
change, are several orders more pronounced than the other
cell types. This is consistent with previous studies showing that
CD14+ monocytes have a greater change in gene expression than
B cells, dendritic cells, and T cells after INF-β stimulation19,20.
These results suggest that DESC is able to remove technical batch
effect and maintain true biological variations induced by INF-β
(Supplementary Figs. 9–13). Figure 5d shows the KL divergences
calculated using all cells and using non-CD14+ monocytes only.
The KL divergence here was used to measure the degree of batch
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effect removal (see “Methods” for evaluation metric for batch
effect removal). The decreased KL divergence of DESC when
CD14+ monocytes were eliminated indicates that technical batch
effect was effectively removed in the absence of CD14+

monocytes. The KL divergences of all other methods are larger
than DESC when CD14+ monocytes were eliminated, indicating
that they might be less effective in removing technical batch effect
than DESC.

DESC embedding preserves pseudotemporal structure. DESC
was designed to identify discrete cell clusters, but we also eval-
uated its performance for cells that originate from a genuinely
continuous process. We analyzed a scRNA-seq dataset generated
from mouse bone marrow myeloid progenitor cells21. Since this
dataset does not have batch effect, we compared DESC with scVI
only, which is also deep learning based. As shown in Fig. 6b, c, e,
clustering result from DESC clearly reflects the pseudotemporal
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structure of the cells. DESC also identified discrete clusters in
which fully differentiated cells such as dendritic cells, lympho-
cytes, and megakaryocytes (Mk) are well separated from cells that
are still under differentiation. Interestingly, in the maximum
probability plot (Fig. 6a), cells that are differentiating have rela-
tively lower probabilities than those that are fully differentiated,
suggesting that the maximum probabilities are biologically
interpretable. These results indicate that DESC is able to retain
both discrete and pseudotemporal structure of the cells, making it
applicable to a wider range of data. In contrast, clustering result
from scVI is more diffused, and Mk cells are mixed with gran-
ulocyte/macrophage progenitors (GMP), although Mk cells have
distinct transcriptional profiles from GMPs21 (Fig. 6b, d, f).

DESC embedding removes batch effect for monocytes. We
further evaluated whether DESC is able to remove batch effect for
cells that originate from a continuous process. We analyzed a
scRNA-seq dataset generated from monocytes derived from
human peripheral blood mononuclear cells by Ficoll separation
followed by CD14- and CD16-positive cell selection. This dataset
includes 10,878 monocytes collected from a single healthy subject.
The cells were processed in three batches from blood drawn on
three different days, sequentially 77 and 33 days apart. Although
based on surface markers, monocytes can be classified as classical
(CD14++/CD16−), intermediate (CD14++/CD16+), and non-
classical patrolling (CD14−/CD16++) subpopulations, clustering
analysis based on scRNA-seq data indicates that these cells show
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continuous characteristics, making it difficult to identify discrete
cell clusters.

Therefore, we used the low-dimensional representation obtained
from DESC as input for Monocle322, to reconstruct the trajectory
in this dataset. Figure 7a shows that this hybrid approach reveals a
clear transitioning path across cells, and the estimated pseudotime
for the three batches has similar distribution, indicating that batch
effect is successfully removed (Supplementary Table 5). This is
further confirmed by the small KL divergence that quantifies the
degree of batch effect removal across the three batches (Fig. 7i).
Compared with DESC, the other methods are less effective in
removing batch effect in this setting (Fig. 7b–g, i and Supplemen-
tary Table 5), which can obscure true biological signals. For
example, when using the CCA components from Seurat 3.0 as
input for Monocle3, the cells were less randomly mixed, the
reconstructed trajectories are more diffused, and the pseudotime
distributions are noticeably different across batches (Fig. 7b).
BERMUDA and scanorama produced the least similar pseudotime
distributions across batches, which agrees with their relative
performance for other datasets we evaluated (Fig. 7f, g).

To examine if the estimated pseudotime obtained from DESC
representation is biologically interpretable, we examined expres-
sion patterns for known marker genes over the estimated
pseudotime. Figure 8a shows that S100A8, a known marker gene
for classical monocytes, has increased expression for cells as the
estimated pseudotime from DESC increases, indicating that the
cells are gradually changing from nonclassical to intermediate,
and then to classical monocytes. Moreover, the estimated gene
expression curves are similar across the three batches. In contrast,
when using uncorrected raw gene expression data as input for
Monocle3, the three batches show drastically different expression
patterns over the estimated pseudotime, suggesting that failure to
remove batch effect can lead to misinterpretation of the data
(Fig. 8h). The other methods we evaluated also showed consistent
gene expression patterns over pseudotime across the three
batches, but with unexpected shapes (Fig. 8b–g). For example,
for MNN, S100A8 has high expression when pseudotime is near
0.75 (Fig. 8d), however, as a marker gene for classical monocytes,
its expression is expected to gradually increase when the cells are
moving away from nonclassical to intermediate, and then to
classical monocytes.

These analyses have important implications for studies that
involve time-course data for samples with continuous processes
in which samples at different time points are generated in
separate batches. Removal of batch effect is critical for
distinguishing biological and technical batch difference because
failure to remove batch effect can lead to complete separation of
pseudotime distributions across time points.

Comparison of running time and memory usage. To verify
DESC is scalable for large dataset, we analyzed a 1.3 million
mouse brain cell dataset generated by 10X Genomics. With the
aid of NVIDIA TITAN Xp GPU, DESC finished the analysis in
about 3.5 h using less than 10 GB memory (Supplementary
Figs. 16 and 17 and Supplementary Note 7).

To evaluate how running time and memory usage change as
the number of cells and number of batches vary, we randomly
selected different number of cells from datasets with two batches,
four batches, and 30 batches, respectively. For the two batch
scenario, we used the data from Kang et al.18 with CTRL and
STIM defined as two different batches, and we randomly selected
1000, 2000, 5000, 8000, 10,000, and 20,000 cells from the original
24,679 cells, to evaluate the impact of the number of cells. For the
four-batch and 30-batch scenarios, we used the data from Peng
et al.10 in which there are four batches if macaque id was taken as

batch definition, and 30 batches if sample id was taken as batch
definition. For both scenarios, we randomly selected 1000, 2000,
5000, 8000, 10,000, 20,000, and 30,000 cells from the original
30,302 cells, to evaluate the impact of the number of cells.

Our results indicate that the running times of CCA, Seurat 3.0,
and MNN increase exponentially as the number of cells and the
number of batches increase (Fig. 9). Moreover, Seurat 3.0 and
BERMUDA threw out an error when the number of cells within a
batch is small and stopped to run (Fig. 9g, h, i). In contrast, the
memory usage and running time of DESC are not affected by the
number of batches, and increase linearly as the number of cells
increases. It is also worth noting that scVI and BERMUDA’s
computing time increases substantially when the number of
batches increases from two to 30 even when the number of cells
remains the same. More specifically, when 30 samples were
considered as batch definition in the macaque retina dataset (i.e.,
30 batches), the computing time for analysis of 30,000 cells is
about 0.3 h for DESC, 9.5 h for MNN, 10.4 h for scVI, 11.2 h for
BERMUDA, and 0.4 h for scanorama, respectively. Furthermore,
BERMUDA requires more than 32 GB memory even for a dataset
that only has 30,000 cells when the number of batches is 30.
Methods such as CCA and Seurat 3.0 broke due to memory issue
and failed to produce results when the number of batches is 30.
These computing constraints will limit the practical utility of
these methods in large-scale single-cell studies, especially for
studies with many batches.

All data analyses reported in this section were conducted on
Ubuntu 18.04.1 LTS with Intel® Core (TM) i7-8700K CPU @
3.70 GHz and 64 GB memory, except for the 1.3 million cells
mouse brain data. For the 1.3 million cells mouse brain dataset,
we analyzed it on Ubuntu 16.04.4 LTS with Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10 GHz and total 128 GB memory.

Discussion
In summary, we have presented a deep learning based algorithm
that clusters scRNA-seq data by iteratively optimizing a clustering
objective function with a self-training target distribution. Through
iterative learning, DESC removes complex batch effect and main-
tains true biological variations. As a soft clustering based algorithm,
the cluster assignment probabilities from DESC are biologically
interpretable and can reveal both discrete and pseudotemporal
structure of cells. We have performed comprehensive evaluations
and compared with many state-of-the-art methods for scRNA-seq
analysis. Figure 10 shows a summary of the performance of each
evaluated method. Overall, DESC achieved high clustering accu-
racy across all datasets and showed stable results under a wide
range of scenarios.

ScRNA-seq has emerged as a revolutionary tool in biomedical
research. In the last few years, studies employing scRNA-seq
technique have grown exponentially. Despite its promises, many
computational challenges must be overcome before we can fully
reap the benefit of scRNA-seq. A critical first step in many
scRNA-seq studies is to cluster cells into biologically meaningful
entities. Effective removal of technical batch effect is important to
ensure the validity and interpretability of clustering results.
Through comprehensive evaluations with many datasets, we have
shown that DESC offers a proper balance of clustering stability
and accuracy, small footprint on memory usage, does not expli-
citly require batch definition for batch effect removal, and can
speed up computation by utilizing GPU when available. As the
scale of single-cell studies continues to grow, we believe that
DESC will be a valuable tool for biomedical researchers to better
disentangle complex cellular heterogeneity, and will facilitate
the translation of basic research findings into clinical studies of
human disease.
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Methods
The DESC algorithm. Analysis of scRNA-seq data often involves clustering of cells
into different clusters and selection of highly variable genes for cell clustering. As
these are closely related, it is desirable to use a data driven approach to cluster cells
and select genes simultaneously. This problem shares similarity with pattern

recognition, in which clear gains have resulted from joint consideration of the
classification and feature selection problems by deep learning. However, for
scRNA-seq data, a challenge is that we cannot train deep neural network with
labeled data as cell-type labels are typically unknown. To solve this problem, we
take inspiration from recent work on unsupervised deep embedding for clustering
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analysis23, in which we iteratively refine clusters with an auxiliary target dis-
tribution derived from the current soft cluster assignment. This self-learning
process gradually improves clustering as well as feature representation. As shown
by our comprehensive evaluations across a wide range of datasets, this procedure
also gradually removes batch effect over iterations.

Overview of DESC: The DESC procedure starts with parameter initialization, in
which a stacked autoencoder is used for pretraining and learning low-dimensional
representation of the input gene expression matrix. The corresponding encoder is
then added to the iterative clustering neural network. The cluster centers are
initialized by the Louvain’s clustering algorithm6, which aims to optimize
modularity for community detection. This clustering returns data in a feature space
that allows us to obtain centroids in the initial stage of the iterative clustering.
Below, we describe each component of the DESC procedure in detail.

Parameter initialization by stacked autoencoder: Let X 2 Rn ´ pbe the gene
expression matrix obtained from a scRNA-seq experiment, in which rows
correspond to cells and columns correspond to genes. Due to sparsity and high
dimensionality of scRNA-seq data, to perform clustering, it is necessary to
transform the data from high dimensional space Rpto a lower dimensional space Rd

in which d � p. Traditional dimension-reduction techniques, such as principal
component analysis, operate on a shallow linear embedded space, and thus have
limited ability to represent the data. To better represent the data, we perform

feature transformation by a stacked autoencoder, which have been shown to
produce well-separated representations on real datasets.

The stacked autoencoder network is initialized layer by layer with each layer
being an autoencoder trained to reconstruct the previous layer’s output. After
layer-wise training, all encoder layers are concatenated, followed by all decoder
layers, in reverse layer-wise training order. The resulting autoencoder is then fine-
tuned to minimize reconstruction loss. The final result is a multilayer autoencoder
with a bottleneck layer in the middle. After fine tuning, the decoder layers are
discarded, and the encoder layers are used as the initial mapping between the
original data space and the dimension-reduced feature space, as shown in Fig. 1a.

Since the number of true clusters for a scRNA-seq dataset is typically unknown,
we apply the Louvain’s method, a graph-based method that has been shown to
excel over other clustering methods, on the feature space Z obtained from the
bottleneck layer. This analysis returns the number of clusters, denoted by K, and
the corresponding cluster centroids fμj : j ¼ 1; ¼ ;Kg, which will be used as the
initial clustering for DESC.

Iterative clustering: After cluster initialization, we improve the clustering using
an unsupervised algorithm that alternates between two steps until convergence. In
the first step, we compute a soft assignment of each cell between the embedded
points and the cluster centroids. Following van der Maaten and Hinton24, we use
the Student’s t distribution as a kernel to measure the similarity between embedded
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point zi for cell i and centroid μj for cluster j

qij ¼
1þ kzi � μjk2 =α
� ��1

P
j0 1þ kzi � μj0k2 =α
� ��1 ; ð1Þ

where zi ¼ fW xið Þ 2 Z corresponds to xi 2 X after embedding, and α is the degree
of freedom of the Student’s t distribution. We also evaluated the performance of
Gaussian distribution as a kernel, but found it to be less robust than the t
distribution (Supplementary Note 3).

In the second step, we refine the clusters by learning from cells with high
confidence cluster assignments with the help of an auxiliary target distribution.
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when batch= 30), the algorithm converged quickly before reaching to the maximum number of epochs (300). The “Error” in the bar plot in g and i
indicates that there was an error when using Seurat 3.0. This is because the numbers of cells in some batches are very small. The “asterisk” above the bar
plot in d, f, g, and i indicates that the corresponding method broke due to memory issue (i.e., cannot allocate memory). Therefore, the recorded time is the
computing time until the method broke. When the number of batches is 30, BERMUDA always throws out an error when the number of cells is less than
8000, so we only report BERMUDA when the number of cells≥ 10,000. In addition, the reported running time and memory usage only include clustering
procedure and not include the procedure of computing t-SNE or UAMP. All reported time and memory usage related to this figure were analyzed on our
workstation Ubuntu 18.04.1 LTS with Intel® Core(TM) i7-8700K CPU @ 3.70 GHz and 64 GB memory.

Method Clustering
stability
and
accuracy

Pairwise
analysis

Require
batch
information

Memory usage
with increasing
number of cells

Whether
utilize
GPU

Programming
language

DESC No No Yes python

scVI No Yes Yes python

scanorama Yes No python

MNN Yes Yes No python

BERMUDA No Yes Yes R+python

Seurat3.0 Yes Yes No R

CCA Yes Yes No R

Yes

10G
B

20G
B

30G
B

40G
B

52
.0

05
.0

57
.0

0
0.

1
I

R
A

Fig. 10 Comparison with different methods for batch effect removal. The second column was computed based on results shown in Fig. 1e, and the error
bar is the standard error of ARI when using different information as batch in analysis. The fifth column was computed based on results shown in Fig. 9a. For
each method, memory usage was shown for 1000, 2000, 5000, 8000, 10,000, and 20,000 cells, respectively.
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Specifically, we define the objective function as a KL divergence loss between the
soft cell assignments qi and the auxiliary distribution pi for cell i as

L ¼ KL P k Qð Þ ¼
Xn
i¼1

XK
j¼1

pijlog
pij
qij

; ð2Þ

where the auxiliary distribution P is defined as

pij ¼
q2ij=

Pn
i¼1 qijPK

j¼1 q2ij=
Pn

i¼1 qij
� � : ð3Þ

The encoder is fine-tuned by minimizing L in Eq. (2) iteratively. The
above definition of the auxiliary distribution P can improve cluster purity by
putting more emphasis on cells assigned with high confidence. Given that the
target distribution P is defined by Q, minimizing L implies a form of self-
training. Also, pij gives the probability of cell i that belongs to cluster j, and this
probability can be used to measure the confidence of cluster assignment for each
cell. Because α is insensitive to the clustering result, we let α ¼ 1 for all datasets
by default.

Optimization of the KL divergence loss: We jointly optimize the cluster centers
fμj : j ¼ 1; ¼ ;Kg and the deep neural network parameters using stochastic
gradient descent. The gradients of L with respect to feature space embedding of
each data point zi and each cluster center μj are

∂L
∂zi

¼ αþ 1
α

XK
j¼1

1þ zi � μ2j
α

 !�1

´ ðpij � qijÞðzi � μjÞ; ð4Þ

∂L
∂μj

¼ � αþ 1ð Þ
α

Xn
i¼1

1þ zi � μ2j
α

 !�1

´ ðpij � qijÞðzi � μjÞ: ð5Þ

These gradients are then passed down to the deep neural network and used in
standard backpropagation to compute the deep neural network’s parameter
gradient. We use Keras to train our model. During each iteration, i.e., when loss is
not decreasing or the epoch number threshold is reached, we update the auxiliary
distribution P, and optimize cluster centers and encoder parameters with the new
P. This iterative procedure stops when the proportion of cells that changes cluster
assignment between two consecutive steps is less than tol. Specifically, tol is

calculated as tol ¼ # Ycurr≠Yprevj j
n , where Ycurr is the cluster id obtained by the

maximum cluster assignment probability in the current step, Yprev is the
corresponding cluster id in the previous step, n is the total number of cells, and

# Ycurr≠Yprev

��� ��� is the number of cells in which Ycurr does not agree with Yprev . We

let tol= 0.005 by default.
Architecture of the deep neural network in DESC: Depending on the number of

cells in the dataset, we suggest different numbers of hidden layers and different
numbers of nodes in the encoder. Supplementary Table 2 gives the default numbers
of hidden layers and nodes in DESC.

DESC allows users to specify their own numbers of hidden layers and nodes.
We recommend using more hidden layers and more nodes per layer for datasets
with more cells so that the complexity of the data can be captured by the deep
neural network. We use ReLU as the activation function except for the
bottleneck layer and last decoder layer, in which tanh is used as the activation
function. The reason why we use tanh is that we must guarantee the values in
feature representation and output of decoder range from negative to positive.
The default hyperparameters for the autoencoder are listed in Supplementary
Table 3.

Data normalization and gene selection. The normalization involves two steps.
In the first step, cell level normalization is performed, in which the UMI count
for each gene in each cell is divided by the total number of UMIs in the cell,
multiplied by 10,000, and then transformed to a natural log scale. In the second
step, gene level normalization is performed in which the cell level normalized
values for each gene are standardized by subtracting the mean across all cells and
divided by the standard deviation across all cells for the given gene. When batch
information is provided, gene expression standardization is performed across
cells in each batch separately. Highly variable genes are selected using the fil-
ter_genes_dispersion function from the Scanpy package25 (https://github.com/
theislab/scanpy).

Evaluation metric for clustering. For published datasets in which the reference
cell-type labels are known, we use ARI to compare the performance of different
clustering algorithms. Larger values of ARI indicate higher accuracy in clustering.
The ARI can be used to calculate similarity between the clustering labels obtained
from a clustering algorithm and the reference cluster labels. Given a set of n cells
and two sets of clustering labels of these cells, the overlap between the two sets of
clustering labels can be summarized in a contingency table, in which each entry
denotes the number of cells in common between the two sets of clustering labels.

Specifically, the ARI is calculated as

ARI ¼
P

jj0
njj0

2

� �
� P

j

aj
2

� �P
j0

bj0

2

� �� �	
njj0

2

� �

1
2

P
j

aj
2

� �
þPj0

bj0

2

� �� �
� P

j

aj
2

� �P
j0

bj0

2

� �� �	
njj0

2

� � ; ð6Þ

where njj0 is the number of cells assigned to cluster j based on the reference cluster
labels, and cluster j0 based on clustering labels obtained from a clustering algo-
rithm, aj is the number of cells assigned to cluster j in the reference set, and bj0 is
the number of cells assigned to cluster j0 by the clustering algorithm.

Evaluation metric for batch effect removal. We use KL divergence to evaluate the
performance of various single-cell clustering algorithms for batch effect removal, i.e.,
how randomly are cells from different batches mixed together within each cluster. The
KL divergence of batch mixing for B different batches is calculated as

KL ¼
XB
b¼1

pblog
pb
qb

; ð7Þ

where qb is the proportion of cells from batch b among all cells, and pb is the
proportion of cells from batch b in a given region based on results from a clustering

algorithm, with
PB
b¼1

qb ¼ 1 and
PB
b¼1

pb ¼ 1. We calculate the KL divergence of batch

mixing by using regional mixing KL divergence defined above using 100 randomly
chosen cells from all batches. The regional proportion of cells from each batch is
calculated based on the set of K nearest neighboring cells from each randomly chosen
cell (K can be set differently according the number of batches, we suggest K= 5 × the
number of batches). The final KL divergence is then calculated as the average of the
regional KL divergence. We repeated this procedure for 200 iterations with different
randomly chosen cells to generate box plots of the final KL divergence. Smaller final
KL divergence indicates better batch mixing, i.e., more effective in batch effect
removal.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We analyzed multiple scRNA-seq datasets. The published datasets used in this
manuscript are available through the following websites or accession numbers: (1)
bipolar cells from macaque retina (GSE118480); (2) human pancreatic islet data: CelSeq
(GSE81076), CelSeq2 (GSE85241), Fluidigm C1 (GSE86469), and SMART-Seq2 (E-
MTAB-5061); (3) mouse hematopoietic stem cells with bone marrow (GSE727857), or
can be downloaded using command scanpy.datasets.paul15() in python module scanpy;
(4) human PBMC data (GSE96583); and (5) mouse brain data by 10X Genomics can be
downloaded from https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.3.0/1M_neurons. The human monocyte data generated by us can be
downloaded from GEO (GSE146974).

Macaque retina dataset. The data were generated by Peng et al.10 in which 165,679
cells were generated using Drop-seq, including 42,020 retinal ganglion cells, 36,268
nonneuronal cells, 30,302 bipolar cells, 30,236 amacrine cells, 24,707 photoreceptors, and
2146 horizontal cells, but here we only focus on the 30,302 bipolar cells. This
dataset allows us to examine batch effect at the different level (sample, animal, and
region).

Human pancreatic islet datasets. We chose human pancreatic islet scRNA-seq datasets
generated using different scRNA-seq protocols, including CelSeq (GSE81076, 1004 cells)16,
CelSeq2 (GSE85241, 2285 cells)17, Fluidigm C1 (GSE86469, 638 cells)14, and SMART-Seq2
(E-MTAB-5061, 2394 cells)15 and the total number of cells in the combined dataset is 6321.

Human PBMC dataset. The data were generated by Kang et al.18 in which 24,679
PBMC cells were obtained and processed from eight patients with lupus using 10X. These
cells were split into two groups: one stimulated with INF-β and a culture-matched
control. This dataset allows us to examine whether technical batch effect can be removed
in the presence of true biological variations.

Mouse bone marrow myeloid progenitor cell dataset. This dataset was generated by
Paul et al.21, which includes 2730 cells from multiple progenitor subgroups showing
unexpected transcriptional priming towards seven differentiation fates. This
dataset allows us to examine whether DESC can reveal pseudotemporal structure of
the cells.

Human monocyte dataset. The data were generated by our group in which 10,878
monocytes derived from blood were obtained from one healthy human subject. The cells
were processed in three batches from blood drawn on three different days, sequentially
77 and 33 days apart. Briefly, monocytes were isolated from freshly collected human
peripheral blood mononuclear cells by Ficoll separation followed by CD14- and CD16-
positive cell selection. This dataset allows us to examine whether DESC is able to remove
batch effect while retaining pseudotemporal structure of the cells.

1.3 million brain cells from E18 mice. This dataset was downloaded from the 10X
Genomics website. It includes 1,306,127 cells from cortex, hippocampus, and
subventricular zone of two E18 C57BL/6 mice.
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A complete list of the datasets analyzed in this paper is provided in Supplementary
Table 1.

Code availability
An open-source implementation of the DESC algorithm and code to reproduce the
results can be downloaded from https://eleozzr.github.io/desc/.
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