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Abstract
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared 
to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced 
during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-
phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the 
wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic 
stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, 
respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. 
During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf 
acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize 
NH4

+ as the nitrogen (N) source without NH4
+-dependent respiratory increase, leading to efficient respiratory O2 consumption 

in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3
− from the soil where nitrification 

occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2
−-

driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or 
anoxia tolerance in the wetland plants.

Keywords  Anoxia · Hypoxia · Low O2 escape and low O2 quiescence strategies (LOES and LOQS) · Nitrogen acquisition 
strategy · Re-oxidative stress · Respiration · Wetland plants

Introduction

O2 deficiency in roots is often caused by frequent flooding 
during rains, submergence by excess rainfall, soil compac-
tion, and increased microorganism activity caused by the 
rise in temperature. Prolonged submergence of the roots in 

water can even lead to O2 deficiency in shoots. These factors 
negatively affect the growth and survival of the whole plant, 
both in natural and agricultural ecosystems. The degree of 
O2 deficiency in plant cells is classified as either hypoxia or 
anoxia. Hypoxia is characterized by restriction of aerobic 
metabolism, in which ATP production via the mitochondrial 
oxidative phosphorylation and NAD+ regeneration via the 
mitochondrial electron transport chain (mETC) are partially 
restricted. Anoxia is characterized by anaerobic metabolism, 
in which ATP is supplied solely via glycolysis, mitochon-
drial oxidative phosphorylation is completely inhibited, and 
the cellular ATP content is extremely low (Bailey-Serres 
and Voesenek 2008). Under these stress conditions, plants 
suffer from impairments that are caused by cell acidification 
and accumulation of reducing equivalents that lead to the 
production of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) (Hebelstrup and Møller 2015; Tur-
kan 2018). Large amounts of ROS and RNS are produced 
under re-oxygenated conditions following the post-hypoxic 
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and anoxic stresses, and they can further potentially damage 
the organelles. Thus, aerobic metabolism is suppressed dur-
ing the recovery phase from O2 deficiency owing to an inhi-
bition of the metabolic functions (Bailey-Serres and Chang 
2005; Fukao et al. 2011; Santosa et al. 2007).

Most terrestrial plants such as Arabidopsis, barley and 
maize, cannot survive long-term O2 deficiency and severe 
anaerobic conditions even though they can survive under 
short-term stress with their hypoxia and anoxia toler-
ant responses. Arabidopsis under hypoxic conditions can 
regenerate NAD+ via mETC and fermentation (Bucher et al. 
1994; Dolferus et al. 2008; Ismond et al. 2003; Lasanthi-
Kudahettige et al. 2007; Narsai and Whelan 2013), but gly-
colysis cannot continuously function under anoxic condi-
tions (Lasanthi-Kudahettige et al. 2007; Loreti et al. 2005). 
The responses to O2 deficiency in barley and maize have 
been examined to maintain their high yields at O2 deficiency 
(Tollenaar and Lee 2002). They can oxidize NAD(P)H to 
NAD(P)+ via glycolysis and fermentation to avoid accu-
mulation of reducing equivalents when they are exposed to 
hypoxia by flooding (Guglielminetti et al 1995, 1999). They 
can metabolize RNS such as NO to maintain redox states and 
energy levels in the cytosol and mitochondria under hypoxia 
conditions (Igamberdiev and Hill 2004; Igamberdiev et al. 
2006; Sowa et al. 1998). Maize can also form aerenchyma to 
aerate O2-deficient cells under hypoxic conditions similar to 
wetland plants (Armstrong and Armstrong 1994; Drew et al. 
2000; Evans 2004; Hu et al. 2013). However, these plants 
cannot tolerate severe anoxia conditions that are caused by 
prolonged flooding and the following re-oxygenated condi-
tion after O2 deficiency.

In contrast, wetland plants such as rice can tolerate severe 
anoxia and the following re-oxygenation conditions due to 
repeated flooding. This is because they possess high toler-
ant mechanisms such as advanced regulation of glycolysis 
in the cytosol, detoxification of ROS and RNS in the mito-
chondria, and maintenance of ATP production linked to 
NO detoxification in the mitochondria (Fukao et al. 2011; 
Huang et al. 2008; Voesenek and Bailey-Serres 2015). They 
can also acclimate to severely flooded soils through the O2 
supply from the aerial organ to O2-deficient organ. Their 
strategy is called low O2 escape strategies (LOES). Plants 
with the LOES phenotypes can change their shoots and 
roots in response to O2 deficiency such as shoot elongation, 
formation of aerenchyma, barriers to radial O2 loss (ROL) 
from the roots, formation of adventitious roots (ARs), and 
maintenance of gas films on leaf surface (Colmer 2003; 
Eysholdt-Derzsó and Sauter 2019; Sorrell and Hawes 2009; 
Winkel et al. 2013; Winkel et al. 2014). Some wetland plants 
show another strategy, low O2 quiescence strategy (LOQS). 
Plants with the LOQS phenotypes can survive under sever 
O2-deficient conditions where their aerial parts are com-
pletely submerged by flooding. They can cease growth and 

save their carbohydrate reserves until normal growth con-
dition is recovered (Fukao and Bailey-Serres 2008; Fukao 
et al. 2006). These cellular and tissue level responses to O2 
deficiency in wetland plants permit their growth and survival 
under severe anoxic conditions.

Plant roots that are the sites of active nutrient absorption 
are often exposed to frequent and large fluctuations of O2 
concentration for short and long periods compared to the 
other organs. Wetland plants maintain their root activity by 
the aeration from the aerial organs to roots through the aer-
enchyma, and the available O2 in their roots depends on their 
abilities of LOES which are enhanced under O2-deficient 
conditions. Many wetland species specialize in NH4

+ utiliza-
tion in habitats with a predominance of NH4

+. However, the 
wetland plants with the ability to supply O2 from shoots to 
roots can utilize NO3

− in addition to NH4
+, because of nitrifi-

cation in their rhizosphere by active ROL from their root tips 
(Brix et al. 2002; Kirk and Kronzucker 2005). Moreover, it 
was recently reported that the root O2 consumption strategies 
related to nitrogen (N) acquisition differ among species with 
differences in their ability to O2 supply to the roots. The dif-
ferences in strategies are associated with the differences in 
the O2 demand by the aerobic respiration for root growth and 
N acquisition (Nakamura and Nakamura 2016; Nakamura 
et al. 2013). The N acquisition traits linked to the O2 supply 
ability could relate to the hypoxia and anoxia tolerance in 
wild wetland species.

In this review, we summarize the previous findings on 
regulatory mechanisms of glycolysis, mitochondrial res-
piratory systems, primary metabolism in maintaining the 
energy production and homeostasis under O2-deficient and 
re-oxidative stress conditions, and developmental plasticity 
underlying acclimation to hypoxic and anoxic conditions 
in terrestrial, wild wetland, and cultivated species. Particu-
larly, we aim to show different molecular level responses and 
different cellular and whole-plant level strategies between 
wetland species with long-term tolerance to O2-deficient 
conditions and terrestrial species with only short-term tol-
erance to the same conditions. Moreover, we summarize the 
effects of N sources (NH4

+ and NO3
−) on the root respiratory 

systems of wetland species, and thereafter, we discuss the 
characteristics of aerobic and anaerobic root respiration in 
wetland species associated with the utilization strategies of 
available inorganic N in their rhizosphere for maintaining 
energy production.

Regulatory mechanisms of fermentation 
and glycolysis under oxygen‑deficient conditions

Under O2-deficient conditions, ATP production in most 
plants rapidly declines because the electron transfer in the 
mETC and flux in the tricarboxylic acid (TCA) cycle slow 
down and the transcripts encoding many of their enzymes 
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are down-regulated (Narsai et al. 2011). Even under low O2 
conditions, large amounts of energy are required for main-
taining the various cellular components, including proteins, 
for survival (Mustroph and Albrecht 2003). Plants that are 
tolerate to O2 deficiency have a high ATP production ability 
which is achieved by the enhancement of fermentation and 
glycolysis. They can regenerate NAD(P)+ from NAD(P)H 
accumulated by slow electron transport to maintain normal 
redox level under O2-deficient conditions. In the first part of 
this section, we show mechanisms of ATP production and 
NAD(P)+ regeneration through the fermentation and glyco-
lysis. In the latter part of this section, we show the regula-
tions of glycolysis and cytosolic pH by the utilization of 
pyrophosphate (PPi) which can act as a donor of phosphate 
for various metabolisms similarly to ATP (Shingaki-Wells 
et al. 2011).

Management of energy crisis through fermentation

Ethanol and lactate fermentation are two major metabolic 
pathways that produce energy under O2-deficient condi-
tions. Pyruvate derived from glycolysis is converted to eth-
anol through the coupled reactions catalyzed by pyruvate 
decarboxylase (PDC) and alcohol dehydrogenase (ADH) in 
the ethanol fermentation pathway, and to lactate by lactate 
dehydrogenase (LDH) in the lactate fermentation pathway 
with the concomitant oxidation of NADH to NAD+ (Fig. 1). 
As the glycolytic flux to the ethanol fermentation pathway 
is higher than that to the lactate fermentation pathway in 
several plants, ethanol fermentation is considered to strongly 
contribute to low O2 tolerance compared to lactate fermen-
tation (Licausi and Perata 2009). A shift from pyruvate 
metabolism via the TCA cycle to the ethanol fermentation 
pathway is attributed to the Km of PDC, which is similar to 
that of the accumulated pyruvate level under O2-deficient 
conditions (Pronk et al. 1996). In rice plants, this shift is also 
associated with the inactivation of pyruvate dehydrogenase 
(PDH) by an up-regulation of PDH kinase (Marillia et al. 
2003) and decreased translation of PDH mRNA (Branco-
Price et al. 2008).

The ethanol fermentation pathway is controlled by the 
activity level and gene expression of PDC because the maxi-
mum catalytic activity of PDC is low (Drew 1997; Ismond 
et al. 2003; Mithran et al. 2014; Morrell et al. 1990). PDC-
overexpressed terrestrial plants such as Arabidopsis and 
tobacco were reported to exhibit much higher ethanol con-
centration in their leaves compared with the wild types, and 
their survival rates under low O2 conditions were enhanced 
(Bucher et al. 1994; Ismond et al. 2003).

In Arabidopsis plants, during O2 deficiency, PDC1 and 
PDC2 are up-regulated in roots and leaves, respectively 
(Mithran et al. 2014). In rice plants, PDC is induced at both 
the transcript and protein levels during O2 deficiency (Narsai 

and Whelan 2013). Experiments examining the effects of 
PDC level on the submergence tolerance of rice had revealed 
that the correlation between PDC activity or expression and 
submerge tolerance was stronger in shoots that show high 
growth than those in roots and endosperms that show low 
growth at O2 deficiency (Rahman et al. 2001). Moreover, 
rice varieties with high shoot elongation under anaerobic 
conditions showed active ethanol fermentation due to the 
high activity and gene expression of PDC in shoots, where 
the ethanol production was more active than that in roots 
under dark anaerobic conditions (Mustroph et al. 2006a, b). 
In contrast, there were no differences in root PDC activities 
between the varieties, and only a slight increase in activity 
was observed in submerged tolerant species under severe O2 
deficiency at night (Mohanty and Ong 2003; Rahman et al. 
2001). These results suggest that the distribution range of 
wild wetland species is characterized by the fermentation 
abilities of the species due to the PDC activities in their 
shoots rather than those in their roots, and that the fermenta-
tion abilities in roots to survive in hypoxic soils are similar 
among species.

The activation of ADH does not lead to the acceleration 
of ethanol production in maize (Roberts et al. 1989). As 
with terrestrial species, in some rice cultivars, although 
the expressions of ADH genes (ADH1 and ADH2) are not 
considered to be major determinants of the seedling vigor 
during hypoxic stress caused by submergence, these gene 
expressions respond to low O2 stress (Vu et al. 2009). These 
reports suggest that ADH activity is not crucial in ethanol 
fermentation for energy compensation for anoxia tolerance. 
However, increased activity of ADH may be crucial in utiliz-
ing ethanol as a carbon (C) source under conditions where 
the plant experiences different stress at the same time or 
during re-oxygenation after flooding (Gibbs and Greenway 
2003; Tsuji et al. 2003). Moreover, ADH has an essential 
role in germination and subsequent survival of the seedling 
at O2 deficiency (Rahman et al. 2001).

Lactate fermentation also plays a crucial role in plant 
survival under anoxic conditions through the activity of 
LDH that reversibly catalyzes pyruvate and lactate (Fig. 1). 
Under O2-deficient conditions, pyruvate is converted to 
lactate via LDH, and under re-oxygenated conditions after 
flooding, the accumulated lactate quickly disappears and the 
glycolytic flux is regulated by the regeneration of pyruvate 
from lactate (Germain et al. 1997a). Additionally, as lactate 
can induce cytosolic acidification and the cytosolic pH is 
adjusted to an optimal value for the PDC activity, lactate 
accumulation induces metabolic change from lactate fer-
mentation to ethanol fermentation (Davies 1980). Dolferus 
et al. (2008) have also reported that increased LDH activ-
ity induces ethanol fermentation in Arabidopsis. Excessive 
accumulation of lactate causes cell death by a sharp decline 
of the cell pH. Thus, many plants possess lactate efflux 
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mechanism from their cytoplasm. In Arabidopsis, a high 
cytosolic accumulation of lactate is prevented by lactate 
excretion via a hypoxia-induced nodulin intrinsic protein 
NIP2;1 (Choi and Roberts 2007). A similar function was 
reported in some pleiotropic drug resistance (PDR) type 
ATP-binding cassette (ABC) transporters, whose expres-
sion in rice is regulated by lactate and other weak acids 
(Moons 2008).

Regulation of glycolytic flux via carbohydrate mobilization, 
sucrose catabolism, and amino acid metabolism 
under anaerobic conditions

Under anaerobic conditions, glycolysis operates for ATP 
production through the stable supply of carbohydrate by 
starch mobilization and sucrose degradation. Moreover, 
metabolisms of some amino acids such as glutamate, 
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alanine and γ-aminobutyric acid (GABA) lead to the main-
tenance of glycolysis operation through the NAD(P)+ 
regeneration and the stable preservation of carbohydrates 
under anaerobic conditions. Under post-anoxic conditions, 
metabolisms of GABA and alanine contribute to the avoid-
ance from ROS accumulation and the recovery of aerobic 
metabolism during re-oxygenation, respectively. Terrestrial 
and wetland plants show different responses in starch mobi-
lization, sucrose degradation and amino acid metabolisms 
to O2 deficiency.

Starch mobilization in the maintenance of glycolysis  A cru-
cial point in the maintenance of glycolysis when plants are 
exposed to O2-deficient conditions is the efficient mobiliza-
tion of the reserved carbohydrates (Dixon et al. 2006; Drew 
1997; Gibbs and Greenway 2003; Licausi and Perata 2009; 
Sato et al. 2002; van Dongen et al. 2004) (Fig. 1). α-amylase 
and starch phosphorylase (Starch Pase) are induced by low 
O2 and they convert starch to glucose and glucose-1 phos-
phate (P), respectively. These reactions are observed in stor-
age organs of cereal grains, potato tubers and rhizomes for 
their germination and subsequent growth (Bucher and Kuh-
lemeier 1993; Das et al. 2000; Geigenberger 2003). Rice can 
germinate under low O2 conditions due to the expression 
of α-amylase genes in its aleurone layer. Other terrestrial 
cereals such as wheat and barley cannot germinate under 
the same low O2 conditions (Das et al. 2000; Guglielminetti 
et  al. 1995, 1999; Narsai et  al. 2009; Ricard et  al. 1991). 
Among the three subfamilies of α-amylases genes (AMY1A-
C, AMY2A, and AMY3A-F) in rice, AMY3D is anoxic-spe-
cific (Loreti et al. 2003; Park et al. 2010). Its induction under 
anoxia is repressed by high sugar levels, but is independ-
ent of gibberellin (GA) levels. This is because its promoter 
region lacks the distinctive cis-acting element that confers 
GA-responsiveness (Loreti et al. 2003; Park et al. 2010). In 
contrast, isoforms encoded by AMY1A are found in both aer-
obic and anaerobic seedlings, and AMY1A is induced by GA 
in seedlings under aerobic but not under anoxic conditions 
(Loreti et al. 2003; Morita et al. 1998). Thus, under aerobic 
conditions, GA-dependent activation of AMY1A maintains 
high sugar levels in the aleurone layer, and thereby AMY3D 
induction is prevented. The AMY3D expression depends on 
the cis-acting elements in its promoter region, named sugar 
repression core (SRC, Chen et  al. 2006), and trans-acting 
transcription factor (TF), MYBS1 (Lu et al. 2002). Moreo-
ver, AMY3D and MYBS1 have been reported to be activated 
by the general regulator, sucrose non-fermenting receptor 
kinase 1A (OsSnRK1), which is promoted by calcineurin 
B-like interacting protein kinase 15 (CIPK15). They play a 
role in sugar and energy depletion signaling (Lee et al. 2014; 
Lu et al. 2002; Lu et al. 2007).

The mobilization of starch for constant carbohydrate 
supplementation under O2-deficient conditions is not com-
mon to all plants. Among terrestrial plants, this ability is 
limited to species with storage organs such as cereal grains 
and potato tubers (Arpagaus and Brändle 2000; Dixon et al. 
2006; Guglielminetti et al. 1995). These plants can prevent 
starch depletion from their storage organs because they can 
sense the sugar level in their cells and subsequently down-
regulate their metabolic rates (Arpagaus and Brändle 2000; 
Dixon et al. 2006). The mobilization of starch and regulation 
of sugar level at the germination and seedling growth stages 
have been poorly understood in wetland species other than 
rice plants. This metabolism may act as a crucial tolerance 

Fig. 1   Regulations of sugar catabolism, fermentation, glycolysis, 
and major amino acid metabolism associated with NAD(P)+ regen-
eration and ATP production in terrestrial and wetland plants under 
O2-deficient conditions. Blue arrows and letters indicate the reactions 
and enzymes in the up-regulated pathways when the mitochondrial 
electron transport and the TCA-cycle flux decrease under O2-deficient 
conditions. Red letters indicate the regeneration of NAD(P)+ from 
NAD(P)H. In rice plants, the blue pathways contribute to their tol-
erance to long-term O2 deficiency compared with the terrestrial 
plants. Some wetland plants such as rice also have a high ability to 
optimally regulate the pyruvate level by activation of pyrophos-
phate (PPi)-dependent phosphofructokinase (PFK-PPi) and pyruvate 
phosphate dikinase (PPDK) that consume PPi instead of ATP for 
energy conservation. Besides glycolysis, PPi is consumed to regu-
late the cytosolic pH by the tonoplast H+-pumping pyrophosphatase 
(H+-PPiase) instead of H+-ATPase in wetland plants. Although two 
independent pathways for sucrose degradation contribute to the reg-
ulation of glycolytic flux in both terrestrial and wetland plants, the 
UDP-dependent sucrose synthase (SuSy) pathway is regarded as ener-
getically more advantageous for survival under O2-deficient condi-
tions than the invertase (INV) pathway because here, PPi is utilized 
instead of ATP. Sugar supply to glycolysis through starch mobiliza-
tion is observed in species with developed storage organs such as 
tuber, rhizome, and endosperm. In NAD(P)H regeneration during 
the metabolisms of 2-oxoglutarate and glutamate associated with 
γ-aminobutyric acid (GABA) production, the glutamate dehydroge-
nase (GDH) pathway without ATP consumption is more efficient in 
energy consumption than the NAD(P)H-dependent glutamine: 2-oxo-
glutarate aminotransferase (GOGAT) pathway with ATP consump-
tion. The accumulation of some amino acids such as GABA, alanine, 
and glutamate play an important role in avoiding carbohydrate loss 
not only during O2-deficient conditions but also during the recovery 
phase of re-oxygenation after hypoxia/anoxia. Alanine accumulation 
by alanine aminotransferase (AlaAT) can operate non-circular TCA-
cycle and gluconeogenesis under O2 deficiency and re-oxygenation. 
Abbreviations are as follows: ADH, alcohol dehydrogenase; AlaAT, 
alanine aminotransferase; ALDH, acetaldehyde dehydrogenase; 
AspAT, aspartate aminotransferase; CoASH, coenzyme A; FK, fruc-
tokinase; GABA-T, GABA transaminase; GAD, glutamate decarbox-
ylase; GHBDH, γ-aminobutyrate dehydrogenase; Glucose-1-P, glu-
cose-1-phosphate; GS, glutamine synthetase; HXK, hexokinase; LDH 
lactate dehydrogenase; MDH, malate dehydrogenase; PCK, phospho-
enolpyruvate carboxykinase; PDC, pyruvate decarboxylase; PDH; 
pyruvate dehydrogenase; PEPC, phosphoenolpyruvate carboxylase; 
PFK, ATP-dependent phosphofructokinase; PFK-PPi, PPi-dependent 
phosphofructokinase; PGI, phosphoglucoisomerase; PGM, phospho-
glucomutase; Pi, phosphate; PK, pyruvate kinase; PPDK, pyruvate 
Pi dikinase; SSADH, succinate semialdehyde dehydrogenase; Starch 
Pase, starch phosphorylase; TCA, tricarboxylic acid; UDP, uridine 
diphosphate; UGPPase, UDP-glucose pyrophosphorylase; UTP, uri-
dine triphosphate

◂
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mechanism in the germination and early development of 
wetland species because many wetland species with rela-
tively large endosperms (members from the Gramineae and 
Cyperaceae families) (Kettenring and Galatowitsch 2007; 
Leck and Brock 2000; Wijte and Gallagher 1996) and devel-
oped rhizomes (members from the Nymphaeaceae and Men-
yanthaceae families) can grow in stagnant soil with low O2 
condition.

Two independent pathways for  the  sucrose degrada‑
tion  The bidirectional UDP-dependent sucrose synthase 
(SuSy) and the unidirectional invertase (INV) are two 
distinct pathways for degradation of sucrose in plant cells 
(Fig. 1). SuSy consumes a net of one mol PPi per one mol 
sucrose when UDP glucose and fructose are substrates for 
glycolysis. This is because the by-product of UDP glu-
cose pyrophosphorylase, UTP, is used for the formation of 
phosphorylated fructose by fructokinase (FK), and simul-
taneously ATP is regenerated from ADP via NDP kinase 
(Bailey-Serres and Voesenek 2008; Guglielminetti et  al. 
1999). In contrast to the consumption of PPi by SuSy, the 
INV reaction involves two mols ATP per mol sucrose (Mus-
troph et  al. 2005). Therefore, SuSy is regarded as a more 
energetically advantageous pathway in various species for 
survival under O2-deficient conditions than INV. Indeed, 
transgenic potato tubers with elevated INV activity were 
unable to maintain ATP levels under low O2 conditions (8% 
O2) (Bologa et al. 2003).

Responses of activities and transcriptions to low O2 
conditions differ between SySy and INV. The activity and 
mRNA transcript level of SuSy are rapidly increased by 
sugar starvation, in contrast to the constitutive expression of 
INV in various terrestrial and wetland plants (Branco-Price 
et al. 2008; Koch 2004; Lasanthi-Kudahettige et al. 2007; 
Loreti et al. 2005). Comparative analysis of gene inductions 
and protein expressions with or without sucrose addition 
revealed that SuSy gene expression is up-regulated by sens-
ing sugar starvation as signals (Contento et al. 2004; Liu 
et al. 2010; Loreti et al. 2005; Nicolai et al. 2006; Rolland 
et al. 2006). In rice, six SuSy isoforms localized in roots, 
mesophylls, and phloem are tissue-specifically expressed at 
different developmental stages (Hirose et al. 2008; Wang 
et al. 1999). Particularly, the expression of SUS2 signifi-
cantly increases in germinating seeds and growing seedlings 
under anoxic conditions (Hirose et al. 2008), indicating that 
SUS2 can serve not only as a housekeeper but also as the ini-
tial reaction of sucrose degradation during stress. In addition 
to the single hypoxia-inducible SuSy isoform, multi-expres-
sions of the SuSy isoforms with functional redundancy are 
required to ensure low O2 tolerance in several species of both 
terrestrial and wetland plants (Bieniawska et al. 2007; Hirose 
et al. 2008; Wang et al. 1999).

INV catalyzes sucrose into fructose and glucose, which 
are then phosphorylated by hexokinase (HXK) or FK to be 
channeled into the glycolytic pathway (Licausi and Perata 
2009) (Fig. 1). The glycolytic flux is also regulated by the 
activation of the INV pathway, but the main pathway of 
sucrose degradation under aerobic conditions may be the 
SuSy pathway (Fig. 1). This regulation of glycolysis is noted 
not only in the roots of terrestrial crops such as maize and 
tomato (Bouny and Saglio 1996; Germain et al. 1997b) but 
also in the seedlings of rice (Cho et al. 2006; Guglielmi-
netti et al. 2006). In rice plants exposed to anoxia, OsFK2 
and OsHXK7 are induced by sensing sucrose starvation as 
signals (Cho et al. 2006; Guglielminetti et al. 2006; Lasan-
thi-Kudahettige et al. 2007). Other isoforms, OsHXK5 and 
OsHXK6, dual-targeted to the mitochondria and nucleus, 
also act as glucose sensors (Cho et al. 2009; Narsai and 
Whelan 2013). They directly regulate the downstream fac-
tors including CIPK15, which in turn regulate the repre-
sentative α-AMY3 gene (RAMY3D) and ADH2 expression 
in rice under low O2 conditions (Yim et al. 2012).

Metabolism of typical amino acids linked to glycolysis regu‑
lation under  O2‑deficient conditions  At low O2, NAD(P)+ 
regeneration can be achieved by amino acid metabolisms 
such as the metabolism of 2-oxoglutarate and glutamate 
associated with the production of GABA (Fig.  1). The 
synthetic pathway of GABA through the glutamate decar-
boxylation by glutamate decarboxylase (GDC) with H+ 
consumption can contribute to the counteraction of cyto-
solic acidification caused by anoxic stress (Aurisano et al. 
1995). The metabolism of 2-oxoglutarate and glutamate is 
promoted through the glutamine synthetase (GS)-glutamine 
oxoglutarate aminotransferase (GOGAT) pathway or the 
glutamate dehydrogenase (GDH) pathway. In the former, GS 
and GOGAT catalyze the conversion of glutamine to gluta-
mate with 2-oxoglutarate incorporation, whereas in the lat-
ter GDH reversibly catalyzes the reaction between 2-oxog-
lutarate and glutamate (Narsai et al. 2009; Rocha et al. 2010; 
Shingaki-Wells et al. 2011) (Fig. 1). The GDH pathway does 
not consume ATP in the conversion of 2-oxoglutarate to glu-
tamate, while the GS-GOGAT pathway consumes one ATP 
mol per glutamate mol for the conversion of glutamine to 
glutamate (Gibbs and Greenway 2003) (Fig. 1). Therefore, 
the GDH pathway is more efficient in energy consumption. 
Moreover, increased glutamate can act as an amino group 
donner in the aspartate transamination by aspartate ami-
notransferase (AspAT) for the production of oxaloacetate, 
an intermediate product in the TCA cycle during anoxia 
(Fig. 1). Oxaloacetate is then converted to malate by malate 
dehydrogenase with NAD(P)+ regeneration (Bailey-Serres 
and Voesenek 2008). Glutamate is simultaneously incorpo-
rated into the pathway by alanine aminotransferase (AlaAT) 
(Bailey-Serres and Voesenek 2008; Ricoult et  al. 2006) 
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(Fig. 1). Under hypoxia, strong induction of mRNA levels 
and enzymatic activities of AspAT, AlaAT, and GDH in the 
cytosol and mitochondria have been reported in Arabidop-
sis and rice plants (Klok et al. 2002; Lasanthi-Kudahettige 
et  al. 2007; Liu et  al. 2005; Loreti et  al. 2005; Mustroph 
et al. 2010; Narsai and Whelan 2013; Narsai et al. 2011). 
Thus, the synthesis of these amino acids may contribute to 
the regulation of glycolysis through NAD(P)+ regeneration 
in both terrestrial and wetland species.

Metabolisms of GABA and alanine seem to play impor-
tant roles for plants in survival during low O2 stress and 
re-oxygenation. Kreuzwieser and Rennenberg (2014) have 
reported that the supply of carbohydrates to amino acid 
metabolism in shoots and roots is a key process that helps 
plants survive hypoxia. The metabolism of these amino acids 
does not result in carbohydrate loss compared with fermen-
tation. In Arabidopsis, the importance of organ-specific 
response in these advantageous amino acid metabolisms has 
been pointed out. High GABA accumulation in roots was 
observed under hypoxia compared with that in shoots, while 
alanine accumulation was observed in both organs (Mus-
troph et al. 2014). Transcriptome and metabolome analyses 
of flooding-intolerant Arabidopsis and flooding-tolerant rice 
and poplar exposed to anoxia indicated that the accumula-
tion of alanine and succinate and the increased activities of 
fermentation enzymes were observed in all the species, but 
that the transcriptional regulations of amino acid metabolism 
and anaerobic fermentation were different among species 
(Narsai and Whelan 2013; Narsai et al. 2011). Plant species 
may have specific mechanisms for signal transduction and 
post-transcriptional regulation in the amino acid and carbo-
hydrate metabolisms in roots and shoots.

The increased accumulation of GABA under anoxia is 
metabolized by GABA transaminase (GABA-T) to succinic 
semialdehyde coupling with consumption of 2-oxoglutarate 
and additional conversion of pyruvate to alanine (Fig. 1). In 
the subsequent reaction, succinic semialdehyde is converted 
either to γ-hydroxybutyrate by the NAD(P)H-consuming 
reaction catalyzed by GABA dehydrogenase (GHBDH) 
or to succinate that can be channeled to the TCA cycle by 
succinate semialdehyde dehydrogenase (SSADH) by the 
NAD+-consuming reaction (Fig.  1). Although the high 
activity of SSADH with NAD+ consumption is thought to 
be disadvantageous for glycolytic regulation under hypoxia, 
this enzyme can function as one component of the bypass of 
the TCA cycle (GABA-shunt) to decrease ROS accumula-
tion under re-oxygenation conditions (Bouche et al. 2003) 
(Fig. 1). Indeed, higher accumulation of SSADH protein was 
observed under re-oxygenation conditions in Arabidopsis 
(Bouche et al. 2003).

Besides anoxic stress, post-anoxic stress can also severely 
damage plant growth owing to large amounts of ROS that 
are produced in the cells. Particularly, wetland plants such as 

rice plants often suffer from post-anoxic stress after frequent 
floods; they have been reported to exhibit significant tran-
script reprogramming, which rapidly increased the expres-
sion of genes encoding TCA-cycle enzymes and levels of 
metabolites including citrate and 2-oxoglutarate to restore 
aerobic growth under post-anoxic conditions (Narsai et al. 
2009). Moreover, large amounts of alanine generated by 
AlaAT under anaerobic conditions help plants to survive 
under subsequent re-oxygenation conditions because ala-
nine can be transported through the xylem as a transportable 
energy source (De Sousa and Sodek 2003). AlaAT can con-
vert the transported alanine into pyruvate, which can be used 
in gluconeogenesis or metabolized to acetyl-CoA (Fig. 1); 
both processes are important for aerobic metabolism dur-
ing re-oxygenation (Rocha et al. 2010; Shingaki-Wells et al. 
2014). In contrast, coleoptiles of anoxia-intolerant wheat 
seedlings cannot accumulate alanine when they are sub-
jected to anoxia (Shingaki-Wells et al. 2011). These find-
ings suggest that alanine accumulation by activated AlaAT 
in the flood-tolerant species plays an important role in their 
survival not only during hypoxia but also during the recov-
ery phase of re-oxygenation after hypoxia.

Utilization of available PPi as the phosphate donner instead 
of ATP  It has been assumed that PPi is particularly favored 
as a phosphoryl donor compared with ATP in anoxic tissues 
where the cytosol is acidic (Davies et al. 1993; Felle 2005). 
Thus, PPi can serve an alternative energy source instead of 
ATP, and is utilized to maintain the glycolysis flux and regu-
lation of cytosolic pH under low O2 conditions where ATP 
levels are low.

In glycolysis, the enzymes with reversible reactions, 
PPi-dependent phosphofructokinase (PFK-PPi) and pyruvate 
phosphate dikinase (PPDK), can function instead of ATP-
dependent phosphofructokinase (PFK-ATP) and pyruvate 
kinase (PK), respectively (Fig. 1). As PFK-PPi can catalyze 
fructose 6-P without consumption of ATP, the PFK-PPi 
function can increase the net ATP production in anoxia-tol-
erant plants (Huang et al. 2008; Plaxton and Podestá 2006) 
(Fig. 1). In rice seedlings, the enzymatic activity of PFK-PPi 
is dramatically increased by 15-fold after 24 h in anoxia 
(Gibbs et al. 2000; Kato-Noguchi 2002; Mertens et al. 1990). 
The expression of annotated PFK-PPi genes in anoxic rice 
coleoptiles is complex. Some are down-regulated and others 
are up-regulated (Lasanthi-Kudahettige et al. 2007). In con-
trast, gene expression and protein amounts of the cytosol-
type and plastid-type PPDKs in rice are up-regulated under 
anoxia. Especially the expression of cytosolic-type PPDK 
is up-regulated by 365-fold when the plants are exposed 
to anoxia (Lasanthi-Kudahettige et al. 2007; Moons et al. 
1998; Shingaki-Wells et al. 2011) and is higher in roots than 
that in shoots (Huang et al. 2008). This suggests that roots 
have a higher ability to enhance anoxia tolerance than shoots 
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because roots often experience more frequent fluctuations of 
O2 concentration than shoots.

Induction of PFK-PPi and PPDK is controlled by the 
cytosolic PPi content under short- and long-term anoxia, but 
not by the exogenous substrates such as starch and sucrose 
(Huang et al. 2008). While the PFK-ATP activity is rate-
limiting for glycolysis in short-term anoxia, PFK-PPi can 
compensate for the ATP limitation by using PPi. In such a 
situation, PPi can be provided by a reaction cycle catalyzed 
by both PPDK and PK. This would accelerate the glycolytic 
flux and supply energy for survival at the early phase of 
anoxia. In contrast, if the plants are exposed to long-term 
anoxia, glycolysis may need to be down-regulated to con-
serve carbohydrates. Thus, PFK-PPi and PPDK may regu-
late the PPi level to slow down the net glycolytic flux for 
survival under long-term anoxia, and thereby the direction 
of glycolysis is changed to gluconeogenesis. Some reports 
indicate that this functional regulation of PPi level may 
strongly contribute towards maintaining glycolysis under 
severe anoxic conditions where the ethanol fermentation is 
declined (Colmer et al. 2001; Huang et al. 2008; Kato-Nogu-
chi 2002; Loreti et al. 2005). Therefore, enzyme-mediated 
reactions can contribute to low O2 tolerance in either direc-
tion, towards glycolysis or gluconeogenesis, although it is 
difficult to experimentally show the reaction directions by 
PFK-PPi and PPDK because of their small free energy values 
(ΔG) (Huang et al. 2008).

Gene expressions of PFK-PPi and PPDK in anoxia-
intolerant Arabidopsis did not show significant changes 
in anoxia (Lasanthi-Kudahettige et al. 2007; Loreti et al. 
2005). Under these conditions, the gene encoding PFK-PPi 
was up-regulated by 1.9-fold, and PPDK by only 1.1-1.7-
fold. This change in PPDK in Arabidopsis was much less 
than that in the cytosolic-type PPDK in rice plants. In rice 
plants, PFK-PPi and tonoplast H+-PPiase were induced dur-
ing phosphate (Pi) deficiency, but the change in PPDK dur-
ing Pi deficiency is unclear (Plaxton 2004). Interestingly, 
even under various stress environments where the levels of 
the nucleoside triphosphate (NTP) pools including Pi, ATP, 
and ADP were significantly decreased, the PPi levels were 
relatively stable in rice plants (Plaxton 2004). Especially the 
PPi concentrations in coleoptiles and cultured cells of rice 
plants were similar between anoxic and aerated conditions 
(Kato-Noguchi 2002; Mohanty et al. 1993). These results 
suggest that the stable level of PPi in rice plants supports a 
stable response to the crisis in energy production by a sud-
den O2 decrease via PPi-dependent enzymes. Moreover, the 
gene expression of inorganic pyrophosphatase (PPiase) in 
rice coleoptile was significantly down-regulated by 35-fold 
when they were exposed to anoxic conditions, whereas the 
gene expression of inorganic PPiases in Arabidopsis was 
unchanged or slightly up-regulated under anoxic conditions 
(Lasanthi-Kudahettige et al. 2007). Consequently, in rice 

plants under anoxic conditions, PPi is not degraded by inor-
ganic PPiase and large amounts of PPi can be used for the 
other essential processes (Huang et al. 2008). In contrast, 
in Arabidopsis cells under anoxic conditions, the PPi con-
tent decreases and the plants suffer severe energy deficiency 
because solute transport across the tonoplast decreases and 
the cytosol pH is acidic, resulting in ultimately cell death 
(Fukao and Bailey-Serres 2004). The roles of PPi-dependent 
enzymes in wild wetland plants, other than rice plants, are 
restricted to a few studies in which the gene expression of 
cytosolic PPDK in Eleocharis vivipara and the activity and 
induction of PFK-PPi and PPDK in Potamogeton pectinatus 
were examined (Dixon et al. 2006; Summers et al. 2000). As 
these amphibious plants grow under various O2 conditions 
from land to deep-water wetland, it is assumed that many 
wild wetland plants may commonly utilize PPi-dependent 
enzymes in response to changes in the O2 availability.

Besides glycolysis, many plants consume PPi to regu-
late the cytosolic pH under O2-deficient conditions by the 
tonoplast H+-pumping pyrophosphatase (H+-PPiase) instead 
of H+-ATPase (Fig. 1). This can support the essential pro-
cess of pH regulation even under ATP-deficient conditions. 
Anoxia-tolerant rice can suppress the pH decline in anoxia 
to half of that in the normal conditions, while anoxia-intol-
erant wheat and Arabidopsis suffer severe pH decline dur-
ing anoxia (Lasanthi-Kudahettige et al. 2007; Loreti et al. 
2005; Menegus et al. 1991). In rice plants, the activity of the 
tonoplast H+-PPiase was increased by 75-fold after 6 days in 
anoxia (Carystinos et al. 1995), and the gene (Os02g55890) 
encoding H+-PPiase was up-regulated by 35-fold in anoxia 
(Lasanthi-Kudahettige et al. 2007).

Mitochondrial metabolic adaptation to O2 
deficiency

ROS (e.g., H2O2 and O2
·−) and RNS (e.g., NO and ONOO−) 

can function as important physiological regulators of the 
intercellular signaling pathway in plant cells (Desikan et al. 
2001; LiQiang 2011; Nie et al. 2006). However, they can 
cause disorders of oxidative phosphorylation due to oxi-
dation and nitration of proteins. Anoxic and post-anoxic 
stresses by frequent flooding lead to ROS formation due 
to over-reduction of mETC, and these further lead to 
decreases in energy production (Blokhina and Fagerstedt 
2010; Blokhina et al. 2000; Santosa et al. 2007; Szal et al. 
2003). Under such stress conditions, non-phosphorylating 
components of mETC, the alternative oxidase (AOX) and 
type II NAD(P)H dehydrogenases (NDs) can consume the 
accumulated reducing equivalents for maintaining the mito-
chondrial homeostasis. These components are not coupled 
with the proton motive force (Blokhina et al. 2014; Maxwell 
et al. 1999; Millar et al. 2004; Møller 1997; Sweetlove et al. 
2006; Szal et al. 2003; Xu et al. 2011) (Fig. 2). The AOX 
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directly transfers an electron from ubiquinol (UQH2) to O2, 
and functions in the stress response (Fig. 2). AOX has lower 
affinity for O2 than cytochrome c oxidase (COX, complex 
IV) (Gupta et al. 2009), but O2 consumption through AOX 
does not depend on O2 concentration. In contrast, O2 con-
sumption through COX decreases depending on the decrease 

in O2 concentration (Zabalza et al. 2009). Thus, AOX can 
consume reducing equivalents under low O2 conditions even 
when COX activity is inhibited. The AOX activity is con-
trolled by its protein amount, AOX and ubiquinone (UQ) 
redox states, and pyruvate level (Day and Wiskich 1995; 
Møller 2001; Simons and Lambers 1999; Vanlerberghe and 
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Fig. 2   Production and elimination of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) in mitochondria and cytosol. 
H2O2, NO, O2

·−, and ONOO− produced under hypoxic stress condi-
tions are detoxified by the mitochondrial electron transport chain 
(mETC) and ascorbate/glutathione cycle in the mitochondrial matrix 
to maintain a redox balance in the cells. The alternative oxidase 
(AOX) and type II NAD(P)H dehydrogenases (NDs), NDex, and 
NDin (NDs located at the outer and inner surfaces of the mitochon-
drial inner membrane, respectively), can consume the accumulated 
reducing equivalents for maintaining the mitochondrial homeostasis. 
AOX has lower affinity to O2 than cytochrome c oxidase (COX, com-
plex IV); NDs, especially Ca2+ dependent NDin, have lower affinity 
to NAD(P)H than complex I and nitrate reductase (NR). In NO scav-

enging under hypoxic stress condition, ascorbate can contribute to 
the reduction of NO to N2O in the mitochondrial matrix. Ascorbate is 
converted to monodehydroascorbate by ascorbate peroxidase (APX), 
which also involves the scavenging of ONOO− and converting it into 
NO, The NO generated is resupplied to mETC. Ascorbate can also 
participate in Class 1 hemoglobin (Class 1 Hb) regeneration from 
methemoglobin (metHb) in the cytosol. Abbreviations are as follows: 
Cyt c, cytochrome c; DHAR, dehydroascorbate reductase; GR, glu-
tathione reductase; IM, inner membrane; IMS, inter-membrane space; 
MDHAR, monodehydroascorbate reductase; NO, nitric oxide; NR, 
nitrate reductase; OM, outer membrane; SOD, superoxide dismutase; 
TCA, tricarboxylic acid; UQH2, ubiquinol
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Mclntosh 1996; Vanlerberghe et al. 2002). A study in which 
the transcript responses to low O2 between flood-tolerant 
rice and poplar and flood-intolerant Arabidopsis were com-
pared revealed differences in the response of their AOX 
genes. The induction of AOX in response to low O2 was 
observed in Arabidopsis but not in rice and poplar (Nar-
sai et al. 2011). In the case of Arabidopsis, the expression 
of AOX gene is induced by citrate accumulation resulting 
from the inhibition of aconitase activity by NO formed under 
low O2 stress. Consequently, the primary metabolism shifts 
to amino acid biosynthesis to counteract the energy crisis 
under low O2 stress (Gupta et al. 2012). However, when 
O2 availability is a limiting factor for the O2 consumption, 
this AOX induction would be futile for O2 consumption and 
energetically burdensome. Thus, the inability of Arabidopsis 
to prevent the induction of AOX genes under low O2 condi-
tions could be reasonable for its intolerance to anaerobic 
conditions (Shingaki-Wells et al. 2014). Interestingly, the in 
vivo AOX activity correlates with the relative growth rate 
in some wild species (Millenaar et al. 2001). It has been 
reported that AOX in illuminated leaves can contribute to 
optimizing the photosynthetic electron transport through the 
dissipation of excessive reducing equivalents under stress 
conditions, and the AOX1 gene expression and AOX capac-
ity are often induced by the presence of exogenous H2O2 or 
under stress conditions with high light or high temperatures 
(Amor et al. 2000; Feng et al. 2010; Murakami and Toriyama 
2008; Vanlerberghe and Mclntosh 1996; Vishwakarma et al. 
2015; Wagner and Krab 1995; Xu et al. 2011). These results 
support that AOX is indispensable for the flexible control of 
ATP synthesis to maintain homeostasis and growth through 
the interaction between mitochondria and other organelles 
under various stress conditions (Hansen et al. 2002).

It has been reported that the induction of AOX is associ-
ated with the mitochondrial retrograde signaling and AOX 
can directly influence mitochondrial signaling by decreasing 
the ROS and uncoupling the electron transport from ATP 
synthesis (Rhoads and Subbaiah 2007). One of the TFs 
involving the AOX gene expression is related to abscisic 
acid (ABA), ABI4; it was reported to be a strong repres-
sor of AOX expression in leaves of Arabidopsis exposed to 
high light and temperature stress (Giraud et al. 2009; Møller 
and Sweetlove 2010; Neill et al. 2003; Selinski et al. 2018; 
Xu et al. 2011). ABI4 is also intimately involved in sugar 
and plastid retrograde signaling pathways (Woodson and 
Chory 2008). Therefore, AOX could be controlled through 
ABI4 to integrate the mitochondrial retrograde signaling and 
respiratory regulation with other cellular anterograde and 
retrograde regulatory pathways. Vanlerberghe et al. (2009) 
indicated that AOX could buffer cellular signaling pathways, 
including cell death pathways, against adverse conditions. 
Moreover, AOX can regulate the gene expression of ROS-
scavenging enzymes such as glutathione S-transferase, 

catalase, ascorbate peroxidase (APX), and superoxide dis-
mutase (Giraud et al. 2009; Rhoads and Subbaiah 2007). In 
many plants under post-anoxic conditions with high ROS 
production, the AOX induction was found at both the tran-
script and protein levels to support a rapid response to re-
oxygenation shock (Howell et al. 2007; Millar et al. 2004; 
Narsai et al. 2009).

Ca2+-dependent NDs located at the outer (NDex) and 
inner (NDin) surfaces of the mitochondrial inner membrane 
are not coupled with the generation of the proton motive 
force, and function as a bypass of complex I (Michalecka 
et al. 2003; Møller 1997; Rasmusson et al. 2004) (Fig. 2). 
The NDex can mainly utilize the cytosolic reducing equiv-
alents (NAD(P)H) and have a higher Km for NADH than 
those of complex I and nitrate reductase (NR) (Møller et al. 
1993). As NDex can utilize NAD(P)H independently of the 
other processes of mETC, it can regulate the NAD(P)H lev-
els inside the intermembrane space and cytosol (Igamber-
diev and Hill 2004) (Fig. 2). Moreover, it can be regulated 
by the elevated concentration of cytosolic Ca2+, due to Ca2+ 
release from the mitochondria during hypoxia (Fig. 2). An 
increase in the cytosolic Ca2+ concentration is stimulated by 
NO and H+/Ca2+ antiport, which is linked to the decrease in 
the cytosolic pH (Igamberdiev and Kleczkowski 2003; Sub-
baiah et al. 1998). The increase in Ca2+ concentration under 
anaerobic conditions functions as a signal for the regulation 
of many enzymes such as GDC and NAD+ kinase (Igamber-
diev and Hill 2008). Interestingly, NDB2, a gene encoding 
the NDex, is strongly co-expressed with AOX1a in Arabi-
dopsis because these genes share many common cis-acting 
regulatory elements (CAREs) in their promoter regions and 
are affected in a similar manner (Clifton et al. 2005; Elhafez 
et al. 2006). Further, some of the NDs (NDC1 and NDA1) 
are dual-targeted to plastids and peroxisome, therefore, their 
regulation is affected by the proteins outside the mitochon-
dria (Ho et al. 2008). These indicate that important mito-
chondrial components involved in stress responses could 
provide the means for coordinating the activities between 
the organelles via coregulation and dual localization.

Effect of inorganic N sources on respiration in plants 
under the O2‑deficient conditions

Plant roots play an important role in the absorption and 
assimilation of N and other essential minerals using res-
piratory energy. In soil, NO3

− and NH4
+ are found as inor-

ganic N sources, and the energy cost for NH4
+ assimilation 

is lower than that for NO3
− (Bloom et al. 1992). Many ter-

restrial plants prefer to NO3
− as inorganic N source, while 

wetland species specialize in NH4
+ utilization because NH4

+ 
predominates in flooded soils in their habitats. However, 
some wetland plants with the ability to supply O2 from the 
shoots to the roots can utilize NO3

− because active radial 
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O2 loss (ROL) from their root tips allow nitrification in 
their rhizosphere (Brix et al. 2002; Kirk and Kronzucker 
2005). The preference of the roots for inorganic N sources 
affects the ATP production levels and O2 concentrations in 
roots. This is because the respiratory system has different 
responses to NO3

− and NH4
+ under anaerobic conditions.

Two NO3
− reduction pathways in plants under O2‑deficient 

conditions

Exogenous NO3
− can act as a terminal acceptor of elec-

trons and protons in the absence of molecular O2. NO3
− can 

accept reducing equivalents to regenerate NAD(P)+ and 
prevent deteriorative effects of the cytoplasmic acidifica-
tion through assimilative or catabolic NO3

−-reduction 
pathways (Fig. 3, Fan et al. 1997; Müller et al. 1994; Var-
tapetian and Polyakova 1999). NAD(P)H can be oxidized 
by the assimilative pathway in which NO3

− is reduced to 
NO2

− and NH4
+, and by the catabolic pathway involving 

the reductive NO2
−-dependent NO production. These two 

pathways contribute to up-regulation of glycolysis under 
hypoxic and anoxic conditions due to the facilitation of 
glycolytic flux (Igamberdiev and Hill 2004; Reggiani et al. 
1985; Stoimenova et al. 2007). Under low O2 and acidic 
conditions, the transcript level and activity of NR, which 
catalyzes the first step of NO3

− reduction to NO2
− in both 

pathways, are increased in some terrestrial species (Lager 
et  al. 2010). The NO3

− reduction through the catabolic 
reduction pathway requires a large amount of NAD(P)H. In 
the NO2

−-driven ATP synthesis cycle, about 2.5 mol NADH 
per 1 mol NO3

− is consumed. Thus, the flux to glycolytic 
fermentation decreases as a result of competition for NADH 
oxidation (Fan et al. 1988; Sowa et al. 1998).

In maize and barley roots, an increase in the NR activ-
ity under anaerobic conditions in the presence of NO3

− was 
observed to be accompanied by a decrease in the ethanol 
accumulation (Botrel and Kaiser 1997; Fan et al. 1988). 
In contrast, in roots of rice and Carex species (C. pseudo-
cyperus L. and C. sylvatica Huds.) under anaerobic con-
ditions, exogenous NO3

− stimulated anaerobic respiration 
(glycolytic fermentation) due to an accelerated glycolytic 
flux. This stimulation results from a more effective NADH 
reoxidation capacity by both NO3

− reduction and fermenta-
tion compared with only fermentation (Müller et al. 1994; 
Reggiani et al. 1985, 1993). Moreover, high capacity to use 
NO2

− as an electron acceptor strongly contributes to continu-
ous ATP production in roots of rice and barley under anoxic 
stress (Stoimenova et al. 2007). This is because the NO2

−-
driven ATP synthesis cycle is activated by the addition of 
NO3

− under anoxic conditions (Fig. 3). These indicate that, 
under O2-deficient conditions, NO3

− has a favorable effect 
on the energy metabolism in roots of terrestrial as well as 
wetland plants.

The balance of the oxidation capacity of reducing equiva-
lents (NADH) between the fermentation and the catabolic 
NO3

−-reduction pathways may be different among species 
(Fig. 3). The protective effects of NO3

− utilization in rice 
shoots have been confirmed by analyzing their mitochon-
dria using electron microscopy. In this study by Vartapetian 
et al. (2003), the marked destructive changes in the coleop-
tile mitochondria ultrastructure (membrane destruction, cris-
tae disappearance, and pale matrix) were delayed until 48 
h after the onset of anaerobic incubation in the presence of 
exogenous NO3

−. In rice plants, NO3
− is reduced through the 

assimilative NO3
−-reduction pathway in their shoots because 

they show high activities and transcript levels of NR and 
GS when they are grown in both NO3

− and NH4
+ conditions 

(Yun et al. 2008). In contrast, under O2-deficient conditions, 
NO3

− is reduced to NO2
− by the catabolic NO3

−-reduction 
pathway in their roots. These reports imply that the capaci-
ties of the two NO3

−-reduction pathways, the assimilative and 
catabolic pathways, vary in the different tissues of a plant 
under anaerobic condition. Both pathways can contribute to 
hypoxic-stress tolerance through favorable effects on energy 
metabolism and cytoplasmic pH stabilization (Fig. 3).

NO2
−‑driven ATP synthesis in plants under O2‑deficient 

conditions

Under O2 deficient conditions, exogeneous NO3
− is reduced 

to NO2
− by hypoxia-induced NR (Lager et al. 2010). When 

the O2 level falls below the saturation level of COX, mETC 
utilizes NO2

− as the electron acceptor instead of O2 for 
the maintenance of ATP synthesis and O2 concentration 
in cells (Gupta et al. 2005; Planchet et al. 2005) (Fig. 2). 
The rates of this NO2

−-driven anaerobic ATP synthesis are 
of the same order as those of glycolytic ATP production 
during hypoxia, and about 3–5% of the aerobic mitochon-
drial ATP synthesis (Stoimenova et al. 2007). As NO pro-
duced by this NO2

−-driven ATP synthesis is immediately 
converted to NO3

− through the hypoxia-induced Class 1 
hemoglobin (Class 1 Hb), mETC components including 
COX are not damaged (Gupta and Igamberdiev 2011; Nie 
et al. 2006; Taylor et al. 1994) (Fig. 2). The expression 
of Class 1 Hb gene is triggered by a disruption of ATP 
synthesis and by Ca2+ release under O2-deficient condi-
tions (Nie et al. 2006). Class 1 Hb has an extremely high 
affinity to O2, and its oxidized form, oxyHb, can oxygen-
ate NO to NO3

− even at extremely low O2 concentrations 
(Trevaskis et al. 1997) (Fig. 2). In such a case, homeosta-
sis of O2 and ROS is maintained because NO can tightly 
control respiration via inhibiting COX, which leads to an 
increase in the internal O2 levels under hypoxic conditions 
(Gupta et al. 2014). Thereafter, NO3

− is reduced to NO2
− by 

hypoxia-induced NR and recycled by the operation of this 
Hb/NO cycle (Gupta and Igamberdiev 2011; Igamberdiev 
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and Hill 2004; Igamberdiev and Kleczkowski 2011). In the 
reaction when NO is converted to NO3

−, the heme iron of 
Hb is oxidized to its ferric form, methemoglobin (metHb) 

(Fig. 2). To maintain the Hb/NO cycling, Class 1 Hb is 
regenerated from metHb by ascorbate (Fig. 2). The oxidized 
form of ascorbate, monodehydroascorbate, is reduced by 

Pyruvate

Lipid breakdown
Photosynthesis

NR

A BSpecies with high O2 supply ability (with high ROL) Species with low O2 supply ability (with low ROL)

Nitrification

NADHNAD+

NH4
+

TCA cycle

NDs

NADHNAD+

NO2
– NO2

–NO

UQH2e–

ATP

Cyt c

NAD(P)H

Hb

NADHNAD+

NO

LactateEthanol

Acetaldehyde
NADH

NAD+
NADH
NAD+

LDH
ADH

Matrix
OM

IM

NO2
–-driven ATP production

Fermentation 

Synergistic effect 
of NH4

+ and NO3
–

NO2
–

NO3
–

Catabolic and asimilative NO3
– reduction

 NH4
+ 

A and B compete with NADH

Fermentation

Glycolysis

PDC

NO3–

Glutamate

GDH NAD(P)H
NAD(P)+

Glutamine

NAD(P)H
NAD(P)+

GOGAT

GS GABA

NH4
+

NH4
+

NO3
– NO2

–

NR NiR

NAD(P)H NAD(P)+

Inorganic nitrogen assimilation

AOX

NADHNAD+

Succinate

Fumarate

2-oxyglutarate

Class1

(COX)
(bc1)

Fig. 3   Different utilization strategies of inorganic nitrogen (N) source 
for the maintenance of ATP production caused by the difference in 
the O2 supply ability in wetland plants under O2-deficient condi-
tion. NAD(P)H produced mainly during glycolysis, lipid breakdown, 
and photosynthesis is oxidized to NAD(P)+ by the following two 
pathways competing for the oxidation, assimilation, and catabolic 
reduction of NO3

−: NO2
−-driven ATP production (A) or fermentation 

(B). The oxidation of NAD(P)H is shown by red letters and arrows. 
(A) As the species with high O2 supply ability can accelerate nitri-
fication in their rhizosphere by high radial O2 loss (ROL) from the 
roots, they can utilize NO2

− produced from NO3
− by hypoxia-induced 

nitrate reductase (NR) as the electron acceptor in the mitochondrial 
electron transport chain (mETC) instead of O2. NO2

−-driven ATP 
production enables NAD(P)H oxidation for regulating glycolysis, 
avoiding cytosolic anoxia, and anaerobic ATP synthesis, which is 
in the same order as that in the ATP through fermentation during 
hypoxia. Moreover, species with high potential for NR can oxidize 
NAD(P)H for N assimilation, and these species can acquire a large 
amount of N and productivity by the “synergistic effect of NH4

+ and 

NO3
−”. (B) The species with low O2 supply ability specializing in 

the assimilation of NH4
+ that dominates the anaerobic soil may oxi-

dize NAD(P)H through fermentation. NAD(P)H levels in the A and 
B pathway are regulated by glycolysis with pyrophosphate (PPi) uti-
lization by PPi-dependent phosphofructokinase (PFK-PPi) and pyru-
vate phosphate dikinase (PPDK) instead of ATP and metabolisms 
of major amino acids such as the alanine, glutamate, 2-oxoglutarate, 
and γ-aminobutyric acid (GABA). Thus, in wetland plants, A and 
B pathways function as the N utilization strategy in maintaining the 
ATP production under anaerobic conditions. Abbreviations are as fol-
lows: ADH, alcohol dehydrogenase; AOX, alternative oxidase; bc1, 
cytochrome bc1; Class 1 Hb, class 1 hemoglobin; COX, cytochrome 
c oxidase; Cyt c, cytochrome c; GS, glutamine synthetase; GOGAT, 
glutamine oxoglutarate aminotransferase; GDH, glutamate dehydro-
genase; IM, inner membrane; LDH, lactate dehydrogenase; NDs, 
mitochondrial NAD(P)H dehydrogenases; NiR, nitrite reductase; 
OM; outer membrane; PDC, pyruvate decarboxylase; TCA, tricarbox-
ylic acid; UQH2, ubiquinol, I–V; mitochondrial complexes I–V
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monodehydroascorbate reductase (MDHAR) along with 
the oxidation of NAD(P)H (Igamberdiev et al. 2006; Loreti 
et al. 2005) (Fig. 2). High ascorbate level and induction of 
MDHAR are observed under hypoxia (Igamberdiev et al. 
2006). Besides playing a role in the above cycle, ascorbate 
also has an important role in the detoxification of ROS and 
RNS such as H2O2, ONOO−, and O2

−. In the NO scaveng-
ing process under hypoxia, ascorbate reduces NO to N2O 
in the mitochondrial matrix while monodehydroascorbate 
produced from ascorbate oxidizes ONOO− to NO, and 
thus resupplies NO back to the cell (Alegria et al. 2004; 
Igamberdiev and Hill 2008) (Fig. 2). The Hb/NO cycling is 
influenced by the cytosolic NO2

− accumulation via high NR 
activation. This NR activation is induced by the decrease in 
ATP during hypoxia/anoxia, but inhibited by low NO3

− con-
centrations (Gupta et al. 2011; Planchet et al. 2005; Rockel 
et al. 2002; Stöhr and Mäck 2001). Thus, it seems that NO2

−-
driven ATP production may be an important strategy for 
hypoxia-tolerance in plants with high NR potential.

The turnover of NO and maintenance of the cellular 
redox and energy levels are strong evidence for NO2

−-
driven ATP production in some terrestrial plants, such as 
maize, alfalfa, and barley growing on NO3

− dominant soils 
under low O2 stress (Dordas et al. 2003; Igamberdiev and 
Hill 2004; Igamberdiev et al. 2006; Sowa et al. 1998). 
Moreover, NO2

−-driven ATP production was also reported 
in rice plants that typically prefer NH4

+ when exogenously 
supplied with NO2

− and NO3
− under anoxic conditions 

(Ohwaki et al. 2005; Stoimenova et al. 2007). The rate 
of anaerobic NO2

−-driven mitochondrial ATP synthesis in 
rice was reported to be 25% of their total ATP turnover 
rate compared to that of 11.5% in barley during hypoxia 
(Stoimenova et al. 2007). These values were calculated 
based on the estimations that mitochondrial proteins rep-
resent 7% of the total proteins in heterotrophic plant cells 
(Douce 1985) and the rate of ATP turnover is 70 nmol 
min−1 mg−1 mitochondrial protein (Neuburger et al. 1996). 
This rate could be much higher in rice, 35% of the total 
ATP turnover rate, because the mitochondrial proteins of 
rice could comprise as much as 10% of the total proteins 
(Stoimenova et al. 2007). The ATP production per anaer-
obic mitochondrial NAD(P)H oxidation of rice is also 
higher than that of barley (Stoimenova et al. 2007). Thus, 
species that possess high potential of NO2

−-driven ATP 
production system and contain abundant mitochondrial 
proteins such as rice plants, can increase their ATP pro-
duction per anaerobic mitochondrial NAD(P)H oxidation 
when they utilize NO3

− as the N source. So far, the con-
tribution of NO2

−-driven ATP production system in wild 
wetland plants has been unnoticed because these plants 
prefer NH4

+ in their habitats as nitrification is restricted 
by stagnant water. However, this system could become a 
crucial strategy in hypoxia-tolerant wild wetland species 

with a high ATP turnover rate, when NO3
− is available in 

their rhizosphere.

Differences in effects of NH4
+ on respiration 

between terrestrial and wetland plants

The energy cost for NH4
+ assimilation is lower than that for 

NO3
− (Bloom et al. 1992). However, many terrestrial plants 

need to assimilate NH4
+ immediately after their absorption 

in the roots to avoid the toxicity symptoms associated with 
NH4

+ as the sole N source (Britto and Kronzucker 2002). 
Concentrated NH4

+ often increases the respiration rate 
(NH4

+-dependent respiratory increase, ARI) in shoots, roots, 
and whole plants (Britto et al. 2001; Escobar et al. 2006; 
Hachiya et al. 2010). Thus, NH4

+ utilization may lead to 
further O2 deficiency through ARI in many terrestrial plants 
when the N source is limited to only NH4

+ by rhizosphere 
environmental changes such as submergence. In shoots and 
roots of terrestrial plants, ARI that is induced by an increase 
in NH4

+ concentration in the external media (Britto et al. 
2001) increases the ATP content and ATP/ADP ratio by 
inducing the phosphorylating components of mETC such 
as complex I, III, and IV (COX) (Curi et al. 2003; Hachiya 
et al. 2010; Welchen et al. 2002). However, these increases 
in respiratory ATP production are not related to an increase 
in useful energy demands such as growth. One of the main 
causes of ARI has been suggested to be an increase in the 
inward/outward flux of NH4

+ across the plasma membrane, 
called “futile NH4

+ cycling (FAC)” (Britto and Kronzucker 
2002; Britto et al. 2001; Hachiya et al. 2010). As NH4

+ 
uptake via the NH4

+ transporter (AMT) is accompanied by 
proton extrusion from the plasma membrane H+-ATPase 
to maintain the cytosolic charge balance (Britto and Kro-
nzucker 2002), the increased FAC under conditions of 
NH4

+ as the sole N source would require more respiratory 
ATP (Britto et al. 2001). Consequently, ARI would occur 
to meet the increase in ATP demand related to increased 
FAC, when the plants are grown under high concentration 
of NH4

+. Indeed, in some NH4
+-intolerant terrestrial spe-

cies such as maize and barley, the H+-ATPase activity is 
high when they are grown under conditions of NH4

+ as the 
sole N source (Britto et al. 2001; Nielsen and Schjoerring 
1998; Schubert and Yan 1997). In contrast, in the roots 
of NH4

+-tolerant rice, ARI is not observed (Britto et al. 
2001), and the activity of H+-ATPase is independent of the 
N source (Zhu et al. 2009). Moreover, the experiments in 
which NH4

+ metabolism and growth rate are analyzed in 
rice plants have reported that the decrease in energy cost for 
FAC does not correlate with the optimized growth (Balkos 
et al. 2010). This low FAC in rice plants may reflect that they 
have evolved to be NH4

+ tolerant without any energy cost 
to maintain the NH4

+ balance across the plasma membrane 
(Karasawa et al. 1994; Kronzucker et al. 1999, 2001).
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ARI is also explained by another hypothesis in which 
it occurs in relation to the dissipation of excess reducing 
equivalents in mETC. The NO3

− assimilation process com-
petes with mETC for the reducing equivalents. The shift 
of an available N source from NO3

− to NH4
+ increases 

the reducing equivalents that are not consumed through 
NO3

− assimilation and are thus available to be consumed 
by mETC, thereby increasing the O2 uptake rate (Bloom 
et al. 1992; Escobar et al. 2006). In particular, under low 
O2 stress conditions where COX is saturated with reducing 
equivalents, there is a possibility that the non-phosphoryl-
ating AOX and NDs in mETC can consume the excessive 
reducing equivalents without being limited by adenylate 
control (Escobar et al. 2006; Vanlerberghe et al. 2009). 
In fact, AOX capacity in terrestrial plants such as Arabi-
dopsis, pea, and spinach increases when they are trans-
ferred from NO3

− to NH4
+ conditions (Escobar et al. 2006; 

Frechilla et al. 2002; Lasa et al. 2002). NDB2, which is 
a major isoform of NDex, is also induced in shoots and 
roots of Arabidopsis under NO3

−-depleted conditions 
(Wang et al. 2004; Watanabe et al. 2010). Although these 
responses have an important role in the dissipation of 
excessive reducing equivalents under the low O2 stress con-
ditions, ARI itself would lead to further strict anoxic threat 
for NO3

−-preferring terrestrial plants under O2-deficient 
condition.

Two contrasting adaptive strategies 
in flood‑tolerant plants: the low oxygen escape 
strategy versus the low oxygen quiescence strategy

Flood tolerant plants that can survive at O2 deficiency or 
light-limited submergence conditions are characterized by 
two survival strategies. One of them is the low O2 escape 
strategy (LOES), and the other is the low O2 quiescence 
strategy (LOQS) (Fig. 4). Plants with LOES phenotypes 
show upward bending of leaves (hyponasty) that can 
enhance shoot elongation, formation of interconnected air-
filled voids (aerenchyma), induction of barriers to radial 
O2 loss (ROL) in roots, development of adventitious roots 
(ARs), formation of gas films on leaf surfaces, modifica-
tion in leaf anatomy, and pressurized gas flow through 
porous tissues under O2-deficient conditions. All of these 
characteristics are not necessarily found in one species 
(Blom 1999; Evans 2004; Jackson and Armstrong 1999; 
Ridge 1987; Sauter 2013) (Fig. 4). The elongation of aerial 
organs and the formation of aerenchyma and ARs are all 
ethylene dependent. The former trait is also controlled by 
a hormonal network, which includes ABA and GA, and 
the latter trait by ROS (Voesenek and Bailey-Serres 2015) 
(Fig. 4). In contrast, plants with LOQS phenotypes cease 
their growth and save their carbohydrate reserves under 
O2-deficient conditions.

Molecular mechanisms of LOES and LOQS

In rice varieties, both LOES and LOQS are found to coun-
teract flooding stress. SNORKEL1 (SK1) and SNORKEL2 
(SK2) of deep-water rice varieties (LOES type) are involved 
in the rapid internode elongation and escape of leaves near 
the water surface (Hattori et al. 2009), whereas submer-
gence 1A-1 (SUB1A-1) in lowland varieties of rice (indica) 
(LOQS type) limits elongation, growth, and carbohydrate 
consumption (Fukao and Bailey-Serres 2008; Fukao et al. 
2006) (Fig. 3). The key regulatory genes in both strategic 
responses are the ethylene-responsive TFs of the subfamily 
group VII (ERF-VII); the TFs act downstream of ethylene 
and modulate GA-mediated shoot growth (Bailey-Serres 
and Voesenek 2010; Voesenek and Bailey-Serres 2015). 
Deepwater varieties of rice (LOES type) can escape from 
adverse partially submerged deep-water conditions through 
SK1 and SK2 genes (SKs) that trigger rapid internode elon-
gation at a rate of 25 cm day−1 (Colmer et al. 2014; Hat-
tori et al. 2011) (Fig. 4). In contrast, these genes are absent 
in shallow water varieties including all japonica varieties 
(LOQS type). Moreover, two additional uncharacterized loci 
on chromosomes 1 and 3 (QTL1 and 3) are needed along 
with SKs for the full deep-water escape response (LOES 
type) (Ayano et al. 2014). Shoot and internode elongations 
in submerged deep-water varieties of rice are promoted by 
cell expansion and division, which are positively regulated 
by ethylene and GA (GA1 and GA4). These hormones enable 
expansins (EXPs) and α-amylase to drive cell elongation 
and starch degradation by SKs and QTL1 and 3 (Choi et al. 
2004; Rzewuski and Sauter 2002; Sauter et al. 2002; van der 
Knaap et al. 2000) (Fig. 4).

In contrast, the indica varieties possessing SUB1A-1 
(LOQS type) decrease their metabolic activities and con-
strain their growth to save energy consumption under 
shortly prolonged submergence conditions (up to only a 
few weeks) (Fig. 4). The indica and japonica varieties lack-
ing the SUB1A gene or SUB1A-1 allele cannot cease their 
metabolic activities (Fukao et al. 2006; Xu et al. 2006). Sub-
mergence 1 (SUB1) locus of rice consists of three genes, 
SUB1A, SUB1B, and SUB1C. The expression of SUB1A-1 
alone is sufficient to provide flood tolerance, but it exists 
only in flood-tolerant varieties with LOQS traits. SUB1C is 
present in all varieties, and responds to GA and positively 
regulates the expression of several EXPs (Fukao and Bailey-
Serres 2008; Hattori et al. 2011; Xu et al. 2011). SUB1B 
is ERF similar to SUB1C (Bailey-Serres et al. 2010). The 
submergence-intolerant japonica cultivar Nipponbare has 
both SUB1B and SUB1C, but lacks SUB1A. SUB1A-1 
inhibits shoot elongation by maintaining the levels of TFs, 
SLENDER RICE 1 (SLR1) and SLENDER RICE-Like 1 
(SLRL1), to counterbalance the GA responsiveness and 
regulate the SUB1C mRNA level negatively (Bailey-Serres 
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and Voesenek 2008; Fukao et al. 2006) (Fig. 4). Further-
more, SUB1A-1 negatively regulates the submergence-
induced synthesis of ethylene, mRNA expression of 

cell-wall-loosening EXP, starch and sucrose degradation 
(Fukao et al. 2006), and chlorophyll degradation through 
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Fig. 4   Characteristics of low O2 escape strategy (LOES) and low 
O2 quiescence strategy (LOQS) to hypoxia/anoxia caused by flood-
ing/submergence in wetland and terrestrial plants. Black solid and 
dashed lines are the networks of LOES (aerenchyma formation, shoot 
elongation, radial O2 loss (ROL) barriers, and leaf acclimation) in 
wetland and terrestrial plants, respectively, while blue dashed lines 
indicate responses to suppress LOES in both plants; blue solid lines 
indicate the submerged regulatory network of LOQS in rice (wet-
land species). Four key factors, ROS accumulation, ethylene content, 
ATP depletion, and sucrose reserve decrease, involve the LOES and 
LOQS networks are shown in red letters. ROS production in hypoxic 
and anoxic stresses causes programmed cell death (PCD) in both 
plant types and involves the mechanisms of adventitious roots (ARs) 
emergence and aerenchyma formation. AR elongation in Arabidop-
sis (terrestrial plant) is promoted by the hypoxia signal and its for-
mation is mediated by hypoxia-responsive HRE2, which is one of 
the group VII ethylene response transcription factors (ERFVIIs). 
High ethylene level inhibits the AR formation in Arabidopsis under 
hypoxic condition, although ARs are formed at low ethylene level. 
In contrast, in rice plants, ethylene has promotive effects on the AR 
formation and elongation. The contrasting regulation by ethylene on 
ARs may reflect different adaptive strategies in the flood-tolerant rice 
plants compared to the flooding-intolerant terrestrial species such as 
Arabidopsis. Leaf acclimation such as high specific leaf area (SLA), 
reoriented chloroplasts along with cell wall in leaf epidermis, thin 
cuticles and cell walls, development of dissected leaves underwater, 

and the maintenance of gas films can increase the net photosynthe-
sis by decreasing the diffusion resistance for CO2. The leaf plasticity 
could also result from the accumulation of ethylene and a decrease 
in CO2 levels. Flooding/submergence causes ethylene accumulation, 
which triggers gibberellin (GA)-promoted cell elongation through 
the expansins (EXPs). In deep-water rice with LOES, ethylene pro-
motes the induction of SNORKELs (SKs, SK1, and SK2) and GA 
elevation and the internodes of the shoots elongate rapidly to come 
out of the water surface. In the deep submergence lines of rice with 
LOQS, ethylene activates the submergence 1A-1 (SUB1A-1) promot-
ing an increase in SLENDER RICE 1 (SLR1) and SLENDER RICE-
Like 1 (SLRL1) transcription factors, which inhibit GA-mediated 
activation of gene expressions. This LOQS characteristic of rice can 
limit carbohydrate consumption by inhibiting shoot growth. Wetland 
plants develop shoot and root aerenchyma, ROL barriers, and elon-
gated shoots elongation and these characteristics of LOES act syner-
gistically with each other in enhancing the stability of O2 and ATP 
availability in roots where nitrogen (N) uptake and active N assimi-
lation take place. Abbreviations are as follows: ABA, abscisic acid; 
ADH, alcohol dehydrogenase; AlaAT, alanine aminotransferase; 
CIPK15, calcineurin B-like interacting protein kinase 15; HRE2, 
hypoxia-responsive ERF 2; PDC, pyruvate decarboxylase; QTL1 and 
3, quantitative trait loci on chromosomes 1 and 3; SnRK1A, sucrose 
non-fermenting receptor kinase 1A; SuSy, sucrose synthase; SUB1A-
1, submergence 1A-1
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SENESCENCE (Fukao et al. 2012; Winkel et al. 2014). The 
elongation processes through SUB1C require a large amount 
of energy during shoot submergence because elongation of 
aerial organs is accompanied with the rapid and efficient 
translocation of photosynthates and reserved carbohydrates 
and amino acids (Ayano et al. 2014; Hattori et al. 2011; 
Kende et al. 1998; Sauter 2000). In contrast, LOQS vari-
eties with SUB1A-1 can decrease their energy utilization 
until the water level decreases and normoxic conditions are 
restored, thereby they resume growth with preserved energy 
under subsequently normoxic conditions (Ayano et al. 2014; 
Barding et al. 2012, 2013; Fukao and Bailey-Serres 2008; 
Hattori et al. 2011; Kende et al. 1998; Nagai et al. 2010; 
Sauter 2000). The rice varieties with SUB1A-1 can restrict 
the rate and extent of starch hydrolysis and accumulate lower 
concentrations of ethanol, lactate, and amino acids than the 
varieties without SUB1A (Barding et al. 2012, 2013). It has 
been assumed that repeated elongation of aerial tissues in 
every short-term submersion may damage the growth by 
serious re-oxidation and water loss in the LOQS phenotypes 
(Hattori et al. 2011; Nagai et al. 2010). The varieties with 
SUB1 can manage ROS accumulation and leaf water loss 
during recovery from submergence conditions to a minimum 
extent. This is because they have higher levels of mRNA 
associated with the repression of ROS accumulation during 
the recovery phase (Fukao et al. 2011; Mustroph et al. 2010).

In wild wetland plants such as Rumex palustris, R. 
acetosa. Sagittaria trifolia and Lotus tenuis, it has been 
suggested that there are networks in conserved flooding 
response that relate to growth and stress-induced catabolism 
of carbohydrates for the efficient ATP production. However, 
studies on ERF-VII TFs (SKs and SUB1) are required in 
wild wetland species that experience long-term flooding 
(Kim et al. 2000; Manzur et al. 2009; Ookawara et al. 2005; 
Vreeburg et al. 2005). In these plants, there are consider-
able genetic variations between and within species in the 
ethylene-induced elongation capacity under submergence 
conditions. It is noteworthy that the wild species R. palustris 
displays submergence escape by ethylene-driven shoot elon-
gation (LOES type) (Benschop et al. 2005), and R. acetosa 
invokes quiescence owing to a lack of ABA down-regulation, 
GA up-regulation, and increased EXP expression (LOQS 
type), although these two species are closely related to each 
other (Benschop et al. 2005; Chen et al. 2009; van Veen et al. 
2013; Vriezen et al. 2000). In R. palustris, it seems that the 
elements downstream of ethylene and upstream of ABA and 
GA can switch on this elongation cascade (Benschop et al. 
2005; Chen et al. 2009; van Veen et al. 2013). Moreover, R. 
palustris exposed to dark under submergence conditions can 
convert their strategy from escape to quiescence for survival. 
This strategy is achieved by the pretreatment using ethyl-
ene, in which LOQS ability is promoted (van Veen et al. 
2013). This strategy conversion in R. palustris relates to 

the light-signaling genes that regulate the enhancement of 
shoot elongation (van Veen et al. 2013), and this observation 
demonstrates the similarity of growth control between shade 
avoidance and underwater elongation. Another wetland spe-
cies, L. tenuis, also elongates upon partial submergence but 
arrests its growth upon complete submergence. It switches 
from LOES to LOQS due to elevation of shoot porosity and 
limited consumption of soluble carbohydrates in shoots 
and roots (Manzur et al. 2009). Both antithetical LOES and 
LOQS strategies exist within a single species and are not 
mutually exclusive. These may be combined by the threshold 
of O2 level or energy deficiency. In this regard, Voesenek 
and Bailey-Serres (2015) indicate that three key factors, an 
increase of cellular ethylene content, depletion of ATP, and 
consumption of readily available sucrose in the submergence 
network, can contribute to increased induction and regula-
tion of shoot elongation. The level of reserved carbohydrates 
for ATP production seems to strongly affect the strategies 
for sustainable and facilitative survival in various natural 
flooding environments (Fig. 4). Especially the LOES type 
may be required for the high photosynthetic capacity and 
translocation activity of photosynthates and reserves under 
submergence conditions. Therefore, the interplay among 
hormones (ethylene, ABA, and GA), O2 availability, and 
specific metabolites (ATP, sugars, and pyruvate) needs fur-
ther clarification for understanding the network balancing 
growth and quiescence.

Avoidance strategies in LOES‑type plants for improvement 
of O2 level within plant tissues

When plants are submerged by flooding, species with LOES 
phenotypes respond to O2 deficiency for improvement of cel-
lular O2 level. Shoot elongation, formation of interconnected 
air-filled voids (aerenchyma), pressurized gas flow through 
the aerencyma and leaf acclimations for the decrease of the 
diffusion resistance to air can function to improve cellular 
O2 levels. In the roots, developed aerenchyma, formation of 
the ROL barrier from the roots surface and development of 
ARs can enhance the longitudinal O2 diffusion in root tips 
with the most active cells.

Aerenchyma  Aerenchyma can decrease the gas diffusion 
resistance from the atmospheric tissues to the O2-deficient 
tissues. The formation of aerenchyma and enhancement of 
the gas transport ability are essential strategies in LOES 
(Fig.  4). O2 produced during photosynthesis or taken up 
by the aerobic shoots diffuses inside the aerenchyma con-
necting the shoots and the roots; this O2 diffusion supports 
respiration in O2-deficient underwater organs (Fig. 4). Aer-
enchyma can be formed by different processes such as schiz-
ogeny and lysigeny (Drew et al. 2000; Evans 2004; Seago 
et  al. 2005). These processes often appear simultaneously 
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at different organs in one individual plant (Steffens et  al. 
2011). Although little is known about the process of schiz-
ogenous aerenchyma formation (Evans 2004), it has been 
hypothesized that the causal protein, NOP1, regulates the 
schizogenous formation of air chambers via a membrane-
localized receptor-like kinase signaling pathway resulting 
in ubiquitylation and degradation of target proteins (Ishi-
zaki et  al. 2013). In contrast, the lysigenous formation of 
air chambers via programmed cell death (PCD) requires 
ethylene, Ca2+, and ROS signaling, which ultimately breaks 
down the cell walls as observed in some species such as 
rice, Arabidopsis, maize, and wheat (Drew et  al. 2000; 
Evans 2004). In roots of maize and deep-water rice, studies 
have reported that aerenchyma formation is associated with 
the accumulation of ROS and down-regulation of METAL-
LOTHIONEIN 2b mRNA encoding a ROS scavenging pro-
tein (Rajhi et  al. 2011; Steffens et  al. 2011). Moreover, it 
seems that the Ca2+-dependent plasma membrane-localized 
respiratory burst oxidase homologs (RBOHs) influence the 
ROS sources in this process as they have been reported to 
promote apoplastic superoxide production to amplify ROS-
mediated signaling in wheat and rice (Parlanti et al. 2011; 
Yamauchi et al. 2013b).

Pressurized flow‑through system  In addition to the inward 
diffusion, a mechanism of gas transport in all wetland 
plants, some floating plants and macrophytes have a pres-
surized flow-through system in stems and rhizomes to aer-
ate the O2-deficient underwater organs (roots and rhizome). 
This system enables the underwater organs to keep the O2 
concentration to an ambient level for maintaining oxidative 
phosphorylation, thereby normalizing the ATP concentra-
tion (Colmer 2003; Sorrell and Hawes 2009) (Fig. 4). Pres-
surized flow-through is produced by the species-specific 
positive pressure capacity in shoot tissues and the resistance 
to the flow in the aerenchyma. Also, leaf-to-air gradients 
of temperature and humidity affect the pressurized flow 
(Brix et al. 1992; Colmer 2003). This flow mechanism also 
contributes to an outward diffusion of ethylene generated in 
roots and methane generated in soils (Colmer 2003; Laan-
broek 2009). Thus, pressurized flow-through that facilitates 
effective gas flow through developed aerenchyma seems to 
provide a competitive advantage to large varieties of plants 
in deep-water habitats (Konnerup et al. 2011).

Leaf acclimation  In terrestrial plants, the net photosynthesis 
of submerged leaves often decreases significantly compared 
with that of aerial leaves due to an exponential decrease in 
light intensity with increasing depth and resistance to CO2 
and O2 fluxes in submerged leaves (Colmer et al. 2011; Her-
rera 2013). In response to submergence, some terrestrial 
plants develop new acclimated leaves that are characterized 
by higher specific leaf area (SLA) that is a ratio of leaf area 

to leaf mass, reoriented chloroplasts along with cell walls 
in leaf epidermis, thin cuticles and cell walls, development 
of dissections, and maintenance of gas films (Colmer et al. 
2011; Mommer et al. 2005b) (Fig. 4). All of these traits can 
decrease the diffusion resistance to CO2, thereby enabling 
the leaves to increase the net rate of CO2 assimilation and 
decrease the CO2 compensation point under water (Mom-
mer et al. 2006; Pedersen et al. 2013; Winkel et al. 2014).

Wetland plants, such as Rumex palustris, R. acetosa and 
rice, show plastic acclimation of their morphological, ana-
tomical, and biochemical traits of leaves to submergence 
(Mommer et al. 2005a, b; Pedersen et al. 2009, 2013; Win-
kel et al. 2014). Ranunculus repens constitutively dissect 
their leaves when they grow underwater (He et al. 1999). 
In R. palustris, the new acclimating leaves developed in 
underwater conditions can lead to a nearly 40-fold decrease 
in the diffusion resistance to CO2 (Mommer et al. 2005a). 
Rice plants show a large variation in these leaf traits among 
varieties. Submergence-tolerant landrace FR13A with LOES 
has higher net underwater photosynthesis, longer retention 
of the leaf gas film and longer persistence compared with 
a Sub1 variety, Swarna-Sub1 (Winkel et al. 2014; Xu et al. 
2006). These traits of FR13A contribute to submergence 
tolerance because the persistence of gas film could poten-
tially increase net photosynthesis and internal aeration dur-
ing submergence. In contrast, in Swarana-Sub1, the duration 
of gas film retention is shorter than that in FR13A, although 
Swarana-Sub1 can maintain carbohydrate levels during sub-
mergence. Since both varieties have SUB1A, genetic deter-
minants other than SUB1A contribute to gas film formation 
and underwater photosynthesis. Leaf acclimation ability to 
submergence may be related to flood tolerance in wetland 
plants with LOES. In contrast, these acclimations may not 
be related to flood tolerance in terrestrial plants (Mommer 
et al. 2007). The accumulated ethylene does not necessar-
ily function as a signal for the flood-induced leaf acclima-
tion in terrestrial plants under flooded conditions, but other 
signals associated with changed photosynthetic rates and/
or decreased levels of carbohydrates may induce these leaf 
acclimations (Bailey-Serres and Voesenek 2008) (Fig. 4).

Barrier to  radial O2 loss  The O2 supplied from the above-
ground to underground organs diffuses to the anaerobic soil 
as radial O2 loss (ROL), which contributes to protecting the 
roots from toxic ions (Fe2+and Mn2+) and to the nitrification 
in NH4

+-predominant and excessive-reduced soils by the 
oxidized layers around the roots. Moreover, wetland plants 
and some terrestrial plants form an impermeable barrier to 
ROL from the root basal zone to the apex (ROL barrier) by 
the deposition of suberin in the root exodermis (Fig. 4). The 
suberin layer is mainly composed of long-chain fatty acids. 
The ROL barrier acts synergistically to enhance the longitu-
dinal O2 diffusion in the root tips with the most active cells 



360	 Journal of Plant Research (2020) 133:343–371

1 3

and enables the development of aerobic rhizosphere around 
the root tips for root extension (Abiko et al. 2012; Armstrong 
and Beckett 1987; Colmer 2003; Sauter 2013) (Fig. 4). The 
ROL barrier is permanently formed in some wetland spe-
cies, or temporarily induced by waterlogging in rice and 
wheat (Colmer 2003; Kotula et al. 2009; Malik et al. 2011) 
(Fig. 4). Molecular investigations in rice plants have clari-
fied that the ROL barrier formation involves the up-regula-
tion of genes including a hypodermal cell ABC transporter 
(REDUCED CULM NUMBER1 [RCN1]/OsABCG5), which 
is proposed to export the long-chain fatty acids and/or their 
derivatives across the hypodermal plasma membrane into 
the apoplast to induce hypodermal suberization (Shiono 
et al. 2014). Indeed, the metabolite profile analysis in rice 
roots growing under barrier-forming stagnant conditions 
reveals that the concentrations of long-chain fatty acids and 
malate, which is a substrate for fatty acid biosynthesis, grad-
ually increase from the root apex to the base (Kulichikhin 
et al. 2014).

Adventitious roots  Adventitious roots (ARs) are also asso-
ciated with conferring developmental plasticity to plants 
under waterlogged condition. ARs with high porosities 
emerge from submerged stem nodes and hypocotyls to 
replace the existing and deteriorating primary root sys-
tem in rice, R. palustris, Solanum lycopersicum, and Larix 
laricina (Calvo-Polanco et  al. 2012; Dawood et  al. 2014; 
Dawood et al. 2016; Eysholdt-Derzsó and Sauter 2019; Vis-
ser et al. 1996; Yang et al. 2018; Zhang et al. 2017) (Fig. 4). 
Some ARs develop chloroplasts and thus provide an addi-
tional source of O2 and carbohydrates (Rich et  al. 2012) 
because ARs typically develop in well-aerated topsoil lay-
ers (Dawood et al. 2014; Eysholdt-Derzsó and Sauter 2019; 
Zhang et al. 2015). The terrestrial plant Solanum dulcamara 
can survive under flooding condition by replacing the origi-
nal flood-sensitive root system with aerenchymatous ARs 
that are produced from pre-formed primordia on the stem. 
The AR outgrowth is involved with auxins, ABA, and jas-
monic acid (Dawood et al. 2016; Vidoz et al. 2010; Yang 
et al. 2018). ABA is a negative regulator of AR outgrowth, 
but there is a highly tissue-specific response to decreased 
ABA levels. Auxins may be necessary for AR outgrowth 
because a disruption in the auxin signaling in AR primordia 
of S. dulcamara resulted in the abortion of AR outgrowth 
under complete submergence (Dawood et al. 2016) (Fig. 4). 
Moreover, the auxin pathways act together with decreased 
levels of ABA because the AR emergence in S. dulcamara 
was not sufficient when they were treated with auxin alone 
(Yang et al. 2018).

In Arabidopsis, low levels of ethylene and hypoxia sig-
nals mainly promote AR elongation due to the expression of 
the hypoxia-responsive HRE2 which is one of the ERFVII 
TFs (Bailey-Serres et al. 2012; Eysholdt-Derzsó and Sauter 

2019; Hess et al. 2011) (Fig. 4). However, high levels of 
ethylene inhibit the initial formation of ARs because high 
ethylene concentration can override the hypoxia signal 
(Eysholdt-Derzsó and Sauter 2019). Thus, the formation and 
elongation of ARs in Arabidopsis are controlled by ethylene 
in a dose-dependent manner (Fig. 4). Although low levels 
of ethylene in Arabidopsis may contribute to fast elongation 
of ARs immediately after exposure to hypoxia, they cannot 
exert hypoxia tolerance. This is because they do not form 
subsequent ARs when exposed to long-term severe anaero-
bic stress associated with high ethylene accumulation. In 
contrast to Arabidopsis, ethylene has promotive effects on 
the AR emergence and growth in several wetland species 
including rice (Lin and Sauter 2018). The contrasting regu-
lation of ethylene on ARs may reflect the different adaptive 
strategies between the flood-tolerant and intolerant species 
(Fig. 4).

The roles of these phytohormones in the terrestrial spe-
cies would be different from those in rice plants, especially 
in the AR emergence pathway. The emergence of the AR 
primordia in rice plants involves PCD in the overlying epi-
dermal cells, which is mediated by ethylene-promoted ROS 
production (Steffens et al. 2013) (Fig. 4). The developmen-
tal process of ARs involves the up-regulation of the plasma 
membrane RBOHs (Steffens et al. 2012), and the decrease 
in METALLOTHIONEIN 2b, which regulates the ROS ame-
lioration for nodal AR emergence (Voesenek and Bailey-
Serres 2015). The location of this PCD is determined by the 
force exerted by the outgrowing meristems, and at the same 
place, epidermal weakening for emergence of AR primor-
dium can be elicited by the essential degradation of peri-
cycle and epidermal cells by cell wall-modifying proteins 
such as EXPs, subtilisin-like proteases, pectate lyases, and 
endo-β-1,4-glucanases (Cho and Kende 1997; Kimpara et al. 
2008; Laskowski et al. 2006; Steffens et al. 2012; Yamauchi 
et al. 2013a).

Diverse strategies for avoidance from O2 deficiency  In rice 
and some wetland species, ROL barrier and leaf acclimation 
improve their underwater photosynthesis, root aeration, and 
growth (Colmer and Pedersen 2008; Pedersen et al. 2009; 
Winkel et al. 2013, 2014) (Fig. 4). These characteristics act 
synergistically with each other to enhance flood tolerance 
in wetland species (Fig.  4). In contrast, acclimated leaves 
with morphological modifications and ARs cannot provide 
flooding tolerance to terrestrial plants because O2 cannot 
be transported to the underwater organs of terrestrial plants 
(Fig. 4). As roots consume large amounts of O2 for nutrient 
uptake, they often suffer from O2 deficiency. The internal 
O2 pressure in roots is much lower than that in shoots, espe-
cially at night when photosynthetic O2 production ceases 
(Pedersen et  al. 2006). Therefore, effective aerenchyma is 
required to enable the roots to sustain the oxidative phos-
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phorylation leading to normal ATP production and growth 
(Visser and Pierik 2007). However, despite the benefits of 
aerenchyma under flooded conditions, it is not constitutive 
in all plants. In this regard, Striker et al. (2007) described the 
significant trade-off between root porosity and mechanical 
strength. Hu et al. (2013) also confirmed that aerenchyma 
inhibits radial nutrient transport in maize roots. Therefore, it 
could be assumed that many wetland plants can maintain an 
optimal balance between their growth and low O2 tolerance 
in their roots, and this balance is significantly different from 
that in the terrestrial plants.

Traits of root N use and O2 uptake in LOES‑type wetland 
plants under O2‑deficient conditions

Differences in the rhizosphere N conditions such as sole or 
mixture of NO3

− and NH4
+ generally change root density, 

extension, and whole weight. These changes alter the rhizo-
sphere pH and redox potential, which regulate the root cell 
proliferation and mechanical properties (Bloom et al. 2003; 
Brix et al. 2002; Marschner and Römheld 1983). Because 
NH4

+ dominates as the inorganic N source under anaero-
bic soil conditions due to the limitation of nitrification, 
NH4

+-tolerant wetland species ameliorate the toxic effect 
of excess NH4

+ by exhibiting high GS activity for the quick 
assimilation of NH4

+ compared with that of NH4
+-intolerant 

terrestrial plants (Balkos et al. 2010; Britto and Kronzucker 
2002). As rice plants have isoenzymes of the cytosolic GS1 
gene family (OsGLN1;1 and OsGLN1;2) that can be clas-
sified into high-affinity subtypes with relatively high Vmax, 
these GSs facilitate active NH4

+ assimilation in their roots 
(Ishiyama et al. 2004). Studies on NH4

+ metabolism in rice, 
maize, and tomato plants have reported that rice plants have 
much higher GS activity than the other species, and the 
GS activity increased more in the shoot tissues than that in 
the roots with the increase in NH4

+ (Magalhaes and Huber 
1991). This indicates that the GS activity is a key factor 
in the detoxification and assimilation of NH4

+ in shoots of 
plant species with efficient NH4

+ utilization (Magalhaes 
and Huber 1991). The ability to rapidly assimilate NH4

+ 
not only in roots but also in shoots can also function as an 
N acquisition strategy in the wetland species growing under 
O2-deficient conditions. This is because the up-regulated N 
assimilation in shoots can lead to decrease in the demand 
for N assimilation in the roots, thereby decreasing root res-
piration and avoiding O2 deficiency in roots (Fig. 5). When 
wetland wild grass and Carex species (C. lyngbyei, C. lasio-
carpa var. occultans, and C. middendorffii) are grown in the 
sole NH4

+ treatment under low O2 condition, they exhibit a 
smaller root to shoot weight ratio (i.e., high S/R ratio) and 
increased net N uptake rate per unit root weight (NNUR) 
compared to the sole NO3

− treatment. This high S/R ratio 
can lead to the decrease in the whole-root O2 consumption 

in the sole NH4
+ treatment (Nakamura and Nakamura 2016; 

Nakamura et al. 2010, 2013) (Fig. 5). The decreased root 
growth (high S/R ratio) with sole NH4

+ treatment is more 
prominent in species with weak O2-supply system with 
only diffusion than in species with strong O2-supply system 
with pressurized gas flow (Nakamura et al. 2013) (Fig. 5). 
Although the high NNUR causes high root respiration rate 
per unit root weight in species with low O2-supply system, 
the whole root respiration rate per shoot weight is similar 
between sole NH4

+ and NO3
− conditions due to the compen-

sation for high O2 uptake in roots by their high S/R ratio 
under sole NH4

+ condition (Fig. 5). Thus, it seems that wet-
land plants primarily employ the NH4

+ utilization strategy 
for N-acquisition, which enables them to acquire sufficient N 
for their growth and to minimize and regulate the whole-root 
O2 consumption depending on the O2 supply from shoots to 
roots (Fig. 5).

Even in anaerobic soil dominated by NH4
+, small 

amounts of NO3
− are produced by oxidization in the soil 

due to the O2 flux to the rhizosphere by species with active 
ROL (Brix et al. 2002; Kirk and Kronzucker 2005). When 
NH4

+-preferring species such as rice are grown under con-
ditions where both NH4

+ and NO3
− are supplied, they show 

improved productivity and increase in the net N acquisi-
tion and ATP production (called “the synergistic effect of 
NH4

+ and NO3
−”) compared with only sole NH4

+ condi-
tions (Kirk and Kronzucker 2005; Kronzucker et al. 1999; Li 
et al. 2006; Ying-Hua et al. 2006, 2007). Some studies have 
also reported the underlying mechanisms by which the addi-
tion of NO3

− to an NH4
+ containing soil increased the Vmax 

value of NH4
+ uptake and plasma membrane potential due 

to an increase in the number of NH4
+ transporters, leading 

to enhanced growth and N uptake in rice plants (Ying-Hua 
et al. 2006, 2007). Moreover, the synergistic effect of NH4

+ 
and NO3

− in rice differs among varieties depending on the 
supply level of each inorganic N source and is genetically 
controlled (Ancheng et al. 1993; Ying-Hua et al. 2007). The 
synergistic effect of inorganic N has been studied in wild 
wetland plants. The synergistic effect of NH4

+ and NO3
− may 

be limited to species growing in habitats where nitrifica-
tion occurs in their rhizosphere. Especially, the fast-growing 
species with high O2-supply system may display high ATP 
production and N acquisition under NH4

+-dominant soil 
conditions due to this synergistic effect (Fig. 5).

The acquisition abilities of each inorganic N source in the 
soil are different among species with different O2-supplying 
abilities even when they exist in similar habitats. Phragmites 
australis and Zizania latifolia are observed in the same habi-
tat, but the abilities of O2 supply are different. P. australis 
has a high ability of O2 supply by the convective gas flow 
system and high ability of NO3

− use owing to relatively high 
NR activity in roots under sole NO3

− and− low O2 conditions. 
In contrast, Z. latifolia with only diffusion as the O2 supply 
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system cannot survive under such conditions because of low 
activity of NR (Nakamura et al. 2013). Moreover, species 
with high ability of NO3

− use can utilize the NO2
−-driven 

ATP production system under O2-deficient conditions, but 
species without the ability of NO3

− use can only utilize the 
fermentation system for ATP production under O2-deficient 
conditions (Fig. 5). Thus, the utilization ability of inorganic 
N depending on the O2 supplying capacity might be related 
not only to the N acquisition strategy but also to the anaero-
bic ATP production pathway under O2-deficient conditions. 
This suggests that low O2 tolerance is characterized by 
the functional linkage between N utilization strategy and 
O2-supply capacity for the anaerobic energy conservation 
in wetland plants (Fig. 5). Stoimenova et al. (2007) have 
reported that rice plants with a low O2-supplying diffusion 
system can have the NO2

−-driven ATP production system 

in the presence of exogenous NO3
− under anoxic condition, 

and this can strongly contribute to energy maintenance under 
anoxic conditions.

In general, NO production is elevated under low O2 condi-
tions via the catabolic pathway from NO2

− (NO2
−-dependent 

NO production) (Planchet et al. 2005; Rockel et al. 2002). 
In root cortex under hypoxic condition, NO is released from 
organelles when it is not scavenged by Class 1 Hb involving 
the NO2

−-driven ATP synthesis cycle and other NO detoxi-
fication systems in the cytosol. NO increases ethylene that 
activates the signal transduction pathway involving phospho-
inositides and Ca2+, and thereby aerenchyma formation is 
induced through PCD (Dordas et al. 2003; Drew et al. 2000; 
Voesenek and Bailey-Serres 2015; Yamauchi et al. 2013a). 
In transgenic alfalfa root cultures expressing the antisense 
barley Hb transcripts, the NO level was not changed, and cell 

Fig. 5   Effects of NO3
− (left) and NH4

+ (right) utilization as the sole 
nitrogen (N) source on root respiration and N acquisition in wet-
land plants. The downward (⇩) and upward (⇧) arrows indicate the 
decreasing and increasing responses, respectively. NO3

− utilization 
results in a low root to shoot weight (S/R) ratio, which is unfavorable 
for O2 supply. As the N uptake rate per root weight (NNUR) per root 
respiration rate decreases when the wetland plants utilize NO3

−, they 
develop the roots for N acquisition, consequently increasing the respi-
ration of the whole roots. Therefore, NO3

− utilization requires high O2 

supply to maintain productivity. In contrast, NH4
+ utilization results 

in a high S/R ratio, which is favorable for O2 supply, and high NNUR 
per root respiration. Moreover, when NH4

+ concentrations increase, 
the wetland plants may assimilate NH4

+ in their shoots instead of 
their roots. These traits contribute to a decrease in the respiration of 
the whole root, and thus wetland plants can ensure NH4

+ utilization 
even under low O2 supply. Photograph of Carex lyngbyei grown in 
200 µM NO3

− and NH4
+ treatments under hypoxic hydroponic cul-

ture for 1 month. Bar 5 cm
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breakdown and aerenchyma formation were induced when 
the cells were subjected to hypoxia (3% O2). In contrast, 
no cell breakdown was reported in the overexpressing Hb 
line under the same growth conditions (Dordas et al. 2003). 
Most wetland plants can develop aerenchyma in their shoots 
and roots, but the mechanisms of aerenchyma formation and 
their development level may differ among species depending 
on their NO3

− utilization ability and the NO levels. Further 
analyses are required to compare the effects of NO3

− utiliza-
tion on the aerenchyma formation among species with dif-
ferent O2 supply capacities.

The formation of root cortical aerenchyma can also be 
induced by nutrient deficiency in the terrestrial species, 
maize (Hu et al. 2013). The formation of root cortical aeren-
chyma decreases the radial transport of nutrients by decreas-
ing the living cortical tissue, which leads to a decrease in 
the maintenance requirements of living tissues of roots (Hu 
et al. 2013). Similarly, aerenchyma formation in wetland 
plants may contribute to not only avoid O2 deficiency in 
root tips but also decrease the respiratory energy required 
to maintain the living tissues under O2 limiting conditions. 
This saving of energy consumption by the aerenchyma for-
mation may increase the allocation of the respiratory energy 
to other processes such as root growth and nutrient uptake. 
Some wetland plants with developed aerenchyma allocate 
their root respiratory ATP to maximize the N uptake instead 
of root maintenance and growth (Nakamura and Nakamura 
2016). Such root responses in wetland plants could be their 
strategy for efficient O2 consumption and high N acquisition 
for adapting to O2 deficiency.

Conclusion

Wetland species with hypoxia and anoxia tolerance can regu-
late their carbohydrate level to maintain the glycolytic flux 
and reduce ATP consumption under O2-deficient condition. 
At low O2, NAD(P)+ regeneration by ethanol fermentation, 
sucrose degradation through the energy-saving SuSy path-
way, and amino acid metabolisms such as glutamate, GABA, 
and alanine are common in both wetland and terrestrial spe-
cies. Gene expression of α-amylase in the aleurone layer and 
storage organs at the germination and initial growth stages 
are limited to wetland species. Moreover, an effective toler-
ant function in the wetland species for surviving long-term 
hypoxic and anoxic conditions is caused by maintaining gly-
colysis through the reversible reaction catalyzed by PPDK 
and PFK-PPi. In rice plant, cytosolic PPDK is more abun-
dant in their roots than that in their shoots, and this may 
affect their adaptive response to frequent fluctuations in O2 
concentration. In post-hypoxic/anoxic stress, the metabolic 
change from glycolysis to gluconeogenesis and to the TCA 

cycle contributes to normal metabolism during the recovery 
phase of re-oxygenation.

In wetland plants, the quick response of non-phospho-
rylating components, AOX and NDs, to the consumption of 
excessive reducing equivalents and avoidance of ROS and 
RNS production for maintaining mitochondrial homeostasis 
is effective in recovering from post-anoxic stress. However, 
the activation of these components would be futile in O2 
consumption and energetically burdensome under hypoxic 
condition. As some non-phosphorylating components are 
strongly co-expressed, precise coordination between the 
expressions and activities of these mitochondrial compo-
nents can provide flexible ATP production and maintain 
cellular homeostasis in wetland species under more severe 
hypoxic and anoxic stresses.

The two strategies, LOES and LOQS, in wetland spe-
cies reflect the different responses to O2 deficiency and ATP 
production at subsequent post-hypoxic and anoxic stresses 
in their habitats. The difference in strategies could be due to 
the difference in the requirement of the reserved carbohy-
drates during the stress condition. Both LOES and LOQS 
in a single species are also reported. In wetland species with 
LOES, the developed aerenchyma and high O2 supply sys-
tem by the pressurized gas flow are effective in maintaining 
high O2 availability to the roots, but not all plants have these 
functions. Further research on the interaction among hor-
mones, O2 availability, and primary metabolites is needed 
to understand their optimal balance among growth, escape, 
and quiescence to facilitate survival in their habitats. At low 
O2 conditions, the efficient respiratory O2 consumption in 
the roots of wetland species is carried out in soils with NH4

+ 
as the sole N source because these species can utilize NH4

+ 
without ARI. Some wetland species in which nitrification 
occurs due to their high O2 supply system can also efficiently 
use the soil NO3

−. The differences in the preference for N 
sources among wetland species could also be ascribed to 
the differences in their anaerobic ATP production systems. 
The species with high ability of NO3

− utilization can use 
the NO2

−-driven ATP production system, and the species 
specialized for NH4

+ utilization can use the fermentation 
system. The different N utilization strategies for ATP pro-
duction may be functionally linked to hypoxia tolerance in 
wetland species. Thus, further exploration of the ecophysi-
ological mechanisms of aerobic and anaerobic respiratory 
responses to the N sources in roots of wild wetland species is 
needed to completely understand the anaerobic stress before 
global climate change makes the stress more severe.
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