Skip to main content
. 2020 May 12;11:100222. doi: 10.1016/j.iot.2020.100222

Table 1.

Preliminary Evaluation of different models. We observe that iterative fitting of Inverse Weibull performs significantly better than iterative fitting of other distributions like Gaussian, Beta (4-parameter), Fisher-Tippet (Extreme Value distribution), and Log Normal. The lowest value of MSE/MAPE and highest values of R2 among all distributions are shown in bold.

Country MSE R2 MAPE
Weibull Gaussian Beta 4 Fisher-Tippet Log Normal Weibull Gaussian Beta 4 Fisher-Tippet Log Normal Weibull Gaussian Beta 4 Fisher-Tippet Log Normal
World 2.41E+07 3.78E+07 2.99E+07 2.89E+07 2.99E+07 0.98 0.97 0.98 0.97 0.97 49.14 49.14 50.39 48.12 46.19
India 6.97E+03 7.09E+03 6.89E+03 6.89E+03 7.00E+03 0.97 0.97 0.98 0.97 0.97 18.33 18.33 18.49 21.69 20.69
United States 8.37E+06 1.11E+07 8.63E+05 9.47E+06 9.78E+06 0.95 0.93 0.94 0.93 0.94 24.33 24.33 40.23 71.64 111.63
United Kingdom 2.00E+05 2.22E+05 2.12E+05 2.02E+05 2.07E+05 0.95 0.95 0.95 0.95 0.95 21.46 21.46 20.43 21.52 17.42
Italy 1.56E+05 3.38E+05 2.10E+05 2.09E+05 2.35E+05 0.96 0.92 0.95 0.95 0.94 14.98 14.98 20.00 19.62 170.63