Skip to main content
. 2020 Mar 24;8(5):2458–2471. doi: 10.1002/fsn3.1536

Table 1.

Mathematical models and related boundary conditions

Airflow model

Incompressible fluid

and laminar flow

.u=0 (1)

ρaut+ρau.u=-P+.μau+uT (2)

Reynolds number

Inside the packages: 54

At the inlet: 710

Boundary conditions

Inlet: p = p 0

Wall: u = 0

Outlet: u = u 0

Interface: u = 0

Airflow rate 0.4 L s−1 kgp −1
Air properties Similar to those of dry air at 0°C
Transient heat transfer ρaCpaTat+ρaCpau.Ta=.kaTa (3)
Heat transfer within the fluid domain Boundary conditions

Inlet: T a = T a0

Outlet: -kaTan=0

Wall: kaTan=0

Interface: Ta = Tp

Symmetry plane: kaTan=0

Air properties Similar to those of dry air at 0°C
Transient heat transfer ρpCppTpt=.kpTp (4)
Heat transfer in the strawberries domain Boundary conditions kPTP-kaTan=0 (5)
Strawberry properties

k p = 0.57 wm−1°C−1

C p, p = 3.95 kJ/kg °C

ρ p = 800 kg/m3

Initial temperature 16°C
Assumption No moisture loss during the cooling

In the above equations, Cp and ρ denote the specific heat capacity and density, respectively u and P represent the air velocity and pressure, respectively; k is thermal conductivity; and T shows the temperature. Subscripts a and p indicate the air and the product, respectively.