Table 1.
Parameters | LMT | NBT | LR | ANN | SVM | |||||
---|---|---|---|---|---|---|---|---|---|---|
T * | V * | T | V | T | V | T | V | T | V | |
True positive | 78 | 19 | 77 | 18 | 80 | 19 | 76 | 16 | 77 | 18 |
True negative | 81 | 19 | 83 | 20 | 81 | 19 | 73 | 17 | 83 | 20 |
False positive | 11 | 3 | 12 | 4 | 9 | 3 | 13 | 6 | 12 | 4 |
False negative | 8 | 3 | 6 | 2 | 8 | 3 | 16 | 5 | 6 | 2 |
Sensitivity (%) | 0.907 | 0.864 | 0.928 | 0.900 | 0.909 | 0.864 | 0.826 | 0.762 | 0.928 | 0.900 |
Specificity (%) | 0.880 | 0.864 | 0.874 | 0.833 | 0.900 | 0.864 | 0.849 | 0.739 | 0.874 | 0.833 |
Accuracy (%) | 0.893 | 0.864 | 0.899 | 0.864 | 0.904 | 0.864 | 0.837 | 0.750 | 0.899 | 0.864 |
MAE | 0.207 | 0.216 | 0.225 | 0.225 | 0.213 | 0.216 | 0.241 | 0.235 | 0.223 | 0.246 |
RMSE | 0.304 | 0.313 | 0.319 | 0.341 | 0.311 | 0.314 | 0.349 | 0.358 | 0.318 | 0.369 |
AUC | 0.944 | 0.936 | 0.918 | 0.874 | 0.939 | 0.936 | 0.911 | 0.871 | 0.899 | 0.864 |
T *: Training, V *: Validation.