Skip to main content
. 2020 Apr 16;17(8):2749. doi: 10.3390/ijerph17082749

Table 1.

Model performances of the applied data-mining approaches for the training and validation datasets.

Parameters LMT NBT LR ANN SVM
T * V * T V T V T V T V
True positive 78 19 77 18 80 19 76 16 77 18
True negative 81 19 83 20 81 19 73 17 83 20
False positive 11 3 12 4 9 3 13 6 12 4
False negative 8 3 6 2 8 3 16 5 6 2
Sensitivity (%) 0.907 0.864 0.928 0.900 0.909 0.864 0.826 0.762 0.928 0.900
Specificity (%) 0.880 0.864 0.874 0.833 0.900 0.864 0.849 0.739 0.874 0.833
Accuracy (%) 0.893 0.864 0.899 0.864 0.904 0.864 0.837 0.750 0.899 0.864
MAE 0.207 0.216 0.225 0.225 0.213 0.216 0.241 0.235 0.223 0.246
RMSE 0.304 0.313 0.319 0.341 0.311 0.314 0.349 0.358 0.318 0.369
AUC 0.944 0.936 0.918 0.874 0.939 0.936 0.911 0.871 0.899 0.864

T *: Training, V *: Validation.