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Abstract
The human gut is colonized by a community of microbiota, primarily bacteria,
that exist in a symbiotic relationship with the host. Intestinal microbiota-host
interactions play a critical role in the regulation of human physiology.
Deleterious changes to the composition of gut microbiota, referred to as gut
dysbiosis, has been linked to the development and progression of numerous
diseases, including cardiovascular disease (CVD). Imbalances in host-microbial
interaction impair homeostatic mechanisms that regulate health and can activate
multiple pathways leading to CVD risk factor progression. Most CVD risk
factors, including aging, obesity, dietary patterns, and a sedentary lifestyle, have
been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal
inflammation and reduced integrity of the gut barrier, which in turn increases
circulating levels of bacterial structural components and microbial metabolites,
including trimethylamine-N-oxide and short-chain fatty acids, that may facilitate
the development of CVD. This article reviews the normal function and
composition of the gut microbiome, mechanisms leading to the leaky gut
syndrome, its mechanistic link to CVD and potential novel therapeutic
approaches aimed towards restoring gut microbiome and CVD prevention. As
CVD is the leading cause of deaths globally, investigating the gut microbiota as a
locus of intervention presents a novel and clinically relevant avenue for future
research.
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Core tip: As cardiovascular diseases (CVD) remain the leading cause of mortality, this
article reviews the current literature dysbiosis and its role in CVD progression to present
a novel therapeutic avenue. In this paper, we provide a comprehensive review on the
composition and development of gut microbiota, its changes (dysbiosis) due to
endogenous and exogenous factors and the mechanistic association of dysbiosis with
development of CVD. Additionally, we explore the potential therapeutic approaches
focused at restoring gut microbiota and their impact on CVD.
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INTRODUCTION
The  human  body  hosts  trillions  of  microorganisms,  and  together  they  form  an
interactive ecosystem within and without outside world. The changes and interactions
within this ecosystem affect the human body in health and diseases. The entourage of
the associated microflora in the host is referred to as the microbiome. Majority of the
microflora colonizing human body are found in the gastrointestinal tract, especially in
the colon. The gut microbiota plays a major role in maintaining nutrition and immune
system, which, in turn, affects the host's susceptibility and response to pathologic
conditions. Imbalance in the intestinal microbiome, also known as gut dysbiosis, is
associated  with  several  conditions  including gastrointestinal  disorders,  asthma,
allergies,  central  nervous  system  disorders,  metabolic  syndrome,  cancers  and
cardiovascular disease (CVD)[1,2].

CVD, a leading cause of death worldwide, stems from risk factors like smoking,
lipid metabolism, diabetes and unregulated blood pressure. Atherosclerosis, the key
pathophysiologic  mechanism  underlying  the  development  of  CVD,  involves  a
complex interaction of vasculature, immune system and lipid metabolism. The gut
microbiome affects all the component risk factors of atherosclerosis - both directly and
indirectly, thus playing an important, albeit poorly understood role, in CVD[2]. In this
review, we outline the role of gut microbiota in CVD and areas of future research and
potential interventions.

HUMAN GUT MICROBIOTA

Composition, development and function
It is estimated that the human gut is home to approximately 1000 to 1150 microbial
species[3]. The microbial gene pool has been shown to exceed the size of the human
genome and is  termed as metagenome[4].  The international  Metagenomics of  the
Human  Intestinal  Tract  Project  identified  the  gene  database  of  the  human  gut
microbiome, from stool samples of 124 individuals who were healthy, overweight and
obese and patients with inflammatory bowel disease. This study found 3.3 million
non-redundant microbial genes, derived from 576.7 gigabases of sequence, which is
approximately 150 times larger than the human genome size[3]. The two major phyla,
Bacteroidetes and Firmicutes accounted for 90% of microbial species inhabiting human
gut, with the rest comprised of Actinobacteria, Cyanobacteria, Fusobacteria, Proteobacteria
and Verrucomicrobia[3,5,6].

Starting  from  birth,  multiple  factors  (both  intrinsic  and  extrinsic)  affect  the
development of human gut microbiota pool including host genome, geography and
lifestyle factors (e.g. diet, disease, antibiotic exposure, etc.) (Figure 1)[7]. In the perinatal
life,  maternal  flora,  delivery method,  breastfeeding,  and weaning off  breastmilk
affects  the  development  of  microbiome.  Notably,  the  gut  microbiota  of  infants
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delivered vaginally consists of Lactobacillus, Prevotella, and Atopobium, whereas babies
delivered by caesarean section predominantly carry maternal skin microflora in their
guts,  consisting mainly of  Staphylococcus[8].  As  the  infant  matures,  the  dominant
aerobic microbiome diversifies to form an anaerobic environment, as evidenced by a
high abundance of Bifidobacteria and Clostridia in adolescents compared to adults[9].
Interestingly, the metabolic environment of the gut changes as the microbiota evolves
with age. The composition of core gut microbiota has been shown to be essentially
stable throughout adulthood[9]. Changes occur with old age in accordance with the
decline of physiological functions (Figure 2).  As the immune system declines, an
increase in facultative anaerobes, a shift in the ratio of Bacteroidetes to Firmicutes phyla,
and a marked decrease in Bifidobacteria have been noted[9].

The gut microbiome plays an important function in both healthy and diseased
individuals.  It  protects  the host  from epithelial  cell  injury and enteropathogens,
regulates fat metabolism, affects the absorption of various nutrients and optimizes
digestion[10,11]. The immune system is continuously modified by the introduction of
components  of  the  microbiome  through  the  leaks  in  the  intestinal  wall.  This
interaction  shapes  the  immune  system,  which  in  turn  also  changes  the  gut
microbiota[7,12].

Leaky gut syndrome
Intestinal  mucosal  epithelial  barrier,  which protects  the internal  milieu from the
hostile external environment, is maintained by the formation of tight junctions (TJs, a
complex made of intramembranous proteins, occludin and several molecules from
claudin family of proteins) that spread between the epithelial cells, thus creating a
semi-permeable seal[13]. Lipopolysaccharides (LPS, an endotoxin) is a component of
Gram-negative  bacterial  cell  wall  and  is  a  known  inducer  of  the  inflammatory
response. LPS, via  toll-like receptors (TLRs) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway, induces expression of inflammatory
mediators and activates the innate immune system[14]. Higher levels of bloodstream
endotoxins (especially > 50 pg/mL) have been associated with a threefold increased
risk of atherosclerosis[15]. Gut microbiota is a large source of LPS, and under normal
conditions with a functional intestinal barrier, it causes no harm and lower levels of
LPS have been detected in healthy subjects[16,17]. In a diseased state, this barrier loses its
protective function leading to increased intestinal permeability,  especially to the
locally  produced LPS by the  gut  bacteria.  Earlier,  it  was  thought  that  leaky gut
develops  because  of  specific  pathological  conditions,  but  more  recently,  several
studies have indicated a causal role of leaky gut rather than a consequence of the
pathologic conditions[18-20]. In order to understand the role of gut microbiota in CVD,
we have first to understand the factors contributing to the leaky gut syndrome.

Nutritional factors
Dyslipidemia is a known risk factor for CVD. High-energy diet and excessive fat
intake are associated with significantly increased levels of LPS in blood[21,22].  Two
pathways are proposed to be involved in the increased LPS with such diets - direct
and indirect.  In the direct pathway, food high in fat  content causes an increased
accumulation of chylomicrons increasing the local intercellular pressure contributing
to loosening of the tight junctions. The loosening of tight junctions allows a generous
influx of larger molecules such as LPS[23,24]. In the indirect pathway, the dietary fat
stimulates mast cell activation in the intestinal mucosa with subsequent release of
histamine  and  other  inflammatory  mediators  known  to  increase  intestinal
permeability[25]. Similar to a high-fat diet, high carbohydrate intake can also lead to
increased intestinal permeability and endotoxins levels[26].  With the expansion of
industrial  food processing,  the  human gut  is  increasingly  exposed to  new food
additives  such  as  nanoparticles,  emulsifiers,  organic  solvents,  and  microbial
transglutaminases. These products compromise the integrity of the intestinal barrier
and expose the immune system to a number of foreign particles[27].

Endogenous factors
Genetic susceptibility has been implicated in several autoimmune intestinal diseases
that  may  contribute  to  the  leaky  gut  such  as  celiac  disease  and  autoimmune
enteropathy[28].  Zonulin  is  a  physiological  modulator  of  TJs  and  is  activated  by
intestinal mucosa-microbiota interactions. Zonulin regulates antigen trafficking, and
its upregulation in genetically susceptible individuals can lead to inflammatory and
autoimmune processes[29]. Autoimmune disorders have been seen as a consequence of
increased intestinal wall permeability; however, the reverse (i.e. autoimmune disorder
causing increased intestinal wall permeability) has also been suggested in animal
studies[30].

Other endogenous factors include the role of alterations in the enteric nervous
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Figure 1

Figure 1  Factors affecting gut microbiome development.

system, and conditions compromising intestinal integrity. The enteric nervous system
is a collection of neurons in the gastrointestinal tract, which functions independently
from  the  central  nervous  system  secreting  various  neurotransmitters  including
serotonin and histamine. In murine models, the downregulation of serotonin reuptake
transporter has been associated with increased proinflammatory bowel response,
increased  intestinal  permeability  and  increased  fructose-induced  endotoxin
translocation leading to liver steatosis[31-33]. Studies have reported intestinal insult like
major abdominal surgeries, shock and trauma compromises intestinal integrity as a
cause or as a consequence of systemic inflammation[34].

Intestinal infections
The integrity of the intestinal barrier is also prone to many pathogen microorganisms
and toxins. Helicobacter pylori can cause interruption of TJs by delivering cytotoxin-
associated  gene  A,  which  results  in  loss  of  polarity  of  epithelial  cells [35 ,36].
Enteropathogenic Escherichia coli secretes EspM and NIeA proteins which can induce
TJ mislocalization[37,38]. Clostridium difficile toxin A increases paracellular permeability
and translocation of zonula occludens-1 protein leading to degradation of filamentous
actin[39].  TJ  disruption  was  also  implicated  in  cases  of  infection  with  Vibrio
parahaemolyticus and Salmonella enterica[40,41].

Lifestyle factors
Chronic stress and alcohol consumption can also affect the gut microbiome. Studies
suggest a key role of corticotropin-releasing factor (CRF) and its receptors (CRFR1
and CRFR2)  in  the  pathophysiological  mechanism of  development  of  the  leaky
gut[42,43]. Acetaldehyde, a product of alcohol metabolism, promotes phosphorylation of
tight junction proteins in the intestinal epithelium causing direct damage in addition
to indirect damage by an increase in nitric oxide which damages microtubules[44].
Alcohol also alters  the composition of  gut microbiota with an increase in Gram-
negative bacteria[44].

ROLE GUT MICROBIOTA IN CARDIOVASCULAR DISEASES
Atherosclerosis  is  an  inflammatory  disease  with  a  growing  body  of  evidence
supporting a potential  autoimmune background[45].  Infection is  one of  the major
contributors  to  inflammation  in  the  body  and  is  a  proposed  mechanism  of
atherosclerosis. A large number of microorganisms such as Chlamydophila pneumoniae,
Porphyromonas gingivalis,  Helicobacter  pylori,  Influenza A virus,  Hepatitis  C virus,
cytomegalovirus, and human immunodeficiency virus have been associated with an
increased  risk  of  cardiovascular  diseases [46].  Infections  contribute  towards
atherosclerosis via two predominant mechanisms: direct infection of the blood vessel
wall (making it prone to plaque formation), or indirectly with an infection at a distant
site by promoting proinflammatory mediators from a systemic immune response
affect plaque growth (Figure 3)[47].  Additionally, dysbiosis also contributes to the
production of atherosclerotic metabolites in the gut like trimethylamine N-oxide
(TMAO) and can alter bile acid metabolism[48]. In this section, we will discuss the role
and the evidence for each of the proposed mechanisms.
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Figure 2

Figure 2  Evolution of gut microbiome with age and host’s immune function.

Direct infection
Over 50 species of bacterial DNA have been observed in atherosclerotic plaques[49].
Proteobacteria phylum (Chryseomonas and Helicobacter genera) is found to be most
abundant in atherosclerotic plaques[49]. Firmicutes phylum (Anaeroglobus, Clostridium,
Eubacterium, Lactobacillales and Roseburia genera) is predominantly found in the oral
and gut cavity and is also present in atherosclerotic plaques[49]. Other bacteria that
have  been  shown  to  be  altered  in  the  gut  among  patients  with  atherosclerotic
cardiovascular disease includes Lactobacillales,  Collinsella  (stenotic atherosclerotic
plaques in the carotid artery leading to cerebrovascular events), Enterobacteriaceae and
Streptococcus  spp (Table 1)[50,51].  In fact,  it  has been suggested that gut microbiota,
especially Bacteroides, Clostridium and Lactobacillales could be considered as diagnostic
markers in patients suffering from coronary artery disease[52].

Indirect infection
Microorganisms,  through inflammatory cytokine  production and stimulation of
acute-phase reactants, contribute to the development of atherosclerosis by further
adding to the chronic inflammation within the atheromatous plaques[46]. In murine
models, the use of antibiotics has shown an alteration in the gut microbiome, which
affects carbohydrate and lipid metabolism. Initial studies investigating the role of
pathogens in the development of atherosclerotic plaques had accounted for single
microorganisms and not the overall microbiome, more recently it is being recognized
that the aggregate number of microorganisms which an individual is colonized or
infected with correlates more with atherogenesis, a concept referred to as "pathogen
burden" or "infectious burden"[53].

Another  possible  mechanism for  increased inflammation is  cross-reactivity or
molecular  mimicry between self-antigens  and bacterial  antigens  like  heat-shock
proteins and oxidized low-density lipoproteins[54].  Human heat-shock protein 60
(hHSP60) is expressed on the arterial endothelium in response to stress such as acute
hypertension, hypercholesterolemia and in reperfusion injury. Also, a major antigenic
component  of  bacteria  during  infection  is  the  bacterial  heat-shock  protein  60s
(HSP60s). Due to the high degree of homology between human and bacterial HSP, it
is  suggested  that  the  antibodies  formed  against  bacteria  can  target  host  cells
expressing hHSP60. Indeed, high titres of serum antibody to mycobacterial HSP-65
were found in subjects with coronary or carotid atherosclerosis and post-myocardial
infarction state[55].

As mentioned before,  dysbiosis also leads to alteration in the immune system,
which causes increased inflammation and atherogenesis. TLRs have been known to
play a crucial role in bacterial infection and activation of the innate immune response.
Once activated by ligands such as LPS, TLR dimerizes with the interleukin-1 receptor
(IL-1R)  forming a  complex  that  binds  myeloid  differentiation primary response
protein, MyD88, leading to downstream signalling cascade ultimately activating NF-
κB. This cascade results in stimulation of the synthesis of proinflammatory cytokines,
chemokines  and  costimulatory  molecules[56].  TLR’s  expression  is  found in  most
cardiovascular cells like endothelial cells, cardiomyocytes, adventitial fibroblasts, and
macrophages.  Among  TLRs,  TLR4  is  best  understood.  Studies  have  described
activation of  TLR4 by saturated fatty acids,  acting as a  ligand through the same
downstream pathways as for LPS resulting in the production of proinflammatory
cytokines and chemokines[57,58]. Additionally, saturated fatty acids contribute to the
induction of  the inflammation by alternating gut  microbiota in favour of  Gram-

WJC https://www.wjgnet.com April 26, 2020 Volume 12 Issue 4

Novakovic M et al. CVD and gut microbiota

114



Figure 3

Figure 3  Proposed mechanisms of micro pathogen mediated atherosclerotic cardiovascular diseases.
ASCVD: Atherosclerotic cardiovascular diseases.

negative bacteria, thus, increasing LPS levels. These processes promote translocation
of bacteria and endotoxins into the bloodstream from the intestinal lumen due to an
increase in intestinal permeability, further adding to the activation of TLR4[59]. In the
animal  models  with  a  genetic  deficiency  of  TLR4  and  MyD88  genes,  reduced
proinflammatory  cytokines  and  decreased  plaque  lipid  content  and  aortic
atherosclerosis  were  observed[60].  Human  studies  have  also  shown  increased
expression of TLR1, TLR2 and TLR4 in atherosclerotic plaques, suggesting a potential
role in pathogenesis[61].

Production of proatherogenic metabolites
TMAO is an intestinal microbiota metabolite of choline and phosphatidylcholine.
Dietary components such as choline, phosphatidylcholine, and carnitine, found in
various animal-based products and energy drinks, are metabolized by gut microbiota
to trimethylamine (TMA), and then oxidized by flavin monooxidases 3 in the liver to
TMAO[62,63]. Flavin monooxidases 3 is an important regulator of TMAO synthesis and
is regulated by farnesoid X receptor (FXR) whose expression can be upregulated by
bile acids. TMAO can lead to atherogenesis via  multiple mechanisms, though the
underlying pathway is not completely understood. It  inhibits reverse cholesterol
transport causing reduced cholesterol removal from peripheral macrophages, and
also  affects  atheroprotective  effects  of  high-density  lipoprotein  thus  promotes
atherosclerosis[64].  TMAO  also  acts  on  platelets  and  increases  platelet  hyperre-
sponsiveness by enhancing the stimulus-dependent release of Ca2+ from intracellular
Ca2+ stores leading to increased thrombotic risk[63]. The effects of TMAO have also
been observed in vascular cells promoting proinflammatory protein activation such as
interleukin-6, cyclooxygenase-2, intercellular adhesion molecule-1 and E-cadherin –
through the NF-κB signalling pathway[65]. Tang et al[62] showed elevated TMAO levels
were associated with increased risk of major adverse cardiovascular events, including
death, myocardial infarction and stroke over a 3-year follow-up period involving
more than 4000 human subjects. A strong correlation between TMAO levels and CVD
was noted even after adjustments of traditional risk factors. Also, an increased risk
was associated with a graded increase in TMAO levels with a significant risk of major
adverse cardiovascular events seen in the highest quartile.

There  are  an  increasing  number  of  studies  explaining  the  complex  interplay
between intestinal  microflora,  bile  acids  and metabolic  disease.  Bile  acids  affect
cardiac function and play a significant, yet poorly understood, role in CVD[66]. Direct
and indirect pathways have been proposed to explain their effects in CVD. In the
direct  pathway,  bile  acids  have  been  shown  to  interact  with  cardiac  myocytes
affecting muscle contractility and electrical excitation. In the indirect pathway, bile
acids  play  a  significant  role  in  lipid  metabolism,  plaque  formation,  endothelial
vasodilation and neovascularization of injured organs[66]. Having been metabolized by
intestinal  microflora,  bile  acid  metabolites  affect  different  metabolic  pathways
through FXR-induced signalling[67]. FXR is an endogenous bile acid sensor, a member
of the nuclear receptor family with chenodeoxycholic  acid being its  most  potent
ligand. FXR acts as a receptor-transcription factor which, after being bound by ligand,
regulates promoter activity in a coordinated manner. In adult human tissues, FXR
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Table 1  Microorganisms associated with cardiovascular disease

Microorganisms associated with cardiovascular disease

C. pneumoniae

P. gingivalis

H. pylori

Lactobacillales

Influenza A

Cytomegalovirus

Human immunodeficiency virus

Enterobacteriaceae

Streptococcus parasanguinis

Collinsella

Veillonella

Aggregatibacter

Firmicutes

Bacteroidetes

Actinobacteria

Fusobacteria

Proteobacteria

Candidate division TM7 single-cell isolate TM7c

Spirochaetes

SR1

Tenericutes

Deinococcus-Thermus

Gemmatimonadetes

Chloroflexi

Neisseria polysaccharea

Neisseria subflava

Waddlia chondrophila

Prevotella

Beggiatoa sp. P5

Alloprevotella rava

Megasphaera micronuciformis

Acidovorax sp. CF316

Atopobium parvulum

Solobacterium moorei

Clostridium difficile

expression has been found in adrenal glands, colon, liver, small intestine, kidneys and
heart whereas no expression detected in brain, lung and skeletal muscles[68]. In vitro
studies have recognized the prevention of vascular inflammation and neointimal
proliferation as the potential roles FXR activation in the vascular smooth muscle
cells[69].

THERAPEUTIC INTERVENTIONS: IMPROVING GUT
MICROBIOME AND PREVENTING CARDIOVASCULAR
DISEASE
As our understanding of the gut microbiome and its role in CVD grows, the gut
microbiome is emerging as a major potential target for intervention among patients
with  CVD for  improving clinical  outcomes.  The currently  proposed therapeutic
interventions  are  targeted  towards  the  restoration  of  the  intestinal  barrier  and
improvement of gut microbiota. In this section, we will discuss the role of dietary
modification and supplementation in the gut microbiome, followed by the possible
role of faecal transplantation and targeting microbial enzyme pathways for further
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prevention of CVD.

Low-fermentable oligo-, di- and monosaccharides and polyols diet
Fermentable oligo-, di- and monosaccharides and polyols group includes short-chain
carbohydrates and sugar alcohols that have poor absorption in the small intestine due
to osmotic activity and undergo rapid fermentation by gut microflora[70]. Studies have
shown their potential therapeutic effects in diseases that are associated with increased
intestinal  permeability,  such as  non-celiac  gluten sensitivity  and irritable  bowel
syndrome[71-74].  These findings suggest  their  potential  role in dyslipidaemias and
atherosclerosis, though further investigations are warranted.

Dietary fibers/prebiotics
Whole-grain intake has been inversely associated with metabolic  syndrome and
mortality from CVD, independent of demographic, lifestyle and dietary factors[75].
Epidemiologic studies have also suggested a decreased risk of CVD with adequate
dietary fiber intake likely through the reduction of low-density lipoprotein levels[76].
Prebiotics are fibers, mostly oligosaccharides, that are selectively fermented (mostly
Lactobacilli and Bifidobacteria genera) and exert changes on both the composition and
function of the gastrointestinal microflora to confer benefits upon host well-being and
health[77]. Their proposed health benefits were observed in a mouse model, where a
diet rich in various inulin-type fructans, was associated with a reduced burden of
atherosclerosis[78].

Probiotics
Probiotics  are  live  viable  microorganisms  (predominantly  Lactobacilli  and
Bifidobacteria) that improve microbial balance in the gut, thus exerting positive health
effects[79].  In a randomized trial,  consumption of  live Lactobacillus  Plantarum  was
shown  to  diversify  homogenous  gut  microbial  flora  and  was  associated  with  a
reduction in incident CVD events[80]. Naruszewicz et al[81], in a study of 36 healthy
volunteers  who  were  active  smokers  showed  an  inverse  correlation  between
administration of Lactobacillus Plantarum and blood pressure levels, fibrinogen levels,
degree of adhesion of isolated monocytes and levels of proinflammatory cytokines
suggesting its potential role in primary prevention of atherosclerosis. Reduced levels
of low-density lipoprotein were noted in women with normal or moderately elevated
cholesterol after ingestion of fermented milk containing Lactobacillus acidophilus and
Bifidobacterium longum[82]. Another study found Akkermancia muciniphila to suppress
inflammation and atherosclerotic lesion formation in the apolipoprotein E-deficient
(ApoE-/-) mice. It was proposed that A. muciniphila reduce circulating endotoxins and
improve the intestinal barrier by increasing the expression of TJ proteins[83]. Looking
through the prism of intestinal microflora and gut permeability, probiotics appear to
be  promising  protective  agents,  especially  with  regards  to  prophylaxis  of
atherosclerosis. Larger clinical trials with hard clinical outcomes are awaited for this
approach to gain more credibility.

Anthocyanin
Anthocyanins  represent  a  group  of  flavonoids  that  commonly  found  in  fruits,
vegetables,  grains,  and  even  red  wine.  They  play  a  protective  role  against
atherosclerosis after being transformed to various metabolites by gut microbiota[84,85].
Protocatechuic  acid  (PCA)  is  a  metabolite  derived  from  human  gut  microbiota
metabolism of anthocyanin called cyanidin-3-O-glucoside[86]. PCA had been shown to
inhibit atherosclerosis by reducing monocyte inflammation and adhesion in ApoE-/-
mice[87,88]. PCA has also shown to decrease miR-10b expression in macrophages, which
induces gene expression promoting reverse cholesterol  transport contributing to
regression of established atherosclerotic plaque in ApoE-/- mouse model[85]. Human
studies are needed to show a clinical benefit of anthocyanin as a food supplement in
the prevention of atherosclerosis.

Faecal microbiota transplantation
Faecal microbiota transplantation (FMT) is described as the restoration of “healthy”
functional gut microflora by administrating a faecal solution from a donor into the
intestinal tract of the recipient. The beneficial effect of FMT for recurrent clostridium
difficile infection has been proven and is now a part of the guidelines for the treatment
of recurrent clostridium difficile. It has also been explored as a therapeutic intervention
in several other pathologies such as irritable bowel syndrome, metabolic syndrome,
neurodevelopmental disorders, autoimmune diseases, allergic diseases and chronic
fatigue syndrome[89,90].

In  a  mouse  model,  gut  microbial  transplantation  was  conducted  from  the
atherosclerosis-prone strain of mice and atherosclerosis–resistant strain of mice to
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apolipoprotein e null mice in which resident intestinal microbes were first suppressed
with  antibiotics.  Mice  which  received  FMT  from  atherosclerosis-prone  strain
demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden
as compared with recipients of atherosclerosis-resistant strain[91]. In another study
with  human  subjects,  allogenic  FMT  from  lean  subjects  to  obese  subjects  with
metabolic syndrome leads to improved insulin sensitivity and glucose metabolism[92].
The role of FMT as a secondary or primary prevention strategy to improve CVD
outcomes remains to be explored with a severe limitation of its delivery method and
possible complications of exposing the host to other infections.

Targeting enzyme pathways
Aortic lesions have a positive correlation with TMAO but an inverse correlation with
choline levels[93]. Inhibition of FMO gene expression has been shown to reduce TMAO
levels, alteration of lipid and cholesterol metabolism, and reduction in atherosclerotic
lesions[94-96]. A study by Wang et al[97] showed that 3,3-dimethyl-1-butanol, a structural
analogue of choline, inhibits microbial TMA lyases resulting in reduced TMAO levels
and atherosclerotic lesion development in mice. In 2018, Roberts et al[98] reported the
development of  choline analogues iodomethylcholine and fluoro-methyl choline
which can irreversibly inactivate choline TMA lyase activity. In animal models, these
potent  inhibitors  reduced plasma TMAO levels  >  95% after  a  single  dose,  for  a
sustained  period  and  without  any  reported  toxicity.  The  inhibitor  selectively
accumulated within intestinal microbes to millimolar levels, a concentration over 1-
million-fold higher than needed for a therapeutic effect[98]. These studies reveal that
mechanism-based inhibition of gut microbial TMA and TMAO production reduces
thrombosis potential, a critical adverse complication in heart disease. They also offer a
generalizable approach for the selective nonlethal targeting of gut microbial enzymes
linked to host disease limiting systemic exposure of the inhibitor in the host. Despite
holding significant potential, these agents still need to undergo human testing for
efficacy and safety evaluation.

CONCLUSION
Gut microbiota represents an inseparable part of the human organism and remains an
area of exploration in its role in the development of various pathological conditions.
So far, significant progress of acknowledging our co-habitants has been made with
respect to discovering its genome, functions, composition differences across different
age and cultural groups. In addition, the recognition of the leaky gut syndrome has
paved the way to reveal potential pathophysiological mechanisms behind numerous
associations  between  the  gut  microbiota  and  CVD.  Several  factors  have  been
identified,  exogenous  and  endogenous,  in  the  leaky  gut  and  has  made  gut
microbiome alteration a potential therapeutic target in managing several diseases
including potentially CVD. However, much needs to be explored to evaluate the
translation of benefits observed predominantly in animal studies to human subjects.
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