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ABSTRACT

Background. The incidence of colorectal cancer (CRC), par-
ticularly left-sided tumors (LT), in adolescents and young
adults (AYA) is rising. Epigenetic events appear to play an
important role in tumorigenesis and cancer progression,
especially in younger patients. We compared molecular fea-
tures of LT to right-sided tumors (RT) in AYA.
Materials and Methods. A total of 246 LT and 56 RT were
identified in a cohort of 612 AYA with primary CRC. Tumors
were examined by next-generation sequencing (NGS), protein
expression, and gene amplification. Tumor mutational burden
(TMB) and microsatellite instability (MSI) were determined
based on NGS data.
Results. RT showed higher mutation rates compared with
LT in several genes including BRAF (10.3% vs. 2.8%), KRAS
(64.1% vs. 45.5%), PIK3CA (27% vs. 11.2%), and RNF43

(24.2% vs. 2.9%). Notably, additional mutations in distinct
genes involved in histone modification and chromatin rem-
odeling, as well as genes associated with DNA repair and
cancer-predisposing syndromes, were characteristic of RT;
most frequently KMT2D (27.8% vs. 3.4%), ARID1A (53.3%
vs. 21.4%), MSH6 (11.1% vs. 2.3%), MLH1 (10.5% vs. 2.3%),
MSH2 (10.5% vs. 1.2%), POLE (5.9% vs. 0.6%), PTEN (10.8%
vs. 2.3%), and BRCA1 (5.4% vs. 0.6%). MSI was seen in
20.8% of RT versus 4.8% of LT. RT had a higher frequency of
TMB-high regardless of MSI status.
Conclusion. Molecular profiling of AYA CRC revealed differ-
ent molecular characteristics in RT versus LT. Epigenetic
mechanisms and alteration in DNA repair genes warrant
further investigation and may be a promising treatment tar-
get for CRC in AYA. The Oncologist 2020;25:404–413

Implications for Practice: Colorectal cancer (CRC) in adolescents and young adults (AYA) comprises a distinct entity with different
clinicopathologic features and prognosis compared with older patients. Molecular profiling of right- and left-sided tumors in AYA is
needed to gain novel insight into CRC biology and to tailor targeted treatment in this age group. This study found that right- and left-
sided CRC show distinct molecular features in AYA, overall and in subgroups based on microsatellite instability status. Alterations in
DNA double-strand break repair and homologous recombination repair, as well as epigenetic mechanisms, appear to play a critical
role. The present molecular profiling data may support the development of personalized treatment strategies in the AYA population.

INTRODUCTION

Colorectal cancer (CRC) ranks third among the most frequent
malignancies in both men and women, representing a lead-
ing cause of cancer-related death worldwide [1]. Incidence

and mortality of CRC vary by age. Recent statistics show a
decreasing incidence and mortality in adults aged ≥50 years,
offset by an increase in the incidence of CRC in adults aged
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<50 years, the latter frequently occurring in the descending
colon and rectum [2]. The reasons behind the increasing CRC
rates in the younger population, which are expected to
increase further over the next decade, remain unclear [3].

When considering early onset CRC, the age definition of
the group referred to as “adolescent and young adults”
(AYA) is still debated [4]. Age cutoffs vary widely among
published studies; some authors recommend an upper limit
of 50 years of age, based on historically recommended CRC
screening guidelines in the average-risk population, whereas
others select patients below the age of 40 years based on
physiological and pathological variables [5–7]. In addition,
data on outcomes of younger patients with CRC are inconsis-
tent, with reports showing either a worse or a better out-
come when compared with their older counterparts [5–7].

Hereditary syndromes such as Lynch syndrome (LS), charac-
terized by germline mutations in one of the mismatch repair
(MMR) genes, or familial adenomatous polyposis, caused by a
germline mutation in the APC gene, are more common among
AYA and account for up to 35%of early-onset CRC [8, 9]. Sporadic
tumors, however, represent the majority of CRC in AYA [10].
Notably, clinicopathologic and molecular features of CRC are dif-
ferent between AYA and older patients. AYA patients more often
present with advanced-stage disease (stage III or IV), and their
tumors are likely to appear more histologically aggressive by way
of mucinous or signet ring features and/or poor differentiation
[11]. Nodal involvement in early stage rectal cancer is also more
frequent in patients under 50 years of age compared with older
individuals [12]. These clinicopathologic features are likely multi-
factorial and may highlight underlying molecular differences in
CRC biology in different age groups. There is also a probability
that both patients and practitioners consider alternate causes of
symptoms in younger individuals, based on the understanding
that CRC incidence is a function of older age, a pattern that could
lead to a late cancer diagnosis and higher staged disease at diag-
nosis [13, 14]. Available data from AYA compared with older
adults show similar frequencies of TP53, APC, BRAF, and KRAS
somaticmutations [15]; higher rates ofMYCBP2, BRCA2, PHLPP1,
TOPORS, ATR, FBXW7, and POLE mutations [16, 17]; increased
frequency of CpG island methylator phenotype (CIMP)-low [18];
and LINE-1 hypomethylation [19]. Microsatellite instability (MSI)
characterizes 20%–40% of early-onset CRC and is mostly associ-
ated in younger patients (<30 years) with LS, identifying a subset
of CRC with distinctive features and different prognosis and ther-
apeutic implications [20].

Tumor sidedness has emerged as a prognostic and predic-
tive biomarker in metastatic CRC (mCRC), with evidence of
poorer outcomes in right-sided mCRC and variable responses
to biological therapy based on the site of origin of the tumor
[21–24]. Comparative molecular analyses of right- and left-
sided CRC reveal molecular distinctions such as different
mutation rates in TP53, KRAS, PIK3CA, and BRAF; distinct
methylation patterns; and different MSI rates. These molecu-
lar variations likely contribute to distinct tumor phenotypes
[25–27]. Interestingly, the rates of left- and right-sided CRC
correlate with age, and there is a higher incidence of left-sided
CRC in patients younger than 50 years. In our recent study on
the molecular characterization of left-sided CRC in AYA versus
older adults, higher mutation rates in genes associated with
cancer syndromes were observed in AYA. There were also

greater frequencies of MSI-high (MSI-H) status and high tumor
mutational burden (TMB). Additionally, mutations in genes
involved in histone modification were found to be significantly
increased compared with older patients with CRC [28].

To the best of our knowledge, no dedicated, extensive
gene mutational comparisons have been reported based on
tumor location in AYA. Herein, we explore and characterize the
molecular makeup of left- and right-sided CRCs in populations
under the age of 40.

SUBJECTS, MATERIALS, AND METHODS

Patients
Comprehensive genomic profiles of 612 consecutive AYA CRC
analyzed between 2015 and 2017 were extracted from a data-
base in which individuals had been deidentified (Caris Life Sci-
ences, Phoenix, AZ). Samples were categorized based on
primary tumor location as follows: tumors arising from the
cecum to the hepatic flexure of the transverse colon were clas-
sified as right-sided, and tumors arising from the splenic flex-
ure to the rectum were classified as left-sided. Tumors without
any annotation on specific location (not otherwise specified
[NOS]) were excluded from the analysis. Available clinical fea-
tures recorded in the database included patients’ gender and
age. No information was available regarding tumor stage.

Tumor tissue used in the analysis was formalin-fixed and
paraffin-embedded (FFPE). Both specimen and tumor quality
were confirmed by a board-certified pathologist prior to multi-
plex testing. All molecular techniques met Clinical Laboratory
Improvement Amendments and College of American Pathol-
ogy standards.

Next-Generation Sequencing
Direct sequencing was performed on genomic DNA isolated
from FFPE tumor specimens using the whole exome NextSeq
platform (La Jolla, CA). An Agilent SureSelect XT assay was
used to enrich 592 whole-gene targets. All reported variants
were detected with >99% confidence at an average depth of
at least 700X.

MSI by Next-Generation Sequencing and Fragment
Analysis
MSI was examined using over 7,000 target microsatellite loci
and compared with the reference genome hg19 from the Uni-
versity of California, Santa Cruz Genome Browser database. The
number of microsatellite loci that were altered by somatic inser-
tion or deletion was counted for each sample. Only insertions or
deletions that increased or decreased the number of repeats
were considered.MSI–next-generation sequencing (NGS) results
were compared with results from over 2,000 matching clinical
cases analyzed with traditional polymerase chain reaction–
based methods. The threshold to determine MSI by NGS was
determined to be 46 or more loci with insertions or deletions to
generate a sensitivity of >95% and specificity of >99%.

Fragment analysis (FA) included fluorescence-labeled
primers (Promega, Madison, WI) for coamplification of seven
biomarkers, including five mononucleotide repeat markers
(BAT-25, BAT-26, NR-21, NR-24, and MONO-27) and two pen-
tanucleotide repeat markers (Penta C and D). A tumor
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specimen was considered MMR deficient (MMR-d) if two or
more mononucleotide repeats were abnormal. If one mono-
nucleotide repeat was abnormal or repeats were identical
between the tumor and adjacent normal tissue, then the
tumor sample was considered mismatch repair proficient.

TMB by NGS
TMB was measured by counting all somatic nonsynonymous
missense mutations found per tumor (592 genes and 1.4
megabases [Mb] sequenced per tumor). The threshold to
define TMB-high was ≥17 mutations per Mb and was
established by comparing TMB with MSI by fragment analysis
in CRC cases, based on reports of TMB having high concor-
dance with MSI-H in CRC [27]. Values below 17 mutations per
Mb were considered intermediate (7–16) or low (<7) and
were grouped together for chi-square analysis.

In Situ Hybridization Methods
Using automated staining (Benchmark XT, Ventana) and
imaging (BioView, Billerca, MA) techniques, chromogenic in
situ hybridization assessed ERBB2 (HER2/CEP17 [chromo-
some 17 centromere] probe) and MET (c-MET/CEP7 probe;
Abbott Molecular/Vysis, Abbott Park, IL) gene copy alter-
ations. The ratio of gene to pericentromeric regions of chro-
mosome 7 (MET) and 17 (HER2) was used to determine
gene amplification. Cutoffs for amplification were deter-
mined as previously described [27].

Immunohistochemistry Analysis
Automated staining techniques (Benchmark XT, Ventana,
Tucson, AZ; and AutostainerLink 48, Dako, Carpinteria, CA)
and commercially available detection kits were performed on
FFPE tumor specimens. Positive and negative controls were
included in each analysis to ensure staining efficacy and consis-
tency across batches. Threshold values for positive expression
were optimized for each antibody according to the manufac-
turer’s recommendations. Details on immunohistochemistry
(IHC) interpretations have been described previously [27].

Statistical Analysis
Standard descriptive statistics were used for this retrospective
analysis. Pearson’s chi-square test was used to obtain p values
(IBM SPSS Statistics, Version 25.0., IBM, Armonk, NY). Only
p values <.05 were considered statistically significant.

RESULTS

Patient Demographics and Tumor Characteristics
Out of 612 available primary CRCs arising in patients younger
than 40 years of age (AYA), tumor location was annotated in
302 cases. Overall, 246 left-sided primary tumors (LT) and
56 right-sided tumors (RT) were included in the analysis
(Fig. 1). Looking at the distribution of LT, 42.6% had a rectal
primary, 32.9% had a sigmoid primary, 13.4% were from the
rectosigmoid colon, 5.7% were from the descending colon,
2.4% were from the splenic flexure, and the rest were LT with
no specific location reported. RT distribution was as follows:
50.0% from the cecum, 30.4% from the ascending colon,
12.5% from the hepatic flexure, and the rest unspecified.

Available patient characteristics were comparable in the
LT and RT groups. Median age was 35 years (range, 18–40)
for LT and 36 years (range, 18–40) for RT. In addition, gen-
der distribution was balanced between the two cohorts,
with female patients comprising 50% in the LT group and
47.1% in the RT cohort.

Mutational Profile via NGS in LT Versus RT
Pathogenic and presumed pathogenic mutation rates were
compared between LT and RT AYA CRC (Figs. 2 and 3). LT had
significantly higher mutation rates in APC (74.6% vs. 51.4%,
p = .005) and TP53 (79% vs. 51.3%, p < .001). RT, in contrast,
showed significantly higher mutation rates in BRAF (10.3%
vs. 2.8%, p = .036), KRAS (64.1% vs. 45.5%, p = .035), PIK3CA
(27% vs. 11.2%, p = .012), RNF43 (24.2% vs. 2.9%, p < .001),
and several other genes. Additionally, some mutations were
restricted to RT including CDH1 (7.9%), MRE11 (6.5%), SMAD2
(5.7%), and NOTCH1 (5.6%). Also found on RT were lone alter-
ations in PRKDC, JAK1, POT1, AKT1, and EGFR.

Numerous genes associated with cancer-predisposing syn-
dromes, such as LS, juvenile polyposis syndrome (JPS), PTEN
hamartoma tumor syndrome (PHTS), neurofibromatosis type
2 (NF2), and hereditary breast ovarian cancer (HBOC) syn-
drome, were found to have a significantly higher incidence of
mutations in RT than LT: MSH6 (11.1% vs. 2.3%, p = .013),
MLH1 (10.5% vs. 2.3%, p = .015), MSH2 (10.5% vs. 1.2%,
p = .002), POLE (5.9% vs. 0.6%, p = .02, comprising two P286R
mutations and one A465V mutation), PTEN (10.8% vs. 2.3%,
p = .014), BMPR1A (5.3% vs. 0%, p = .002), BRCA1 (5.4%
vs. 0.6%, p = .023), BAP1 (2.6% vs. 0%, p = .033), BRIP1 (3.2%
vs. 0%, p = .022), NF2 (2.6% vs. 0%, p = .031), and MEN1
(2.6% vs. 0%, p = .032).

Furthermore, two genes responsible for histone modifi-
cation and chromatin remodeling, respectively, were also
significantly more commonly mutated in RT: KMT2D (27.8%
vs. 3.4%, p < .001) and ARID1A (53.3% vs. 21.4%, p = .02).

As distal tumors are more prevalent in young patients
with onset CRC, we investigated whether there were distinct
properties associated with rectal cancers. In total, 105 rectal

Figure 1. Study diagram. Flow chart showing the inclusion and
exclusion of samples in the study.
Abbreviations: AYA, adolescent and young adult; CRC, colorec-
tal cancer; NOS, not otherwise specified.
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cancers were identified based on a conservative assessment
(42.6% of LT, 105/246). The highest gene mutation rates were
as follows: TP53, 80.8%; APC, 71.2%; KRAS, 41.9%; ARID1A,
20.0%; and FBXW7, 20.0%. With the exception of FBXW7,
these gene mutation rates were comparable to those seen in
the LT cohort as a whole. The incidence of MSI-H and ERBB2
(HER2) amplification in rectal tumors, 4.8% and 4.1%, respec-
tively, were also comparable to overall LT findings.

MSI via NGS or FA, TMB by NGS
Among tumors with available MSI status, 20.8% (10/48) of
RT were MSI-H compared with 4.8% (10/207) of LT (p = .05).

We further evaluated TMB according to primary site of
origin in 206 tumors (36 RT and 170 LT; Fig. 4). TMB-high was
of greater frequency in RT compared with LT (30.6% vs. 6.5%,
p < .001). A higher TMB rate was also observed in RT when
restricting the analysis to microsatellite-stable (MSS) tumors,
albeit at lower rates (7.4% [2/27] vs. 1.2% [2/161], p = .04),
supporting a higher TMB in RT compared with LT, indepen-
dent of MSI status.

Mutational Profile in MSS and MSI-H Tumors
Considering the higher incidence of MMR-d in AYA and the
distinctive clinicopathological and molecular features of MSI-
H CRC, we conducted another comparison between RT and
LT based on MSI status.

The highest mutational rates in the aggregated MSS group
(n = 235), irrespective of tumor site of origin, were observed
in TP53 (79.9%), APC (72.3%), KRAS (47.6%), ARID1A (17.1%),
PIK3CA (12.7%), SMAD4 (12.2%), and FBXW7 (11%; Fig. 5). RT
(n = 38) and LT (n = 197) showed significant differences in
mutational rates comparable to findings in the global popula-
tion such as APC, TP53, BRAF, KRAS, PIK3CA, SMAD2, AKT1,
EGFR, PTEN, BRCA1, and NF2 (Fig. 6). Notably, no significant
differences were observed in ARID1A mutations according to
tumor side in the MSS group, whereas KMT2D mutations

were still significantly higher in RT compared with LT but at a
lower frequency (7.4% vs. 0.7%, p = .018).

Comparison by tumor site of origin in the MSI-H sub-
group (n = 20, 10 LT and 10 RT) showed that RNF43 muta-
tions were associated with RT, whereas SMARCA4 mutations
with LT (p < .05). Mutations in KMT2D showed a rate of
100% (8/8) in RT compared with 50% (3/6) in LT (p = .024;
Table 1).

Protein Expression and Gene Amplification
When examining protein expression by means of IHC, higher
rates of protein loss of MLH1 (12.2% vs. 1.8% p = .001) and
PMS2 (14.3% vs. 2.8%, p = .001) in RT compared with LT were
noted, which is consistent with the higher mutation rate of
MMR genes observed in RT. Additionally, RT showed a signifi-
cantly higher rate of PTEN loss compared with LT, both in the
global study population (48.0% vs. 30.1%, p = .016) and in the
MSS group (45.7% vs. 28.8%).

RT showed a higher rate of copy number alterations com-
pared with LT, although significant differences were only
found in KRAS (5.6% [2/36] vs. 0.6% [1/170], p = .024), ERCC4
(2.8% [1/36] vs. 0.0% [0/169], p = .03), and MNX1 (2.8%
[1/36] vs. 0.0% [0/170], p = .029). ERBB2 was amplified at a
higher frequency in RT compared with LT (5.4% vs. 2.9%),
although the difference was not statistically significant.

Finally, in the MSI-H subgroup, MMR protein staining
showed a lower expression of MLH1 in RT (40.0% vs. 70.0%,
p = .178) and lower expression of MSH2 in LT (44.0%
vs. 70.0%, p = .178), although not statistically significant.

DISCUSSION

The rising prevalence of early onset CRC represents a global
health issue. The increasing rates of CRC in AYA are primarily
driven by distal tumors, yet the underlying etiology remains
unknown. Because of their young age, AYA patients often

RT LT*

TP53 (79.0%)
APC (74.6%)
KRAS (45.5%)
ARID1A (21.4%)
PIK3CA (11.2%)
KMT2D (3.4%)
RNF43 (2.9%)
BRAF (2.8%)
MLH1 (2.3%)
PTEN (2.3%)
MSH2 (1.2%)

KRAS (64.1%)
ARID1A (53.3%)
APC (51.4%)
TP53 (51.3%)
KMT2D (27.8%)
PIK3CA (27.0%)
RNF43 (24.2%)
PTEN (10.8%)
MLH1 (10.5%)
MSH2 (10.5%)
BRAF (10.3%)
POLE (5.9%)
BRCA1 (5.4%)

Figure 2. Main significant gene mutation rates observed between RT and LT in adolescent and young adult (AYA) colorectal cancer
(CRC) using next-generation sequencing (NGS). Summary of main significant differences (p < .05) in mutation rates by NGS in RT
versus LT AYA CRC.
*LT genes not mentioned here but highlighted for RT had a frequency < 1%.
Abbreviations: LT, left-sided tumor; RT, right-sided tumor.
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receive more aggressive treatments, but this approach has
shown no corresponding improvement in survival [13]. Recent
evidence has revealed distinct clinicopathological features and
underlying molecular characteristics (e.g. methylation status,
MSI, and somatic mutations) between CRC in AYA and older
patients, highlighting the need for broader genomic profiling
and a better understanding of tumor biology in younger
patients. In our study, we show distinct mutational profiles
characterizing RT and LT CRC in AYA, which may provide novel
insights into tumor biology and hence inform the tailoring of
treatment to fit this individual subgroup of patients.

Consistent with previous reports in unselected, age-
independent populations, differences in oncogenic drivers
were observed between LT and RT in our younger population,
with a markedly increased rate of oncogenic mutations in RT
compared with LT. Specifically, LT had higher APC and TP53
mutations rates, whereas RT showed higher mutation rates in
BRAF, KRAS, PIK3CA, and RNF43. Interestingly, AYA RT also
showed a higher incidence of mutations in several cancer-
related genes such as SMAD2, PTEN, CDH1, AMER1 (encoding
for a key regulator of the WNT pathway), NOTCH1, AKT1,
EGFR, JAK1, and BMPR1A. These higher alteration rates sug-
gest the critical role of specific pathways in the biology of
AYA RT and highlight potentially actionable targets for the
development of tailored treatments in this patient popula-
tion. In addition, growing evidence is accumulating on the
negative predictive impact of PIK3CA mutations, loss of PTEN

function, and activating mutations of the MAPKs or PI3 K/AKT
axis on anti-epidermal growth factor (EGFR) drugs activity
[29, 30], which may partially explain the observed absence of
benefit from anti-EGFRs in RAS wild-type RT. Our results, in
line with recent evidence, suggest caution in the use of anti-
EGFRs in AYA with RT, particularly as first-line therapy.

Higher mutational rates were observed in DNA damage
repair genes in RT compared with LT, includingMRE11, PALB2,
and PRKDC, along with BRCA1 and BAP1. Hence, alterations in
the mechanisms of DNA double-strand break and homologous
recombination (HR) repair appear to contribute to RT carcino-
genesis in AYA. Notably, inherited mutations in HR genes
(i.e., ATM and PALB2), have recently been associated with a
relative 60%–80% increase in the baseline risk of CRC [31].
Hence, mutations in HR genes might represent actionable tar-
gets using novel therapies in CRC [32]. Indeed, individuals with
breast, ovarian, and prostate cancers with underlying germline
mutations in canonical HR genes have been shown to derive
significant benefit from PARP inhibitors (PARPi) and platinum-
based chemotherapy [33–35]. In vitro studies have shown
sensitivity of HR-deficient CRC cell lines to these agents [36]
and the clinical efficacy of PARPi in patients with CRC is under
study in several trials (NCT00912743, NCT02305758,
NCT01589419, and NCT02921256).

Furthermore, genes responsible for histone modification
and chromatin remodeling, such as KMT2D and ARID1A, were
more frequently mutated in RT compared with LT. Interestingly,

65.5%

82.5%

7.7%

0%

3.6%

0%

7.1%

1.3%

29.6%

9.9%

3.6%

0%

3.6%

0%

3.4%

0%

65.5%

44.4%

7.4%

0.7%

3.7%

0%

3.4%

0%

3.7%

0%

13.8%

1.3%

3.6%

0%

55.2%

75.3%

3.7%

0%
] 0.014

] 0.026

] 0.017

] < 0.001

] 0.014

] 0.018

] 0.015

] 0.018

] 0.036

] 0.018

] 0.017

] 0.017

] 0.004

] 0.047

] 0.016

] < 0.001
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PTPN11

PTEN

PIK3CA

NF2

MSH6

MAP2K1
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KMT2D

FH

EGFR

BRCA1

BRAF

BMPR1A

APC

AKT1
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Figure 3. Mutation rates by next-generation sequencing (NGS) in right-sided tumors (RT) versus left-sided tumors (LT) in adolescent
and young adult (AYA) colorectal cancer (CRC). Complete listing of significant differences (p < .05) in mutations rates by NGS in RT
versus LT AYA CRC.
Abbreviation: CA, cancer.
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in our previous analysis focused on the molecular characteriza-
tion of left-sided CRC in AYA versus older adults, we highlighted
an increased incidence of mutations in genes involved in his-
tone modification in AYA compared with older patients with
CRC, including KDM5C, KMT2A, KMT2C, KMT2D, and SETD2
[28]. Hence, disruption of the histone modification pathway
appears to be a distinctive feature of CRC in AYA and to be
more prominent in RT in our population. Mechanisms of epige-
netic regulation in CRC have recently been the focus of exten-
sive research, and these findings may identify promising
candidate targets for anticancer therapy. Indeed, multiple DNA
methyltransferase and histone deacetylase inhibitors have been
approved by the Food and Drug Administration for the treat-
ment of hematologic malignancies, with several phase I–II trials
underway to test the safety and efficacy of drugs targeting his-
tone modifiers in solid tumors, including CRC [37].

We previously reported higher mutation rates in genes
related to cancer-predisposing syndromes such as BRCA2,
MSH2, and TSC2 in the younger CRC population compared
with older patients [28]. In the current study, the highest inci-
dence of mutations in these genes among AYA CRCs was
observed in RT. Specifically, we observed higher mutation
rates in MMR genes (MSH6, MLH1, and MSH2), POLE, PTEN,
BMPR1A, BRCA1, BAP1, BRIP1, NF2, and MEN1. Germline
mutations in these genes are known to be associated with
hereditary cancer syndromes; for example, MMR genes with
LS, PTEN with PHTS, BMPR1A with JPS, POLE with colorectal
cancer 12, NF2 with neurofibromatosis type 2, MEN1 with
multiple endocrine neoplasia type 1, BRCA1 and BRCA2 with
HBOC, and BAP1 with Bap1 tumor predisposition syndrome.
This may have relevant implications, not only in terms of
tumor biology and potential targeted treatments but also in
terms of genetic counseling and patient surveillance. Interest-
ingly, POLE mutations and mutations in MMR genes, which
are considered to be mutually exclusive [38], were more fre-
quent in RT, although the rate of POLE mutations in our series

was lower than that previously reported for AYA CRC (5.9%
vs. 9.8%) [16]. It is well known that MSI-H status and POLE
mutations, whether somatic or germline, are associated with
a hypermutated cancer phenotype [39]. As expected, in our
series, the TMB-high rate in RT was over fourfold greater than
that seen in LT (30.6% vs. 6.5%, p < .001). This observation
has relevant implications as TMB-high status recently emerged
as an independent prognostic biomarker [40] as well as a pre-
dictive biomarker for response to immunotherapy [41].

In our subanalysis of MSS tumors, results were compa-
rable to findings in the whole study population, except for a
lower absolute incidence of mutations in KMT2D along with
a loss of significance of ARID1A mutation rates according to
tumor side. These findings may imply a major role for epi-
genetic mechanisms in the biology of MSI-H tumors com-
pared with MSS tumors and are consistent with recent
evidence highlighting the association of histone modifier
gene mutations and ARID1A mutations with MSI status
[42, 43].

Finally, we performed an exploratory analysis comparing
the molecular profiles of a small cohort of AYA MSI-H CRCs
according to tumor sidedness. As expected, in our global
population, the MSI-H rate was significantly higher in RT
compared with LT (20.8% vs. 4.8%), and IHC showed lower
protein expression of MLH1 and PMS2 in RT compared with
LT (p = .05). No significant differences were observed in
MSH2 and MSH6 levels. However, when comparing right-
and left-sided MSI-H tumors, we found a lower expression of
MLH1 in RT and MSH2 in LT, although not statistically signifi-
cant. Of note, the small absolute number of MSI-H tumors in
our series warrants some caution, making it hard to draw
any significant conclusions. Therefore, further validation is
needed.

Consistent with published evidence [44, 45], RNF43 muta-
tions were more prevalent in MSI-H tumors, and higher rates
of RNF43 mutations were associated with RT. Notably, loss-of-
function mutations in RNF43 have been shown to confer Wnt
dependence and to be associated with enhanced sensitivity to
porcupine inhibitors in preclinical cancer models [46, 47]. Por-
cupine inhibitors are currently being developed to suppress
paracrine Wnt-driven growth in RNF43 mutant tumors, includ-
ing BRAF mutant mCRC (NCT02278133, NCT01351103). Fur-
thermore, dysregulated Wnt signaling has been linked to T-cell
exclusion in MSI-H CRC tissue and resistance to immunother-
apy [48], suggesting that Wnt signaling inhibitors may be used
to reverse immune escape in immunotherapy-resistant tumors.
Among MSI-H tumors, alterations in epigenetic genes showed
a differential distribution; mutations in SMARCA4 (a gene
involved in chromatin remodeling) were limited to LT, whereas
the frequency of KMT2D mutations was greater in RT than LT
(100% vs. 50%, p = .024), which has implications for histone
modification. MSI-H tumors represent a distinct entity in terms
of clinicopathological features and treatment options. As
noted, MSI is caused by a defect in the MMR pathway, which
can derive from one or more mutations in the MMR genes
(MLH1, PMS2, MSH2, MSH6, and EPCAM) as part of hereditary
LS or from sporadic silencing of MLH1 by promoter methyla-
tion. The MSI-H phenotype is associated with consensus molec-
ular subtype 1, CIMP positive (CIMP+), and BRAF V600E
mutation, the latter being restricted to sporadic MSI-H. Of
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Figure 4. Tumor mutational burden in RT and LT AYA colorectal
cancer (CRC). Comparison of TMB in RT and LT AYA CRC.
Abbreviations: AYA, adolescent and young adult; Mb,
megabase; TMB, tumor mutational burden.
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note, distinct patterns characterize germline and sporadic MSI-
H mCRC [20]. One of the major groundbreaking advances in
mCRC treatment in recent years has been the approval of
immunotherapy for patients with MSI-H tumors following evi-
dence of efficacy of immune checkpoint inhibitors like
pembrolizumab and nivolumab in this patient subset [49, 50].

Although molecular profiling studies of MSI-H CRC are limited,
a recent study highlighted distinctive genetic alterations in
MSI-H/hypermutated tumors in comparison to MSS tumors,
including BRAF V600E mutations, BRCA1 and 2 alterations,
NTRK fusions, and enrichment of PIK3CA and PTEN oncogenic
mutations [45]. Our results address the need for a thorough
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characterization of MSI-H tumors and appear to show poten-
tially meaningful differences in underlying biological mecha-
nisms and actionable targets according to primary tumor site
in AYA. However, as noted, the small absolute number of
MSI-H tumors in our series hinders our ability to draw defini-
tive conclusions, and further validation is needed. Neverthe-
less, our findings may suggest relevant implications for the
treatment of MSI-H CRC as we move toward the develop-
ment of treatment combinations to overcome immune-
escape mechanisms. Indeed, epigenetic immunomodulation
plays a key role in the ability of tumors to elude the host
immune response. Several ongoing trials are testing immune
checkpoint inhibitors combined with epigenetic targeted ther-
apy, such as modifiers of histone acetylation and DNA methyl-
ation, to improve outcomes in patients with various cancer
types [51].

Overall, in accordance with data from the adult population
in The Cancer Genome Atlas (TCGA) data set [52] and our pre-
viously reported data [27], RT showed a significantly higher
rate of oncogenic mutations compared with LT. Relative distri-
bution of mutations between RT and LT in the core oncogenes
and tumor suppressor genes, APC, TP53, BRAF, KRAS, PIK3CA,
and RNF43, as well as MSI status, was consistent with previ-
ous findings and recent literature [45]. However, the absolute
frequency of mutations in our study varied compared with
the TCGA adult population, an example being BRAF mutation
incidence in AYA RT. In fact, in our study, similar BRAF muta-
tion rates were observed in MSS RT compared with “unse-
lected” RT in AYA (13.8% and 10.3%, respectively), suggesting
that BRAF mutation rates are not influenced by MSI-H status.
These results contrast with previously reported mutation rates
of 24%–25% for BRAF in right-sided CRC (unselected for age

Table 1. Significant differences in RT versus LT MSI-H AYA CRC

Biomarker Platform Right-sided MSI-H CRC, n (%) Left-sided MSI-H CRC, n (%) p value

MGMT IHC 0/2 (0.0) 2/2 (100) .046

KMT2D NGS 8/8 (100.0) 3/6 (50.0) .024

RNF43 NGS 7/8 (87.5) 2/8 (25.0) .012

SMARCA4 NGS 0/9 (0.0) 3/6 (50.0) .018

Abbreviations: CRC, colorectal cancer; IHC, immunohistochemistry; MSI-H, microsatellite instability-high; NGS, next-generation sequencing.
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or MSI status) and the known association between BRAF
mutation and MSI-H status [27, 52, 53]. However, a previous
study on 39 early-onset CRCs (including patients younger than
45 years of age) found that sporadic tumors neither contained
higher rates of BRAF mutations nor displayed a CIMP+ profile
in comparison with tumors from older patients (aged
>60 years), in both the MSI-H and the MSS subgroups [54].
According to the authors, these data suggest a distinctive car-
cinogenesis pathway of early-onset CRC involving a subtype of
the chromosomal instability pathway, without involvement of
the methylator pathway and BRAF mutation. Further studies
are warranted to verify this hypothesis. Furthermore, AYA
CRCs were characterized by high mutation rates in histone
modification and chromatin remodeling genes and genes
related to cancer-predisposing syndromes.

We acknowledge that there are several limitations to
our study, including the retrospective nature of the analysis;
the exclusion of a large number of samples due to the lack
of annotation of primary tumor location; the heterogeneity
of the study population unselected for tumor stage; the
absence of clinical data associating our findings to out-
comes; the lack of a DNA methylation evaluation, CMS clas-
sification, and gene expression data; and the lack of data on
hereditary cancer syndromes (i.e. Lynch syndrome). Fur-
thermore, the small absolute number of patients in the RT
group and the MSI-H subgroup warrants caution when
interpreting results. Future validation of current findings
and use of broader molecular profiling of AYA in prospec-
tive and larger cohorts are needed.

CONCLUSION

Our study highlights significant molecular differences in
AYA CRC based on tumor sidedness. Distinct features
emerged as characteristic of AYA CRC, such as high muta-
tion rates in histone modification and chromatin remo-
deling genes, as well as in genes related to DNA repair and
cancer-predisposing syndromes, all of which showed a dif-
ferent distribution pattern across RT and LT and across MSS

and MSI tumors. Although warranting further validation,
our results provide supportive evidence for the develop-
ment of novel, tailored, therapeutic strategies to improve
outcomes in younger patients with CRC.
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