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Abstract

Purpose of review—About 40% of the neuroendocrine tumors pheochromocytomas and
paragangliomas (PPGLs) are caused by an inherited mutation. Diagnostic genetic screening is
recommended for patients and their families. However, the number of susceptibility genes
involved is high and continues to grow, making conventional sequencing costly and burdensome.
Next-generation sequencing (NGS) enables accurate, thorough, and cost-effective identification of
inherited mutations. Here we review recent successes, limitations, and the future of NGS for
diagnosis of pheochromocytoma and paraganglioma syndromes.

Recent findings—NGS-based screen of genetic disorders in the clinical setting shows improved
diagnostic rates over conventional tests. Both broad, whole-exome sequencing, and targeted NGS
approaches have been tested for screening of PPGLs, with accurate mutation detection, higher
speed, and reduced costs compared with current assays. Flexibility to expand the targeted gene set
is immediate in whole-exome sequencing, and adjustable in targeted NGS, but both methods have
limitations.

Summary—The high degree of genetic heterogeneity and heritability of PPGLs make NGS an
ideal medium for their diagnostic screening. However, improved detection of large genomic
defects and underrepresented gene areas are needed before NGS can fully realize its potential as
the premier option for routine genetic testing of these syndromes.
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INTRODUCTION

Pheochromocytomas and paragangliomas (PPGLs) are neural crest tumors derived from
catecholamine secreting cells of the adrenal medulla or extra-adrenal sympathetic
paraganglia, respectively [1,2]. Two striking features of these tumors are their genetic
heterogeneity and their high degree of heritability (40% of the cases). Recent Clinical
Practice Guide lines set forth by the American Endocrine Society recommends that genetic
testing be performed for certain groups at high risk for hereditary PPGL, as detailed below,
but that it should be considered for all PPGL patients [3]. The American Society of Clinical
Oncology directions reach further by suggesting that all patients with a risk of heritability
higher than 10% should undergo testing [4]. Therefore, PPGLs fall well into the category of
diseases for which genetic screening is advised. However, as the number of susceptibility
genes increases, currently spanning over 200 exons, so does the complexity of genetic
testing. Next generation sequencing (NGS) methodology has dramatically changed the field
of genetics in the past decade. NGS use has broadened widely since its inception, with
improvements in the technology and decrease in costs. NGS methods have now been applied
in multiple clinical diagnostic settings, including inherited developmental disorders and
cancers, in many cases with greater success rate compared with conventional sequencing
techniques [5-11]. Over the past few years, a picture of the state of NGS use in the field of
PPGL started to emerge. In this review, we will discuss these studies and address the
advantages and challenges of distinct NGS approaches for inherited PPGL diagnosis.
Although the use of NGS testing for diagnosis of somatic variants is recognizably relevant
from a clinical perspective, these studies will not be extensively discussed here.

THE COMPLEX GENETICS OF PHEOCHROMOCYTOMAS AND
PARAGANGLIOMAS

Much progress has been made on our understanding of the genetic basis of PPGLs in the
past decades and many familial forms of the disease are now recognized (Table 1). Excellent
reviews describing unique clinical features of these various inherited disorders have been
published recently [12-14]. PPGLs are arguably the most heritable human tumors. Familial
PPGL is usually inherited as an autosomal dominant trait, so the offspring of a mutation
carrier will have a 50% chance of having inherited the relevant PPGL gene mutation [1,2].
Genetic testing is recommended for individuals at high risk for susceptibility, which includes
positive family history, presence of syndromic features, early onset disease, presence of
multiple tumors, malignancy, paraganglioma location, or a combination of some of these
characteristics, whereby the pretest probability of mutation detection is high [3]. Many
diagnostic stepwise algorithms have been proposed to streamline the increasingly
burdensome and costly process of genetic screening of PPGLs [12,15-18]. These algorithms
incorporate clinical features to guide the prioritization of the gene for screen and are
particularly effective for high-risk groups. However, there is a strong argument for extending
genetic testing to all PPGL patients, based on the recognition that at least 10% of ‘low risk’
cases may carry predisposing mutations [13]. In these cases, low penetrance of the mutant
allele, the existence of parent-of-origin effects on disease penetrance (in SDHD, SDHAF2
and MAX mutations) or de-novo mutations in the index patient can obscure the diagnosis of
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inherited PPGL [2]. In nonsyndromic cases, the number of screened genes expands, which
makes the process lengthy, if genes are analyzed individually and/or, very costly, if they are
tested simultaneously.

NEXT-GENERATION SEQUENCING PLATFORM OF CHOICE

Similar to other hereditary disorders, in particular those in which allelic heterogeneity is
extensive, the use of NGS, also referred to as massively parallel sequencing, has increased
exponentially over the past decade and has begun to replace conventional (Sanger)
sequencing in many clinical contexts [6,19,20]. Methodological details of the techniques are
beyond the scope of this review. Instead, here we discuss the NGS approaches that have been
applied to PPGLs and how these findings will shape the future of genetic testing in these
tumors. Table 2 summarizes the context, study design, results, and limitations of these
published studies. Most of the NGS studies of PPGLs, a few preceding the review period but
included because of their relevance, were performed for purposes of gene discovery and
employed whole exome sequencing (WES) [21,22,23" 24" 25"" 26", 28" 30",32-34"" 35].
Targeted NGS analyses were also reported [27"",29,31"",36™"]. Two studies directly
compared NGS with conventional sequencing for diagnosis of germline mutations in known
PPGL genes [27"",28"™].

Whole-exome sequencing

In this method, fragmented DNA samples are hybridized to oligonucleotide probes
representing coding regions of the genome, the exome, and high throughput sequenced [6].
Approximately, 85% of disease-causing mutations are expected to occur within the exome,
which represents 1-2% of the whole-genome region. As a result, WES has become the NGS
method of choice in multiple studies of cancer and other hereditary conditions [20]. The
advantages of WES, especially in comparison with whole-genome sequencing (WGS) are
multiple: costs are lower; the smaller target sequence greatly simplifies sample processing
and analysis, the requirements of sample quantity are not too stringent. Furthermore, the
existence of genome-wide coverage facilitates the analysis of novel candidate genes as they
are uncovered, without the need to reprocess the sample.

Mclnerney-Leo et al. [28"™] tested the efficiency of two different commercial WES
platforms for diagnosis of a small cohort of hereditary PPGLs: one mutation was missed by
one of the platforms, but detected in the other. Also, by specifically comparing the coverage
of 12 PPGL genes across reference data from five exome enrichment Kits, it was noticed that
only one of them showed complete coverage of all coding sequences of interest, with SDH
genes showing the highest degree of variation in the depth of reads. The poor representation
of some PPGL-related exons was in part due to low depth of sequence of the reference
dataset used, and may be resolved by increasing the depth in actual samples. However, more
problematic is the issue of incomplete coverage of the length of some exons, which should
be a consideration when selecting the enrichment platform for WES-based screen. Individual
PPGL exon coverage and depth is not available from other WES studies in PPGLs but this
information could help in developing future guidelines and standards for WES-based
screening, as discussed below.
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Overall, WES-based screen is the favored platform for comprehensive, yet analytically
manage able genetic screen amenable to entering the mainstream of PPGLs diagnostic
testing (Table 3). However, further improvements in the efficiency of exome capture
methods are needed to ensure that all target exons are represented through their entire length
and at adequate depth of coverage. Enhanced alignment and base calling algorithms are also
needed to ensure accuracy of the sequencing. Other technical shortcomings are discussed in
a separate section, below.

Targeted next generation sequencing

In this approach, the sequencing analysis is limited to known genes and exons, and next
generation sequencing is performed in samples amplified by PCR. Custom primers are
designed to target whole or specific areas (often exons) of genes of interest. Barcodes are
attached to individual samples during library generation allowing for a high degree of
multiplexing, which improves the throughput of sequence processing and reduces costs.
Targeted NGS has many valuable features: primers can be individually designed and
adjusted to achieve similar efficiency across the gene(s), samples are sequenced at much
deeper coverage (200-1000), the instrumentation is simplified and affordable by individual
labs, and the analysis pipeline is straight forward and customizable. Furthermore, targeted
NGS may be the only viable approach for samples with limited amounts of DNA of
suboptimal quality. Rattenberry et al. [27™*] performed a feasibility study of nine PPGL
genes in a large sample cohort and found high degree of diagnostic concordance with
conventional sequencing (Table 2). However, several problems were highlighted, including
sequence errors in repeat areas (instrument-biased) and the inability to multiplex exons with
high GC content, which had to be analyzed separately through Sanger sequencing.
Limitations in multiplexing were also noted by Welander et a/. [31""] using a different
platform and instrumental setting, although all mutations in 18 known hereditary PPGLs
were identified by their approach. Despite the relative simplicity of targeted NGS, in
practice achieving optimal and uniform multiplexing of all desired exons in every sample is
not straightforward. Furthermore, the number and speed with which novel genes are
identified and then incorporated in the targeted screen design can pose technical and
economic challenges for implementation. In targeted NGS, unlike WES, addition of new
genes to existing panels requires the generation of new libraries and new sample sequencing
(Table 3).

Other NGS platforms

WGS is the most comprehensive genome-wide option, as it includes noncoding regions in
addition to exons. These areas are increasingly recognized as relevant for diagnosis of
genetic disorders and cancers [19,37]. Additional advantages are the ability to identify gene
translocations and copy number gains or losses. Major limitations of WGS are the costs, and
importantly, the complexity of the bioinformatic analysis. The NIH-sponsored TCGA (The
Cancer Genomic Atlas) effort in PPGLs (https://tcgadata.nci.nih.gov/tcga/
tcgaCancerDetails.jsp?disease Type=PCPG&diseaseName=Pheochromocytoma%20and
%20Paraganglioma), which is at its final stages of completion, includes WGS analysis of a
large sample collection. Although not meant as a clinical diagnostic tool, WGS data from
TCGA is certain to provide insights into genomic alterations that could not have been
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detected by other NGS methodologies and will contribute to gauging the added value of
WGS for diagnostic purposes in PPGLs.

RNA sequencing (RNAseq) differs from other modalities by utilizing RNA (preferentially
from tumor tissue), instead of DNA, for analysis, which limits considerably its use in large
scale for diagnostic purposes. However, this approach has important attributes: it provides a
combination of sequence data and quantification of gene expression in a single
methodology; enables an immediate view of the transcription consequences of mutations
that occur at splice sites or those that involve gene fusions resulting from translocations or
rearrangements, and identifies preferential allelic expression of coding variants. However,
analytical pipelines are more complex than WES and targeted NGS. In PPGL, gene fusions
and intrachromosomal breakpoints that may be biologically consequential were recently
identified by RNAseq [32""]. Further investigation of the frequency of these events will
provide new insights into the biology of PPGLs and whether this approach would be of use
in the diagnostic arena.

Currently, effective analysis of coding regions of target genes is likely to encompass the
great majority of causative mutations in hereditary PPGLs. However, it is difficult to
estimate how much has been missed by confining the analysis to exons and exon-intron
boundaries. Data outside of these constraints are essentially nonexistent. As research
advances, the real contribution of other defects, including large genomic gains or losses,
translocations, fusions, and noncoding mutations, to PPGL pathogenesis will become better
known. This information will be relevant to determine the method of choice for
comprehensive testing of these disorders.

ANALYTICAL AND TECHNICAL SHORTCOMINGS

Analysis of the sequence data produced by these different NGS modalities is beyond the
scope of this review, but this is clearly one of the bottlenecks for rapid implementation of
NGS methods in clinical practice. Understandably, the analytical complexity of WES,
RNAseq and WGS is higher than that of targeted sequencing [6]. The importance of rigorous
bioinformatic analysis and interpretation standards cannot be overstated.

NGS technologies have recognizably higher raw base error rates than Sanger sequencing
[5,6]. However, since its inception, technological advances in instrumentation, sample
processing, and algorithms, coupled with higher depth of sequencing coverage in most study
designs, have led to improved accuracy in base calling. For WES and WGS an average
sequencing depth of 50-100 of bidirectional (or paired-end) reads is usually considered
sufficient to detect most germline single-nucleotide variants accurately [6,38—40]. However,
these conservative numbers can, and should be, increased under specific circumstances.
Other technical limitations to NGS methods recognized in the setting of PPGLs, discussed
above, and off-target sequencing and misalignment to homologous regions, such as paralogs
or pseudogenes, can also lead to reduced sensitivity and specificity of variant detection. The
rate of alignment errors have substantially decreased with longer read lengths (~50 vs. 100
bp or more in recent pipelines), higher depth of sequencing, and improved base call
algorithms.
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NGS exhibits much greater sensitivity and specificity for detection of substitutions than it
does for other sequence changes [5,41,42]. For detection of insertions, deletions, larger copy
number, and structural changes, specific analytical algorithms are required for accurate
calling. Leveraging high depth of coverage of the test samples and targeted NGS designs
involving whole genes instead of exon-only enrichments can significantly improve detection
of these large genomic defects. Several targeted NGS screening platforms for clinical
diagnosis of hereditary breast, ovarian, and colon cancer have been developed [41,43-45], in
which such designs were implemented coupled with high depth of coverage and robust
analytical pipelines led to successful detection of a wide range of deletion or duplication
lengths. The ability to identify larger structural defects should be a goal of NGS-based
screens in PPGLs because as much as 10% of the defects involving SDH and VHL can
result from whole or partial gene deletions.

Beyond coding sequence mutations and large structural defects of target genes, gene
inactivation mediated by epigenetic, but not genetic events (epimutations), have been
recently reported in SDHC of Carney triad syndrome patients [46,47], in whom
paragangliomas are associated with pulmonary chondroma and gastrointestinal stromal
tumors (GIST). In these patients, the SDHC gene is hypermethylated and hypoexpressed in
tumor tissues, but also in nontumoral tissues, suggesting possible mosaicism. These
findings, which were considered to be primary drivers of the tumorigenesis in these patients,
have not been examined more generally in other PPGL cases, but if confirmed, may indicate
that all-encompassing screening of these tumors may require an expansion of the current
techniques to identify hypermethylated areas on target genes.

Hence, no single platform currently fulfills the requirements of an ideal PPGL screening test
(Table 3). One reasonable expectation is that an improved version of WES, with more
uniform and completecoverage of all targetexons relevant to PPGL should be the more
immediate goal for implementing a comprehensive primary platform for genetic testing. A
separate test, WGS-based or utilizing specially designedtargeted NGS panelsor high-
resolution copy number analysis, may be required for detection of larger structural defects or
analysis of noncoding variants in patients for which a mutation is not identified in the first
test. Furthermore, tests to detect mosaic epimutations may need to be developed if these
events are found more generally in PPGLs.

DATA REPORTING

In the setting of genetic disorders, the availability of a clinical summary on the test order
form is often a prerequisite to interpreting the results of NGS testing [10,11]. This is not an
absolute requirement in PPGLs as the clinical diagnosis is often straightforward. However,
information on family history, tumor location, recurrence, malignancy status, and existence
of other conditions known to be related to PPGL-related syndromes can be invaluable to
improve accuracy of diagnostic reports.

Interpreting the results of NGS, especially WES, can be more complex than conventional
testing due to the massive amounts of data generated. However, on a diagnostic setting, the
analysis can be restricted to the known disease genes by computational selection. Typically,
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appropriate filters are applied using similar criteria to those already employed in
conventional clinical diagnosis to exclude common variants (for example, those occurring in
less than 5 or even 1% of the general population), variants that lead to a synonymous change
(exceptions are those that generate or abolish a splice site), intronic variants beyond the
canonical 2-bases surrounding exons and other, context-specific filtering. The variants that
remain after these filters are then classified as follows: benign, deleterious (previously
reported in hereditary PPGLs, as referenced in the literature and/or online mutation
databases available for various PPGL genes), potentially pathogenic variants (conserved
amino acids, nonsense or frameshift), or variants of unknown clinical significance (VUS,
further discussed below). The final report of a diagnostic genetic test should be the result of
careful analysis and discussion with geneticists or other PPGL experts and extensive
literature searches to determine the classification of variants [10,11,44]. It is important to
keep in mind that despite technical improvements in design and analytical algorithms, some
variants may still require confirmation by conventional sequencing due to poor coverage or
to an alignment-challenging sequence context. In fact, although NGS-based tests are still
under development, we believe that positive tests should be validated by Sanger sequencing
before results are reported to the patient.

In the current scenario of autosomal dominantly inherited PPGLs, pathogenic mutations are
expected to be represented as heterozygous variants, and thus the estimated variant
frequency threshold (VFT) for heterozygous mutations should be close to 50%. However, in
practice, there are instances of allelic strand sequence preference, when VFTs deviate from
this pattern, as reported by Rattenberry et al. [27™], and also seen in our own experience.
VFT values can be variable in mosaic mutations. This is the case in £PASZ, wherein a
postzygotic de-novo mutation can lead to increased risk of PPGLs, polycythemia and
occasionally somatostatinomas of the duodenum [36™"]. Determining the risks of germline
transmission of mosaic diseases can be challenging and impractical [48], therefore genetic
counseling should play a dominant role, more than the genetic test itself, in the discussion of
transmission risks of patients with EPAS1 mutations at tumor level.

VUSs are detected in unprecedented numbers by NGS-based screening and represent a
common challenge for test reporting. However, limitations in the ability to distinguish
pathogenic from nonpathogenic mutations are likely to gradually decrease, as reference
databases become more complete and our knowledge of PPGLs improves, with more
mutations being recurrently detected and their functional effects tested. Although there has
been some debate as to whether VUSs should be reported due to the uncertainty of their
value, the predominant view is that the benefits of reporting outweigh risks of, for example,
not revealing variants that may be eventually proven to be pathogenic [10,20]. The approach
in PPGL should follow the lead of clinical genetics, in which extensive consultation between
laboratory personnel with the attending physician and medical geneticists for cases in which
the diagnostic classification is uncertain takes place before the results are disclosed to
patients [10,49,50]. Laboratories and attending physicians should regularly review the status
of VUS cases as more research data become available. In this realm, new government-
sponsored initiatives are being developed to make clinically relevant information publicly
searchable [51]. Patients should be clearly informed of the significance and potential change
in VUS status and are encouraged to seek regular updates from their attending physicians.
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Other challenges of NGS based testing involve interpreting alternative modes of inheritance
or co-occurrence of multiple variants with potential pathogenic effects in single samples.
Appropriate interpretation of these findings will require further research and functional
validation of novel variants. Guidelines for application of NGS to genetic diagnostics are
still under development [20,49,50,52]; we believe that a framework of PPGL screening
standards should be devised (Fig. 1). These recommendations should attempt to integrate
these emerging guidelines with established PPGL testing routines and regulatory
requirements unique to different centers and countries. The challenges imposed by the
complexity of interpreting results demand the inclusion of a medical geneticist or certified
genetic counselor in the testing process [10,41]. Leading organizations in the PPGL field,
including the investigator-driven Pheochromocytoma Support Organization, the Endocrine
Society, the European Network for the Study of Adrenal Tumors, and other worldwide
associations, are encouraged to come together to develop standardized practices and policies
for NGS-based tests as they begin to enter the mainstream of clinical practice in many
countries. Input from various patient advocacy groups (Pheo Para Troopers, Pheo-Para
Alliance, VHL Alliance, and others) should also be sought. Another relevant aspect of NGS-
based testing, specifically genome wide approaches, involves ‘incidental findings’, the
identification of variants unrelated to the phenotype of interest but which may have clinical
significance. Reporting of these findings is an area of broad debate in NGS-related clinical
applications [10,20,49,50, 53,54] and should be extended to the PPGL field. The framework
devised by the clinical genetics field is an excellent starting point to initiate this discussion.

CONCLUSION

The emerging body of evidence in the field of NGS based genetic screen on PPGLs suggests
that multiple sequencing approaches (targeted, WES, and WGS) are likely to find
applications in the routine diagnostic setting.

Diagnostic panels for subsets of PPGL genes can already be found commercially in the
USA. In academic centers worldwide, the transition from conventional methods to NGS is
advancing at a rapid pace. Current limitations of targeted NGS and WES require that these
methods are complemented by independent analysis of poorly covered gene areas and copy
number analysis for a comprehensive, all-encompassing screen. Further progress in the
methodology with longer sequence reads, higher-depth of sequencing, careful target primer
design, barcoding and multiplexing, and the possibility of using whole-genome methods to
address deletions will likely aid in overcoming the current limitations and further increasing
sensitivity. Furthermore, the ability to incorporate other susceptibility targets as they are
discovered and added to the list of PPGL genes offers enormous advantage to NGS-based
screens, especially the genome-wide methods. As different design and platform options
continue to be perfected, a consensus set of guidelines should be developed, at least in the
academic setting, to fulfill basic diagnostic and quality control standards for both technical
processing and interpretation of the results. These platforms would also be amenable to use
in other clinically relevant applications beyond germline diagnasis, including tumor
screening for detection of potentially therapeutically targetable somatic mutations.
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KEY POINTS

PPGLs are genetically heterogeneous and often inherited (40% carry a
germline susceptibility mutation).

NGS technology, now broadly available and cost effective, has been
successfully implemented in clinical diagnosis of multiple inherited disorders.

Pilot studies have shown feasibility of both WES and targeted NGS for
diagnosis of inherited pheochromocytomas and paragangliomas.

Technical fine-tuning, including improved and uniform coverage of all target
exons and detection of large copy humber changes will be required to
improve sensitivity and specificity of NGS for its use in pheochromocytoma
and paraganglioma diagnosis.

A consensus set of guidelines and standards for NGS-based testing in PPGL
should be developed in the near future.
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FIGURE 1.
Proposed workflow of a genome-wide next-generation sequencing-based screen of patients

with pheochromocytoma or paraganglioma. (a) Initial steps of the screening process involve
genetic counseling and informed consent (3patient must opt in or out of ‘incidental finding’
reporting and decisions of future evaluation of the collected sequence data for future updates
— see text for additional details). PIt is suggested that the final report be the consensus
interpretation of physicians, researchers and clinical geneticists. (b) Results are returned to
the patient at a genetic counseling session. Unquestionably, positive results follow the
current route of clinical follow-up for index patient and screening of at-risk relatives.
Negative results may include lack of a clearly pathogenic mutation in a known susceptibility
gene or detection of variants of unknown significance (VUS). Regular updates on the status
of VUS or evaluation of novel susceptibility genes from collected data are performed. If a
new pathogenic variant is detected or pathogenic status of VUS is established, based on new
research data, the patient will be offered genetic counseling and follow procedures for a
‘positive’ mutation carrier. If there are no changes in the genetic screening status, the
process of regular updates may continue.
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Summary of distinguishing features of whole xome sequencing, targeted next generation sequencing, and
conventional Sanger sequencing in pheochromocytomas and paragangliomas

Targeted NGS panel

Conventional testing (Sanger or
MLPA)

Feature WES
Detection of known PPGL genes a
Yes
Need to process some PPGL exons separately (by conventional High
sequencing)
Detection of novel genes Yes
Detection of large genomic or copy number defects Low
Fast turnaround time Yes
Low costs Yes
Complexity of bioinformatic analysis High
Sequencing error rates High
Incidental findings Yes
VUS High
Performed in a stepwise manner No
Individual lab autonomy for sequencing No
Scalability Lowf

Yes
High

Nob

Yesb
Yes

Yes

Low
High
No
High
No
Yes
High

Yes

NA

No
Yesc
No

No
NA
Low
NA
Low
Yes
Yes
NA

MLPA, multiplex ligation-dependent probe amplification, method used to detect copy number changes in PPGL genes; NA, not applicable; PPGL,
pheochromocytomas and paragangliomas; VUS, variants of unknown significance; WES, whole-exome sequencing.

a . . .
Detection of some PPGL gene exons may be incomplete in current platforms.
bNew assay design required or use of a broad targeted panel.
c
By MLPA assay.
Exception when first clinically driven test identifies mutated gene.

EHigh costs if multistep gene analysis is required.

f . .
Increase in WES scale can only occur at the expense of reduced sequencing depth per sample — not recommended.
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