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Abstract

Background: Recently, DNA methylation has drawn great attention due to its strong
correlation with abnormal gene activities and informative representation of the cancer
status. As a number of studies focus on DNA methylation signatures in cancer, demand
for utilizing publicly available methylome dataset has been increased. To satisfy this,
large-scale projects were launched to discover biological insights into cancer,
providing a collection of the dataset. However, public cancer data, especially for certain
cancer types, is still limited to be used in research. Several simulation tools for
producing epigenetic dataset have been introduced in order to alleviate the issue, still,
to date, generation for user-specified cancer type dataset has not been proposed.

Results: In this paper, we present methCancer-gen, a tool for generating DNA
methylome dataset considering type for cancer. Employing conditional variational
autoencoder, a neural network-based generative model, it estimates the conditional
distribution with latent variables and data, and generates samples for specified cancer
type.

Conclusions: To evaluate the simulation performance of methCancer-gen for the
user-specified cancer type, our proposed model was compared to a benchmark
method and it could successfully reproduce cancer type-wise data with high accuracy
helping to alleviate the lack of condition-specific data issue. methCancer-gen is
publicly available at https://github.com/cbi-bioinfo/methCancer-gen.
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Background
DNA methylation is one of the epigenetic mechanisms, playing a critical role in vari-
ous biological processes, such as gene regulation, cell differentiation, and suppression of
transposable elements [1–3]. Recent studies have reported that diverse types of neopla-
sia and cancer are related to changes in DNA methylation [4] and abnormal DNA methyl
patterns are considered one of the biomarkers for diagnosing cancer [5, 6]. In addition,
the tissue-specific DNA methylation patterns determine the origin of the cancer [7].
To satisfy growing needs for better diagnosis and advance understanding of driver

mutations leading to uncontrolled cell growth and tumor formation, increasing amounts
of genomic and epigenomic data have been publicly available through large-scale projects
aimed for comprehensive integrated analysis of cancer [8]. The Cancer Genome Atlas
(TCGA) program provided a collection of multi-platform molecular profiles across 33
different cancer types, composed of various clinical and genomic datasets [9]. Based
on the multi-omics integrated analysis, evidence for biological mechanism in cancers
was provided. ENCyclopedia of DNA elements (ENCODE) project [10] and Roadmap
Epigenomics Mapping Consortium [11] produced public human epigenetic resources to
investigate cancer biology. Through these projects, the identification of functional ele-
ments in the human genome sequence has been made. Utilizing public cancer resources,
studies have focused on discovering the relationship between DNA methylation signa-
ture and cancer. MethyCancer presented and analyzed an integrated dataset of DNA
methylation, mutation and gene expression profiling for tumor cells with cancer informa-
tion [12]. MethHC provided a systematic integration comprising DNA methylation and
mRNA/microRNAprofiles in normal and tumor tissues and demonstrated epigenetic pat-
terns for cancer prognosis [13]. MethCNA introduced a comprehensive database of DNA
methylation and copy number alterations, which assisted to explore epigenetic patterns
and identify key factors in cancer [14]. However, most public methylome dataset utilized
in research, are still limited to the above major repositories.
To overcome the limitation of public data, computational approaches for generating

methylome dataset have been introduced to provide methylation levels and reproduce a
wide range of experimental setups. M.R.Lacey et al. developed an algorithm for produc-
ing methylation profiles based on reduced representation bisulfite sequencing (RRBS) to
identify interactions between technical and biological variables among the RRBS dataset
analysis [15]. Based on the observation from a subset of samples collected from ENCODE
database, parametric models were fit to the distributions of CpG site positions andmethy-
lation levels to perform the simulation. DNemulator simulated cytosine methylation
rate, sequencing errors and bisulfite conversion by random assignment and change with
probability for various bisulfite sequencing experiments based on DNA reads of human
reference genome [16]. WGBSSuite was proposed as a simulation tool for single-base
DNA methylation data based on whole genome bisulfite sequencing (WGBS), employing
two hidden markov models each for CpG location and methylation status [17]. Various
experiment setups were reproduced to provide real case scenarios. pWGBSSimla gener-
ated WGBS data for a given user-specified genomic region and cell type by simulating
methylated read count for specific CpG based on binomial distribution with approx-
imated parameters for read depth and methylation rate of CpG [18]. Although, these
simulation tools allow performance comparison among different methylation analysis
methods and help to reproduce a wide range of experimental design to support further
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analysis, however, either they do not provide condition-specific data generation such as
cancer type or only allow limited number of pre-defined condition.
In recent years, deep neural network (DNN) based generativemodel has been presented

and achieved remarkable results due to its ability for capturing nonlinear distributed rep-
resentations [19]. Variational autoencoder (VAE) [20], one of the deep generative model
based on variational inference, has been widely adopted for learning latent representa-
tions and performing generation task based on trained features [21]. Employing VAE,
several studies have been introduced to explore biological features in cancer based on
DNA methylation dataset. By learning lower dimensional latent space on methylome
data of lung cancers, signals representing each subtype for the sample were profiled [22].
Based on cancer relevant biological features extracted from VAE, breast cancer subtypes
were classified to show the effectiveness of unsupervised learning using DNA methy-
lation [23]. A.J. Titus et al. extracted latent features using VAE to investigate a set of
CpGs correlated to Estrogen Receptor status [24]. Utilizing DNA methylation dataset,
VAE has been employed to identify informative latent variables in the specific type of
cancer, however, to the best of our knowledge, simulation of epigenetic dataset con-
ditioned to the designated cancer type based on the generative model has not been
presented yet.
In this paper, we propose a methCancer-gen, a tool for generating DNA methylome

dataset based on a user-specified cancer type. We employed a conditional variational
autoencoder (CVAE) [25], an extension of a standard VAE, suitable for incorporat-
ing a control for the condition. It allows generating samples similar but not identical
to input data from modeling conditional distribution with latent variables and data.
Different from VAE, CVAE has control on the data generation process, therefore by
changing the conditional variable which refers to cancer type in our model, DNA
methylation simulation data for specified cancer type will be generated. To demon-
strate the data simulation of methCancer-gen for the user-specified cancer type, we
compared dataset generated from our model to a benchmark method and validated its
functionality.

Results
Experimental design

Benchmarkmethod

To evaluate the methCancer-gen for DNA methylation data generation, a benchmark
method for cancer data generation was designed under the assumption that beta val-
ues for each CpG site follow a beta distribution [26]. The distributional parameters
(α and β) for each CpG and cancer type were estimated and methylation dataset was
simulated from the approximated distribution models. For each cancer type, 100 DNA
methylation datasets were generated from methCancer-gen and benchmark method.
We compared the accuracies of dataset generated from each method using the most
widely used, five different machine learning (ML) based classification algorithms: deci-
sion tree (DT) [27], Naive Bayes (NB) [28], random forest (RF) [29], K-nearest neighbor
(KNN) [30], and support vector machine (SVM) [31]. This evaluation shows validation of
whether the generated cancer dataset is predicted to the intended cancer type we speci-
fied to methCancer-gen. Overview of the performance evaluation design is described in
Table 1.
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Table 1 Description of trained models and dataset for simulation evaluation

TCGA Dataset Trainingmodel Description

70%
methCancer-gen CVAE based DNN model

Benchmark Estimating beta distribution of beta values for each CpG

30% 5 different ML based classifiers Classifying dataset with 100 generated data for each cancer

Dataset

We used a DNA methylome dataset composed of 8,051 primary solid tumor tissue
samples from 25 cancer types measured by Illumina Human Infinium 450K assay [32],
obtained from TCGA. 70% of dataset was randomly selected and used for generating
simulation dataset by trainingmethCancer-gen to learn latent representations and bench-
mark to estimate the distribution, while 30% was used for training multi-class classifiers
for predicting 25 cancer types. Cancer types and the number of samples used for training
methCancer-gen and 5 classifiers are listed in Table 2.

Performance evaluation for the simulation performance

To evaluate the performance of DNAmethylation dataset generation of the methCancer-
gen for designated cancer type and test the accuracy of simulation data with respect to
real data, it was compared to the benchmark method based on estimating beta distribu-
tion for each CpG site in each cancer. Based on the preprocessed dataset, both methods

Table 2 25 cancer types and the number of samples used for training generators and classifiers

Cancer type
Number of samples for training

Generators Classifiers

BLCA 292 126

BRCA 555 238

CESC 214 93

COAD 219 94

ESCA 129 56

GBM 98 42

HNSC 369 159

KIRC 226 98

KIRP 192 83

LGG 361 155

LIHC 263 114

LUAD 331 142

LUSC 259 111

MESO 60 27

PAAD 128 56

PCPG 125 54

PRAD 351 151

READ 68 30

SARC 182 79

SKCM 72 32

STAD 276 119

TGCT 105 45

THCA 354 153

THYM 86 38

UCEC 306 132
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generated 100 simulated datasets composed of 394,355 CpGs for each cancer type. Five
different multi-class classification algorithms were used to predict cancer types of the
simulated dataset from each generation method. The performance was evaluated by mea-
suring average classification accuracy repeated ten times. The evaluation results showed
that methCancer-gen outperformed the benchmark, achieving an average classification
accuracy of 0.967, 0.875, 0.877, 0.858, and 0.694 for SVM, RF, KNN, NB, and DT, respec-
tively, while benchmark was 0.964, 0.796, 0.875, 0.772 and 0.595, respectively (Fig. 1).
The cancer-type wise accuracy and the area under curve (AUC) results are shown in the
Supplementary material S1 (Table A) and S2.
Furthermore, we investigated whether a classifier trained using methCancer-gen would

improve the classification accuracy compared to a classifier trained with data from TCGA
only. For the experiments, three SVM classifiers were trained, where the first model was
based on only utilizing 30% of TCGA data and the other two classifiers were trained
based on a combined dataset with the same 30% TCGA data and the generated dataset
from methCancer-gen and benchmark, respectively. During the experiment, the amount
of generated data was gradually increased from 100 to 500 samples for each cancer type
(Table 3). 70% of TCGA data used for training methCancer-gen was not included in train-
ing SVM classifiers. To evaluate the performance of each SVM classifier, we obtained
1,038 methylation samples of 8 cancer types from methCNA [14], a comprehensive
database containing Infinium HumanMethylation450K data resources of human cancer
collected from Gene Expression Omnibus database. Each experiment was repeated five
times.
From the results (Table 4), the classifier utilizing dataset composed of TCGA and 300

generated datasets frommethCancer-gen exhibited the highest average accuracy of 0.823
and AUC of 0.914, compared to 0.762 and 0.869 of the benchmark, and 0.751 and 0.864 of
TCGA only. The cancer-type wise AUC results are shown in the Supplementary material S3.

Fig. 1 Evaluation of methCancer-gen against benchmark method for accurate data generation. Each boxplot
contains accuracies for all the cancer types for each experiment. Accuracy was measured by 5 ML algorithms
classifying 25 cancer types of generated dataset
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Table 3 Description of trained models and dataset for usability evaluation

Classifier Training dataset Testing dataset

TCGA only 30% of TCGA (854 samples)
8 types of cancer dataset from
methCNA (1,038 samples)TCGA & benchmark 30% of TCGA & 100-500 generated

dataset for each cancer typeTCGA &methCancer-gen

Moreover, utilizing 300 generated samples for training the SVM classifier achieved a
higher average accuracy of 0.823, compared to 0.809 and 0.799 for using 200 and 100 sim-
ulation samples, respectively. Increasing the number of generated samples more than 300
for each cancer type did not help to improve the performance of the classifier. Overall,
utilizing generated data by methCancer-gen improved the performance of the classifier
on 6 of 8 cancer types.
In addition, we further investigated the simulation dataset from the methCancer-gen

and benchmark method to assess whether each method approximates the distribu-
tion model closely to the original dataset. Utilizing t-distributed stochastic neighbor
embedding (t-SNE) [33] method, the original methylome TCGA datasets and the simu-
lation datasets from the methCancer-gen and benchmark were compressed into three-
dimensional t-SNE spaces. From the result, the generated dataset from methCancer-gen
were clearly separated into individual cancer types, validating that methCancer-gen could
capture high-dimensional latent features of original dataset even within the similar can-
cers showing clusters of partial mixing, while the benchmark method showed sporadic
result on those cancers (Supplementary material S4).

Discussion
Although genome-wide DNA methylation measurement methods such as WGBS has
been introduced, still most of the publically available dataset are array-based because of
cost-efficiency. Besides, due to the relatively high cost of generating methylome data, the
lack of public data issues is still an open problem.
From ourmodeling and experiments to alleviate the issue, it is proved that methCancer-

gen provides more accurate DNA methylation profiles for each cancer type compared to
the other method. Five different ML-based classifiers correctly classified the generated
dataset from the proposed model to each cancer showing that our model successfully

Table 4 Comparison of cancer type prediction accuracy for SVM classifiers trained based on different
dataset

Cancer Number of testing samples TCGA only

TCGA & benchmark TCGA &methCancer-gen

Number of generated dataset for each cancer type

100 200 300 100 200 300

BRCA 313 0.796 0.796 0.796 0.796 0.799 0.802 0.809

COAD 102 0.922 0.922 0.922 0.922 0.931 0.951 0.951

GBM 71 0.972 0.972 0.972 0.972 0.972 0.972 0.972

KIRC 45 0.733 0.733 0.733 0.733 0.733 0.733 0.733

LUAD 162 0.969 1.000 1.000 1.000 1.000 1.000 1.000

PAAD 166 0.139 0.168 0.168 0.175 0.398 0.434 0.434

PRAD 20 0.700 0.700 0.700 0.700 0.700 0.700 1.000

SKCM 159 0.868 0.887 0.887 0.887 0.887 0.887 0.931

Average 0.751 0.761 0.761 0.762 0.799 0.809 0.823
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learned latent features and inferred the distribution of each cancer in an unsupervised
manner.
methCancer-gen can be used for data augmentation strategy, where utilizing the gener-

ated dataset from methCancer-gen as a supplement of real data for model training could
indeed improve the performance of a classifier. Up to the certain point, the larger the
amount of simulation dataset, the more accurate performance could be achieved. In addi-
tion, the generated dataset could be utilized for imputation by replacing missing values
(Supplementary material S5).

Conclusions
In this paper, we presented methCancer-gen, a neural network-based tool for generating
DNA methylome samples for user-specified cancer type. The proposed model employs
CVAE as a generative model to estimate the distributions that underlie observed methy-
lation values by variational inference while accounting for cancer type. The simulation
performance of our model was evaluated with comparison to the benchmark method and
the benefit of utilizing methCancer-gen was tested, showing improved performance in
both evaluation results. We believe that the methCancer-gen could alleviate the lack of
DNA methylation data issue, and promote further epigenetic cancer research.

Methods
With the matrix of DNAmethylation beta values andmatched cancer type information as
input, the methCancer-gen approximates the underlying distribution model of the input
data. After model training, methylation beta value for the specified cancer type can be
generated as output. Figure 2 depicts a flowchart describing the process.

Preprocessing

To eliminate the bias caused by a high frequency of missing values during model training,
the methCancer-gen provides a four-step preprocessing. First, CpG sites having missing
values for all samples were removed. To retrievemaximumdata, the dataset is divided into

Fig. 2 Workflow of the proposed methCancer-gen model based on CVAE using DNA methylation data. It
consists of two main phases: (1) Preprocessing to minimize bias caused by high frequency of missing values.
(2) Generation of DNA methylation dataset for specified cancer type by CVAE neural network model
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multiple subsets of 10,000 CpGs each. Therefore, samples showingmissing values only for
specific CpGs within each subset can be utilized for model training. Then, samples having
a significant number of missing values are detected as outliers and discarded to minimize
bias by applying inter-quartile range (IQR) method [34]. Remaining missing values are
imputed with median values.

Generating DNAmethylome dataset for a given cancer type

The methCancer-gen model was constructed based on a CVAE neural network model
conditioned on the input observation in VAE, where VAE is a probabilistic generative
model combining DNN and variational learning framework. It has been demonstrated
that VAE tends to be more stable in model training procedure and producing less obscure
output than other generative models, as it is based on clear objective function to opti-
mize based on log-likelihood [35]. Through a process of generating a set of latent variable
z from the prior distribution pθ (z), data x is generated from the generative model pθ (x|z)
conditioned on z with respect to generative parameter θ , where the prior over z is
assumed to be the standard normal distribution. To approximate the posterior distri-
bution pθ (z|x) assumed to be a Gaussian, variational inference is used by introducing
a proposal distribution qφ(z|x), known as recognition model, where φ is the variational
parameter. By applying the stochastic gradient variational bayes (SGVB) framework, the
Gaussian parameters of VAE, μ and σ are estimated and the variational lower bound on
log-likelihood is used as an objective function :

Eqφ(z|x)[ log pθ (x|z)]−KL[ qφ(z|x)||pθ (z)] (1)

, where the first term denotes an expectation over the approximate posterior distribution,
called reconstruction error, while the second term is a Kullback-Leibler (KL) divergence
term considered as a regularizer. Implemented in a neural network, an encoder referred to
as inference network models the recognition model and a decoder defines the conditional
probability pθ (x|z), which is referred to as generative network.
In addition to VAE, CVAE imposes a condition y on the z and x, where the recognition

and generation models are extended to qφ(z|x, y) and pθ (x|z, y), respectively. In train-
ing procedure to maximize the conditional log-likelihood, the parameters of CVAE are
estimated, and the variational lower bound on log-likelihood is defined as follows:

log pθ (x, y) ≥ LCVAE

= Eqφ(z|x,y)[ log pθ (x|z, y)]−KL[ qφ(z|x, y)||pθ (z|y)]
(2)

After training procedure, through sampling from the learned latent distribution with
utilizing the generative network, simulated dataset inferred from input data can be gen-
erated. In methCancer-gen, x represents the input data of DNA methylation beta values,
and y is a cancer type.
The methCancer-gen model consists of encoder and decoder with two hidden layers,

where the encoder has an architecture of 500 and 250 hidden nodes with fully connected
layers and activation functions of empirically-selected exponential linear units (ELUs)
[36] and the tanh function [37] were applied. The decoder has a symmetrical structure
to encoder extracting 125 latent variables. During the training phase, the model was
optimized with the adaptive optimization algorithm, Adam [38] by simultaneously min-
imizing the reconstruction error and loss. The learning rate and training epoch were set
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to 1e-3 and 10,000, respectively. methCancer-gen is implemented in python with Ten-
sorflow library (Version 1.8.0) and publicly available at https://github.com/cbi-bioinfo/
methCancer-gen.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3516-8.

Additional file 1: Supplementary material S1. (A) Average classification accuracy results for each cancer type based
on different classifiers from the simulation performance evaluation in Fig. 1. (B) False positive rate (FPR) of methCancer-
gen for each cancer type from the simulation performance evaluation in Fig. 1. To measure the FPR, multi-class
datasets are converted to binary classification problems by using one class v.s. others scheme. (C) False negative rate
(FNR) of methCancer-gen for each cancer type from the simulation performance evaluation in Fig. 1. To measure the
FNR, multi-class datasets are converted to binary classification problems by using one class v.s. others scheme.

Additional file 2: Supplementary material S2. Average AUC results for each cancer type from the performance
evaluation in Fig. 1.To measure the AUC, multi-class datasets are converted to binary classification problems by using
one class v.s. others scheme.

Additional file 3: Supplementary material S3. Average AUC results of the SVM classifier for each cancer type from
the second experiment (Table 4) to validate whether training a classifier based on a combined dataset with the
original TCGA data and the generate ad data from methCancer-gen could improve the classification performance.
Each experiment was repeated five times.

Additional file 4: Supplementary material S4. t-SNE visualization of the original dataset and simulation dataset from
methCancer-gen and the benchmark method is shown.

Additional file 5: Supplementary material S5. Performance comparison of two SVM classifiers trained by median
imputed dataset and imputed dataset using methCancer-gen generated data respectively. 100,000 missing values
(NA) for the imputation test were randomly created within 30% samples of TCGAdata.
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