Impacts of wind events on surface water temperature, light availability, and internal nutrient loading are expected to be mediated by lake fetch, antecedent (“pre”) water column stability, and trophic state. As momentum and mechanical energy flux across the lake–air interface, they scale as the wind speed squared and cubed, respectively (Wüest & Lorke, 2003). Thus, even relatively modest increases in wind speed could lead to disproportionately large changes in lake stratification and mixing dynamics. Lake depth also plays a role in mediating the impacts of wind events (see Figure S1). (a) In general, if a lake is stratified, wind will deepen the upper mixed layer, increase the volume of water within the upper layer, and thus reduce surface temperature. Polymictic lakes (lower prestability) still tend to have cooler temperatures at depth and the same processes could be important in altering surface temperatures, albeit to a lesser extent. Strong antecedent stability is characterized by sharp temperature gradients and resistance to mixing, but such conditions also set the stage for the greatest change in surface temperature. For example, if stability and wind speed are high, we expect a seiche to develop with the potential for upwelling of cold, hypolimnetic waters to the lake surface. (b) Wind events on lakes with weaker antecedent water column stability and greater fetch will have larger negative effects on light availability than on lakes with stronger antecedent stability and shorter fetch. (c) Wind events are expected to have the greatest impact on internal nutrient loading in lakes with greater fetch, stronger antecedent stability, and higher productivity. In particular, strong antecedent stability is expected to facilitate the buildup of nutrients in hypolimnetic waters (deeper lakes) and nutrient release through sediment anoxia (shallower lakes; see Figure S1 for more details), although well‐oxygenated hypolimnia likely result in little effect