Impacts of precipitation events on light availability, system flushing, and external nutrient loading are expected to be mediated by lake and watershed attributes that include ratio of watershed area to lake surface area (WA:LSA), lake volume, and anthropogenic land use (e.g., urban or agricultural development). (a) Sediment and dissolved organic carbon delivered to lakes by runoff from precipitation will reduce light availability (penetration) in lakes. We expect that light availability to phytoplankton will be more negatively impacted as WA:LSA and anthropogenic land use increase and lake volume decreases (Figure S2). (b) Flushing rates of lake systems as a result of precipitation runoff will be greatest in lakes with large WA:LSA, more anthropogenic land use, and small lake volumes. Lakes with large volumes, relatively small watershed areas, and less developed landscapes will be more buffered from precipitation‐induced flushing. We expect similar patterns for external nutrient loading. In particular, external nutrient loads will be diluted in lakes with larger volumes, and therefore are less impacted by precipitation events, at least in the short term. Long‐term buildup of external nutrient loads can eventually lead to excessive internal nutrient loading (Figures S1 and S2)