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Perspective

Premature Deaths, Statistical Lives, and Years of Life Lost:
Identification, Quantification, and Valuation of Mortality
Risks

James K. Hammitt,1,∗ Peter Morfeld ,2 Jouni T. Tuomisto ,3 and Thomas C. Erren 4

Mortality effects of exposure to air pollution and other environmental hazards are often de-
scribed by the estimated number of “premature” or “attributable” deaths and the economic
value of a reduction in exposure as the product of an estimate of “statistical lives saved” and
a “value per statistical life.” These terms can be misleading because the number of deaths
advanced by exposure cannot be determined from mortality data alone, whether from epi-
demiology or randomized trials (it is not statistically identified). The fraction of deaths “at-
tributed” to exposure is conventionally derived as the hazard fraction (R – 1)/R, where R is
the relative risk of mortality between high and low exposure levels. The fraction of deaths ad-
vanced by exposure (the “etiologic” fraction) can be substantially larger or smaller: it can be
as large as one and as small as 1/e (�0.37) times the hazard fraction (if the association is causal
and zero otherwise). Recent literature reveals misunderstanding about these concepts. Total
life years lost in a population due to exposure can be estimated but cannot be disaggregated
by age or cause of death. Economic valuation of a change in exposure-related mortality risk
to a population is not affected by inability to know the fraction of deaths that are etiologic.
When individuals facing larger or smaller changes in mortality risk cannot be identified, the
mean change in population hazard is sufficient for valuation; otherwise, the economic value
can depend on the distribution of risk reductions.
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1. INTRODUCTION

Health effects of environmental exposures are
quantified for use in impact studies and environmen-
tal burden of disease (EBD) studies. Impact studies
evaluate the effects on health of government regu-
lations and other policies to reduce exposures, such
as requiring emission-control equipment or impos-
ing fees on emissions. The estimated health effects
are often used as inputs to a benefit-cost analysis that
quantifies the positive and negative effects of the pol-
icy in monetary terms to help determine whether it
is on balance desirable. EBD studies evaluate the
harms to health from exposure compared with some
counterfactual situation, to provide perspective on
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the importance of different exposures and the pos-
sible benefits of reducing them.

Both impact and EBD studies present results de-
scribed using terms such as “premature deaths” and
“statistical lives saved.” The economic value of re-
ducing mortality risk is calculated using the concept
of “value per statistical life.” The literature suggests
there is much confusion about how these and similar
terms are defined and what can be known about the
mortality effects of environmental exposures.

In particular, the number or fraction of deaths
among individuals exposed to some hazard that
occur earlier than they would have if the individuals
had not been exposed (“etiologic deaths”) cannot be
determined from mortality data alone, whether from
epidemiological studies or randomized controlled
trials. The problem is that etiologic deaths are not
statistically identified: the time at which an exposed
individual dies can be observed, but the time at
which she would have died had she not been exposed
is counterfactual and cannot be observed. From
mortality data alone, one cannot distinguish between
situations in which a few people die much earlier
than they would have if unexposed and situations
in which many people die a little earlier than they
would have if unexposed.

The fraction of deaths in an exposed population
that are etiologic can be bounded but the bounds
are much farther apart than the ends of typical con-
fidence or uncertainty intervals presented in the lit-
erature. The total number of life years lost due to
exposure is statistically identified but cannot be dis-
aggregated into life years lost conditional on death
at specified ages or from specified diseases, as these
quantities are not statistically identified. Neverthe-
less, uncertainty about the fraction of deaths that are
etiologic and the number of life years lost conditional
on death at a specified age does not affect the eco-
nomic value of reducing exposure as conventionally
defined, because the economic value depends on the
change in mortality risk, which is identified.

In Section 1.1, we describe some of the problems
with how mortality risks are described in the litera-
ture that motivate this article. The terms we discuss
are defined in Table I.

In Section 1.2, we present a simple example that
illustrates our key points: the fraction of deaths in
an exposed population that are etiologic cannot be
determined from mortality data alone nor can the
life years lost to fatality at specified ages or from
specified causes. In contrast, total life years lost in
the exposed population and the economic value of

reducing exposure-related mortality risk can be de-
termined. The economic value of reducing exposure-
related mortality risk is unaffected by uncertainty
about the fraction of deaths that are etiologic, though
it could be affected by knowledge of how the fatality
risk differs among identifiable individuals. Readers
who are not interested in the technical details may
wish to read only the introduction (Section 1) and
conclusions (Section 4).

In Sections 2 and 3, we describe in principle
what aspects of the mortality effects of environmen-
tal exposures can be estimated using mortality data
(in Section 2) and how the effects on mortality are
valued using economics (in Section 3). We focus
on concepts and statistical identifiability rather than
questions of sample size, data quality, and empirical
methods that affect the precision with which quanti-
ties can be estimated. These sections present the ba-
sic concepts and equations underlying quantification
and valuation of exposure-related mortality and can
serve as an introduction to these topics. Conclusions
and implications are in Section 4.

For concreteness, we focus our discussion on the
mortality effects of (fine particulate) air pollution.
But our analysis is more general and is applicable to
other cases in which one cannot determine whether a
specific death was the result of exposure to a particu-
lar hazard. As noted, our discussion is not limited to
epidemiological studies; the same issues arise in ran-
domized controlled trials. The critical issue is that the
age at which an individual dies is observable but the
(counterfactual) age at which she would have died
had her exposure been different is not.

1.1. Terminology Commonly Used in the
Literature

EBD and impact studies5 that quantify the harms
to human health from air pollution or other ex-
posures, or the health benefits of reducing expo-
sure, often use wording such as “premature deaths”
(Anenberg et al., 2017; Landrigan et al., 2018), “ex-
cess deaths” (Burnett et al., 2018), “attributable
deaths” (Cohen et al., 2017), “deaths attributable to
AAP [ambient air pollution]” (World Health Or-
ganization, 2016), “PM2.5-related premature mortal-
ity” (Wang et al., 2017), and “premature mortality

5See Ostro (2004) for a definition and example of an EBD study
and COMEAP (2010) for a description of EBD studies and a dis-
tinction between burden and impact analyses. EBD studies focus
on populations during a period, usually a specified calendar year.
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Table I. Summary of Concepts

Concept Definition Comments

Relative risk R = (hazard in exposed population)/(hazard in
unexposed population)

R is usually > 1 and is often assumed to be
independent of age (“constant proportional hazard”)

Hazard fraction (R – 1)/R, based on relative risk R If R is age-dependent, so is the hazard fraction. Often
called “attributable fraction” or “population
attributable fraction”

Attributable fraction Fraction of deaths in the exposed population attributed
to exposure, equal to the hazard fraction

Etiologic fraction Fraction of deaths in the exposed population caused by
exposure (i.e., that occur earlier than if these
individuals were never exposed), under the
assumption that exposure is never protective

Cannot be identified from mortality data. Lower bound
depends on R: (R-1)/RR/(R-1) (assuming R > 1 and
independent of age) and upper bound equals 1
(assuming R > 1)

Attributable deaths (in
a specified time
period)

Expected number of deaths in the exposed population
that would not have occurred in the period if the
hazard during only that period was equal to the
hazard in the unexposed population

Calculated as (deaths in exposed population during
period) × (hazard fraction). Always > 0, if R > 1.
Equals decrease in deaths in exposed population if
suddenly unexposed and hazard depends only on
current exposure. Cannot be meaningfully summed
over periods

Statistical lives saved
(in a specified time
period)

Expected reduction in the number of deaths in the
period for a specified population and reduction in
hazard. Can be <0, if hazard is increased

Equal to the sum over individuals of the reductions in
individuals’ hazards in the period. If the hazard in
the exposed population is instantaneously reduced to
the hazard in the unexposed population, statistical
lives saved = attributable deaths for that instant

Excess deaths Expected steady-state difference in number of deaths
between the exposed and unexposed populations,
that is, the number of deaths that would not have
occurred absent exposure

The sum of excess deaths across all ages is zero. Excess
deaths are typically > 0 for younger ages and < 0 for
older ages. Excess deaths at age t < attributable
deaths at age t (if exposure reduces chance of
surviving to t)

Etiologic deaths Number of deaths in the exposed population that occur
earlier than if these individuals were never exposed.
Number of deaths caused by exposure, under the
assumption that exposure is never protective

Cannot be identified from mortality data. Etiologic
deaths at age t � minimum of excess deaths at age t
and zero and � all deaths in exposed population at
age t. Lower bound depends on R but is no smaller
than 1/e (� 0.37) times attributable deaths (assuming
R > 1 and independent of age); upper bound is all
deaths in exposed population (assuming R > 1)

Premature deaths No technical definition Seems to imply etiologic deaths, often used to describe
attributable deaths

Expected years of life
lost (YLL) among the
exposed

Sum over age of (exposed deaths) × (residual life
expectancy in exposed population)

Can be calculated in total and identified by covariates
like age or cause of death

Expected years of life
lost (YLL) due to
exposure

Difference between life expectancy for unexposed and
exposed populations. Equal to and often calculated
as sum over age of attributable deaths × residual life
expectancy if unexposed

Can be identified from mortality data for entire
population but not for subpopulations defined by age
of death or cause (disease)

Expected years lived
with disability (YLD)
due to exposure

YLD among the exposed that are attributed to
exposure. YLD among the exposed are a function of
prevalence and/or incidence of sequelae and
disability weights

Calculated as YLD among the exposed × hazard
fraction. Assumes elimination of all disability among
individuals affected by exposure if exposure is
reduced, that is, assumes no disability among these
individuals even if they would suffer the disease
absent exposure. Potentially biased estimate of YLD
due to exposure = YLD among the exposed – YLD
among the exposed had exposure been absent

Expected disability
adjusted life years
(DALYs) due to
exposure

DALYs among the exposed that are attributed to
exposure. DALYs among the exposed = YLL
among the exposed + YLD among the exposed

DALYs due to exposure by age of death or cause
(disease) cannot be identified from epidemiological
data (see YLL due to exposure). Are potentially
biased (see YLD due to exposure)

(Continued)
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Table I. Continued

Concept Definition Comments

Value per statistical life
(VSL)

Individual-specific rate of substitution between wealth
and infinitesimal change in survival probability for a
specified (short) period.

Monetary value to an individual of an increase in
period survival probability � VSL × (probability
change). VSL may depend on wealth, age, life
expectancy, health, and other factors. The
approximation is good for monetary values that are
small compared with the individual’s wealth.

Value per statistical life
year (VSLY)

Individual-specific rate of substitution between wealth
and infinitesimal change in life expectancy.

Monetary value to an individual of an increase in life
expectancy � VSLY × (change in life expectancy).
VSLY depends on the same factors as VSL. VSLY
need not be the same for all changes to the hazard
function yielding the same increase in life
expectancy. Similar to VSL, the approximation is
best for monetary values that are small compared
with wealth.

attributable to air pollution” (Lelieveld, Evans,
Fnais, Giannadaki, & Pozzer, 2015). These terms are
often used interchangeably and in a causal sense: for
example, Cohen et al. (2017) described numbers of
deaths “attributed” to exposure as numbers of deaths
“caused” by exposure; Anenberg, Miller, Henze,
and Minjares (2019) used “premature deaths” in the
same sense as “attributable deaths” and described
emissions as “responsible” for pollutant-attributable
deaths; Burnett et al. (2018) equated “excess” and
“avoided” deaths. Goodkind, Tessum, Coggins, Hill,
and Marshall (2019) concluded that “anthropogenic
PM2.5 was responsible for 107,000 premature deaths
in 2011, at a cost to society of $886 billion.”

The estimates of “premature,” “excess,” or “at-
tributable” deaths in these articles are computed
as products of mortality counts and hazard frac-
tions6 (Environmental Protection Agency, 1996;
GBD 2017 Risk Factors Collaborators, 2018; Lim
et al., 2012). Some articles (Cohen et al., 2017;
Landrigan et al., 2018; World Health Organization,
2016) also present results in terms of disability-
adjusted life years (DALYs), calculated as the sum
of years of life lost to death and years lived with dis-
ability (GBD 2017 Risk Factors Collaborators, 2018;
Murray, 1994; Prüss-Üstün, Mathers, Corvalán, &
Woodward, 2003; World Health Organization, 2016).

These terms can be misleading. It is not possible
based on current science to know the number of
etiologic deaths, that is, the number of individuals
who die earlier than they would have because of air
pollution or other exposures lacking a distinctive

6Hazard fractions are defined in Section 2. They are also called
population attributable fractions if based on the exposure pat-
tern of a population (Rothman, Greenland, & Lash, 2008).

relationship between exposure and disease.7 As is
well known (Rothman, Greenland, & Lash, 2008),
epidemiology can identify associations between
exposure and mortality, but determining whether
an exposure causes mortality requires other forms
of reasoning and evidence, for example, to rule out
the possibility that both exposure and mortality are
caused by some other (confounding) factor. Well-
conducted randomized controlled trials have the
advantage that the estimated association between
exposure and mortality is statistically unbiased, that
is, the expected association between exposure and
any possible confounding factor is zero. Moreover,
the probability of drawing a random sample having
any specified degree of association between exposure
and possible confounders declines toward zero as
the sample size increases (Greenland, 1990).

The question of causality is not the focus of this
article; from this point onward, we assume that any
observed relationship between exposure and mortal-
ity is causal. The limitations we describe apply even
in an ideal situation of true causal effects and epi-
demiological studies or randomized controlled trials
free of bias and random error. If the association be-
tween exposure and mortality is not causal, then tau-
tologically no deaths are caused by exposure.8

7The relationship between mesothelioma and asbestos exposure
is often cited as an example of a distinctive relationship in which
the disease can be linked to an exposure, but even in this case,
there can be uncertainty about the cause. Mesothelioma can be
caused by exposure to erionite (Dikensoy, 2008; International
Agency for Research on Cancer, 1987; Jasani & Gibbs, 2012)
and may arise even without significant exposure to asbestos or
erionite in susceptible individuals (Testa et al., 2011).

8We adopt the “potential-outcome” or “counterfactual” model
in which each individual has an age of death conditional on
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The standard calculation used to quantify the
mortality effects of exposure estimates the number
of “deaths attributable to exposure” (or “attributable
deaths”), which is the difference between the number
of deaths expected to occur in an exposed population
(during a defined period) and the number that would
be expected to occur in that population if mortality
risk in the period was the same as in an unexposed
population. Attributable9 deaths are calculated as
the product of total deaths in the exposed popula-
tion and the hazard fraction. The number of etiologic
deaths can be smaller or much larger than the num-
ber of attributable deaths. Attributable deaths can
also differ from “excess deaths,” which is the differ-
ence between the steady-state numbers of deaths that
occur in a period if the population has been contin-
uously exposed and the number that would occur if
the population was never exposed.

In contrast to etiologic deaths, the total number
of life years lost in the exposed population is statisti-
cally identified and can be estimated using mortality
data. However, for the same reason that the number
of etiologic deaths is not identifiable, the life years
lost due to exposure among individuals who die at
specified ages or from specified causes (which are
used to calculate DALYs) are not identified and can-
not be known using only mortality information. Sim-
ilarly, estimates of the monetary value of a change in
mortality risk based on the change in life expectancy
(e.g., using a constant “value per statistical life year”
[VSLY]) can be calculated at the population level but
cannot be disaggregated to categories such as deaths
at specific ages or from specific diseases.

1.2. A Tale of Two Cities

Suppose there are two cities that are identi-
cal, except in air pollution and mortality. In one
(Clearville), the air is clean and one-quarter of the

exposure and an age of death conditional on nonexposure. The
death of an exposed individual is etiologic if and only if her
(counterfactual) age of death conditional on nonexposure is
greater than her (factual) age of death conditional on exposure.
Suzuki, Yamamoto, and Tsuda (2012) detail the relationship be-
tween this model and a sufficient-cause model that describes the
sets of conditions (some of which include exposure) under which
an individual dies.

9While excess and etiologic deaths are well-defined (Greenland,
2015; Suzuki et al., 2012), the term “attributable” is used in-
consistently. A leading epidemiology textbook (Rothman et al.,
2008) reports that attributable deaths sometimes refer to excess
deaths and sometimes to etiologic deaths; Poole (2015) describes
the history and multiple applications of the term.

population dies at ages 70, 80, 90, and 100 years; in
the other (Smokeville), the air is polluted and one-
quarter of the population dies at ages 60, 70, 80, and
90 years. Assume that individuals live their entire
lives in their city of birth, that the difference in mor-
tality is caused by air pollution, and that if pollution
in Smokeville were eliminated the mortality rates
would instantaneously become identical to those in
Clearville. Consider two questions:

(1) What fraction of the deaths in Smokeville is
etiologic, that is, occur earlier than they would
have if there were no pollution? Equivalently,
what fraction of the people in Smokeville
would live longer if pollution were eliminated?

(2) What is the economic value of eliminating
the mortality risk due to air pollution in
Smokeville? Does it depend on the answer to
question 1?

The fraction of deaths that is etiologic is not sta-
tistically identified using mortality data. It could be
one, if all deaths are advanced by 10 years. It could
be one-quarter, if people who would die at 100 ab-
sent air pollution die at 60 in its presence and no one
else is affected. It can be any number between these
extremes; for example, if some people are of type A
(who die 10 years earlier if exposed to air pollution)
and the remainder are of type B (who are unaffected,
except the quarter who would live to 100 in the ab-
sence of air pollution die at 60 in its presence).

Figure 1 illustrates the probability distributions
for age of death in Smokeville and Clearville for
three possible fractions of deaths that are etiologic.
Panel A shows the distribution in Smokeville, where
the colors characterize people who die at each age. In
Panel B, each individual’s age of death in Clearville
is 10 years older than in Smokeville. In Panel C,
individuals who die at 60 in Smokeville would die
at 100 in Clearville, and all other individuals die at
the same age in Clearville as in Smokeville. Panel D
presents the case in which the fraction of deaths at
each age that is etiologic equals the fraction that is at-
tributable to air pollution (as described in Section 2).
In this case, all the people who die at 60 would have
lived longer in Clearville: some would have lived to
70, some to 80, some to 90, and some to 100. The
fractions of people who die at ages 70, 80, and 90
who would have lived longer in Clearville are one-
quarter, one-third, and one-half, respectively.

Although the probability distribution of age at
death is the same in panels B, C, and D, the fractions
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(a) Probability distribu�on of age of death in 
Smokeville. 

(b) Probability distribu�on of age of death in Clearville 
if all deaths are advanced (by 10 years). 

(c) Probability distribu�on of age of death in Clearville 
if only deaths at age 100 are advanced (by 40 years). 

(d) Probability distribu�on of age of death in Clearville 
if only a�ributable deaths are advanced. Frac�ons of 
deaths that are e�ologic are 1, 1/4, 1/3, and 1/2 at 
ages 60, 70, 80, and 90, respec�vely. 

Fig. 1. Probability distribution of age of
death showing alternative possible fractions
of deaths advanced by age. Colors corre-
spond to age at which individual would die
in Smokeville.

of people whose age at death in Smokeville is less
than their age at death in Clearville equals 1, 0.25,
and 0.52 in Panels B, C, and D, respectively. Knowing
only the probability distributions of age at death does
not allow one to distinguish between these three sit-
uations (or many others that could be constructed).

Some important concepts are statistically iden-
tified and can be estimated using mortality data for
the two cities. The excess deaths by age (the differ-
ence between the expected number of deaths by age
in Smokeville and Clearville) is identified; as a frac-
tion of each birth cohort it is one-quarter at 60, mi-
nus one-quarter at 100, and zero at all other ages.
The number of life years lost due to exposure is also
identified: it is 10 per capita. However, the number
of life years lost due to exposure and conditional on
death at a particular age is not identified: for deaths
at 60, it is between 10 and 40; for deaths at 70, 80, and
90 it is between 0 and 30, 20, and 10, respectively.10

10It is important to distinguish between the number of life years
lost conditional on death at age t, and the number of life years
lost conditional on death at age t that are due to exposure. The
former equals life expectancy at age t in the exposed population
(i.e., 0, 10, 15, and 20 years at ages 90, 80, 70, and 60, respec-
tively). The latter is not statistically identified because it is not
known how many deaths at each age are due to exposure. The

Similarly, the number of life years lost due to expo-
sure and conditional on cause of death is not iden-
tified. Assume that some of the deaths at age 60 are
caused by heart attack and that all the deaths at older
ages are from other causes. Then, the life years lost
due to exposure and conditional on death from heart
attack is between 10 and 40.11

The economic value of reducing mortality risk in
Smokeville by eliminating air pollution is equal to the
sum over the population of each individual’s value of
her risk reduction. For an individual of age a < 60,
the value is equal to the expected present value of
the risk reductions at future ages,

V =
90∑

t=60

v (t) r (t) S (t)ρ t−a, (1)

bounds on life years lost due to exposure reflect the possibili-
ties that air pollution has no effect on people who would have
lived to 70, 80, or 90 in Clearville, and that deaths at these ages
in Smokeville are only among individuals who would have lived
to 100 in Clearville.

11Again, it is important to distinguish between the number of
life years lost conditional on death from a specified disease and
the number lost conditional on death from a specified disease
and due to exposure. In the example, the expected number of
life years lost due to heart attack equals the life expectancy in
Smokeville at 60 (20 years).
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where V is her total monetary value, v(t) is her aver-
age value per unit risk reduction of reducing her haz-
ard at age t by r(t), S(t) is her probability of surviving
to t, and ρ is her discount factor (equal to 1/[1 + her
discount rate]).12 If there is no additional informa-
tion about the age at which each individual will die,
the value V does not depend on the etiologic fraction:
whatever its value, each individual substitutes a lot-
tery with equal chances of dying at ages 70, 80, 90, or
100 for a lottery with equal chances of dying at ages
60, 70, 80, or 90.

To confirm that the value of eliminating
exposure-related mortality risk is independent of the
etiologic fraction, assume that an individual’s total
value depends on whether she is of type A or B de-
fined above; the values VA and VB are the results of
Equation (1) conditional on being of each type.

The elements of Equation (1) are presented in
Table II. Conditional on being of type A, eliminat-
ing pollution eliminates the mortality hazard at ages
60, 70, 80, and 90. The individual will benefit from
exactly one of these (though which one is unknown)
and the total value is the sum of the four terms, each
weighted by its probability. Conditional on being of
type B, eliminating pollution eliminates the mortal-
ity hazard at age 60 and the total value is the value of
this change multiplied by the probability the individ-
ual would die at 60. Note that the value of reducing
risk at each age depends on type. For type A, vA(t) is
the value of delaying death from t to t + 10; for type
B, vB(t) is the value of delaying death from t to t +
40. But vB(60)ρ60−a = ∑90

t=60 vA(t)ρ t−a because both
sides of this equation are the value at age a of delay-
ing death from 60 to 100.13 Hence, the value of elimi-
nating exposure-related mortality risk is the same for
types A and B; knowledge of the individual’s type has
no effect on her value.

Knowledge about an individual’s type could af-
fect valuation if the age at which she would die in
Smokeville is known. If she would die at 70, 80, or
90 in Smokeville, the value of eliminating exposure is
zero if she is of type B and is positive if of type A. If
she would die at 60 in Smokeville, the value of elim-
inating exposure is greater if she is of type B rather
than type A.14

12The model leading to this equation is explained in Section 3.
13Note that the summation includes only four terms, t = 60, 70, 80,

and 90.
14Information about type would also affect valuation in the less ex-

treme situation where the individual has information about any

The following sections generalize the results of
this example, describe the calculation of attributable
deaths, and provide additional details. To summa-
rize, the difference in the probability of death by age
between populations that differ in exposure is identi-
fied and can be estimated, as can the total life years
lost due to exposure. However, the fraction of deaths
that occur earlier in the exposed population and the
life years lost conditional on age or cause of death
and due to exposure are not identified; their values
differ between alternative models of the relationship
between exposure and mortality that cannot be dis-
tinguished using only mortality data. These problems
affect conventional estimates of the burden of dis-
ease but not of the economic value of a change in ex-
posure, as valuation depends only on changes in in-
dividuals’ risks. Knowledge of the etiologic fraction
does not change the economic value, unless there
is also information about how an individual’s risk
of death at each age differs from the population
average risk.

2. EPIDEMIOLOGY: ESTIMATING
MORTALITY EFFECTS

Epidemiological studies collect data that can
be used to estimate population-level mortality-
hazard functions and survival functions for different
exposures. For example, studies of the effects of
fine-particulate air pollution on mortality compare
mortality rates between populations living in differ-
ent locations (long-term cohort studies, e.g., Dockery
et al., 1993; Hoek et al., 2013) or within the same
population at different times (time-series studies,
e.g., Atkinson, Kang, Anderson, Mills, & Walton,
2014; Dominici, McDermott, Daniels, Zeger, &
Samet, 2005, and intervention studies, e.g., Pope,
Schwartz, & Ransom, 1992, 2007).15 Hazard and sur-
vival functions may be estimated for subpopulations
defined by individuals’ age, sex, ethnicity, smoking
status, and other observable factors within the limits
of epidemiology (e.g., sample size, difficulties in
measuring individual characteristics, inability to
control for unobserved individual characteristics,
uncertainty about appropriate functional form such
as constant proportional hazard).

differences between her probabilities of dying at ages 60, 70, 80,
or 90.

15Long-term cohort studies yield estimates of the effects of con-
tinuous exposure to alternative (time-varying) pollution levels;
time-series and intervention studies yield estimates of the effect
of changing exposure.
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Table II. Value of Risk Reduction in Smokeville

Type A Type B

t S(t) h(t) r(t) Value h(t) r(t) Value

60 1 1/4 1/4 vA(60) · 1/4 · 1 · ρ(60−a) 1/4 1/4 vB(60) · 1/4 · 1 · ρ(60−a)

70 3/4 1/3 1/3 vA(70) · 1/3 · 3/4 · ρ(70−a) 0 0 0
80 1/2 1/2 1/2 vA(80) · 1/2 · 1/2 · ρ(80−a) 0 0 0
90 1/4 1 1 vA(90) · 1 · 1/4 · ρ(90−a) 0 0 0

100 0 0 0 0 1 0 0
Total V A = 1/4

∑90
t=60 vA(t)ρt−a VB = 1/4 vB(60)ρ60−a

For simplicity, we assume stable populations. A
population is stable if the birth rate (number of births
per year) is constant, all birth cohorts face the same
hazard function, and steady state has been reached.
Given these assumptions, the age distribution of a
population in every calendar year coincides with the
survival function of the birth cohorts. We will make
use of this correspondence in the following, often im-
plicitly. Thus, our results apply to EBD population
studies (that assume stable populations) as well as to
epidemiological cohort studies.

Assume there are two exposure levels of interest,
“high” and “low” (we will sometimes describe indi-
viduals exposed to these levels over their lifetimes16

as “exposed” and “unexposed,” respectively). We
assume there are no other differences between the
populations that affect mortality. Consider the haz-
ard functions for total mortality (i.e., for all causes
of death) corresponding to these two exposure
levels for a birth cohort (or a subcohort defined
by observable characteristics). The hazards are
functions of individual age t (t = 0 at birth). Let h0(t)
and h1(t) be the hazard functions corresponding to
low and high exposure over a lifetime, respectively.
Then, for j = 0, 1, the corresponding survival curves
are

Sj (t) = exp

⎛
⎝−

t∫

0

h j (τ ) dτ

⎞
⎠ , (2)

16This assumption of a long-term exposure difference is typical for
EBD studies: for example, GBD 2017 Risk Factors Collabora-
tors (2018, p. 1926) estimates attributable burden by multiplying
total cases by the population attributable fraction (i.e., hazard
fraction), which “is the proportion by which the outcome would
be reduced in a given population and in a given year if the expo-
sure to a risk factor in the past were reduced to the counterfac-
tual level.”

and the marginal probability distributions for age at
death are

f j (t) = h j (t) Sj (t) = − d
dt

Sj (t) . (3)

For stable populations, the age distribution of
the population is also described by Equations (2)
and (3). To simplify notation, let population be mea-
sured as a proportion of the birth cohort, so annual
births and (at steady state) annual deaths equal one.

If exposure increases mortality risk at all ages
(i.e., h1(t) > h0(t) for all t > 0), then the number of
people of any age t > 0 is larger in the unexposed
population (S0(t) > S1(t)). Figure 2 provides an illus-
tration of these functions where h1(t) is the hazard
function for US males (the exposed population) and
h0(t) = (2/3) h1(t) is the hazard function for the un-
exposed population (the factor 2/3 is chosen for illus-
tration and does not represent typical hazard ratios
found in environmental studies). In the figure, h1(t)
> h0(t) and, hence, S1(t) < S0(t) for all t > 0.

The standard calculation of attributable deaths
at age t, D(t), is

D(t) = R(t) − 1
R(t)

f1 (t) , (4)

where f1(t) is the total number of deaths at age t in
the exposed population, [R(t) – 1]/R(t) is the hazard
fraction, and R(t) = h1(t)/h0(t) is the relative risk or
rate ratio, which is typically treated as constant across
t (the proportional hazard assumption).17

17Alternatively, the deaths attributed to each air-pollution-related
disease can be calculated using disease-specific values of both
relative risk R and total deaths, then summed over diseases to
calculate total attributable deaths. Note that although the sum
over diseases of hazard fractions can exceed one (Rowe, Powell,
& Flanders, 2004), the sum of deaths attributable to each air-
pollution-related disease cannot exceed total deaths. This fol-
lows because the sum of disease-specific deaths

∑K
k=1 f1k (where

k indexes disease) cannot exceed total deaths f1 and, hence, the
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Fig. 2. Annual hazard, survival, and marginal distribution of
deaths by age. Exposed (h1, solid curves) are for US males (2014
period lifetable www.ssa.gov/oact/STATS/table4c6.html). Unex-
posed (h0, dashed curves) are for annual hazard = (2/3) annual
hazard if exposed. The short horizontal line segment in the middle
panel is the years of life lost by individuals dying at age 75 when
all deaths are etiologic, that is, S0

−1[S1(75)] – 75 in expression (7).

Substituting for R(t) and f1(t), Equation (4) can
be expressed as

D(t) = [h1 (t) − h0 (t)] S1 (t) . (5)

At age t, attributable deaths D(t) is the difference
between observed deaths in the exposed population
h1(t) S1(t) and expected deaths in that population in
the absence of exposure h0(t) S1(t). It describes the
result of a hypothetical and extreme situation: the
instantaneous reduction in the expected number of
deaths occurring in a population with age distribution
S1(t) when exposure is suddenly eliminated, if the ef-
fects of exposure on mortality depend on current but
not on past exposure (no latency or cessation lag).18

sum of the attributable disease-specific deaths
∑K

k=1
Rk−1

Rk
f1k <∑K

k=1 f1k ≤ f1.
18These assumptions are unrealistic for air pollution (e.g.,

COMEAP, 2010) and conflict with assumptions about long-term

An alternative measure of the mortality effect
of exposure is the “excess” deaths at t, which is the
expected steady-state difference in the number of
deaths by age between exposed and unexposed pop-
ulations,

� (t) = f1 (t) − f0 (t) = h1 (t) S1 (t) − h0 (t) S0 (t)
= [h1 (t) − h0 (t)] S1 (t) + h0 (t) [S1 (t) − S0 (t)]
= D(t) − h0 (t) [S0 (t) − S1 (t)] .

(6)

Excess deaths �(t) equals attributable deaths
D(t) minus a term that accounts for the difference
in the population at risk, which depends on previous
exposure. The standard calculation of attributable
deaths D(t) from (5) overestimates the number of ex-
cess deaths �(t) that could be delayed by a perma-
nent reduction in exposure at every age t for which
S0(t) > S1(t) and h0(t) > 0. Unless exposure decreases
hazard at some ages, Equation (5) overestimates the
steady-state reduction in deaths at all ages > 0. The
second term in Equation (6) is the additional num-
ber of deaths at age t > 0 that would have occurred
in the absence of exposure, equal to the increase in
the population surviving to age t multiplied by the
hazard if unexposed. Hence, the number of deaths
attributable to exposure does not correspond to the
number of excess deaths due to exposure except in
special situations (e.g., for a rare disease, h0(t) � 0,
or one that has negligible effect on mortality, S1(t)
� S0(t)). Moreover, attributable deaths in different
periods cannot be meaningfully summed, since these
depend on the exposed population living in each
period.

The total number of deaths that occur in a year
is the integral of fj(t) over all ages and the differ-
ence in total annual deaths between exposed and un-
exposed populations is the integral of �(t) over all
ages. In steady state, total deaths equal total births
and the difference in total annual deaths is zero.19

However, the age distribution of deaths is different:
for any age t, the total number of deaths occurring at
ages younger [older] than t is smaller [larger] in the
unexposed than in the exposed population (on the
assumption that S0(t) – S1(t) > 0 for all t > 0).

For the case illustrated in Figure 2, as shown
in the bottom panel, fewer [more] deaths occur in
the unexposed than in the exposed population at

exposure contrasts regularly made in EBD studies (e.g., GBD
2017 Risk Factors Collaborators, 2018).

19That is, the integral of �(t) over all ages equals 0 and so if there
are fewer deaths at some ages (�(t) < 0 for some values of t)
there must be more deaths at other ages (�(t) > 0 for some other
values of t).

http://www.ssa.gov/oact/STATS/table4c6.html
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every age younger [older] than 86 years. In con-
trast, attributable deaths D(t) is strictly greater than
zero for all t > 0, because the instantaneous hazard
is larger for the exposed than the unexposed pop-
ulation (h1(t) > h0(t)) and some members of the
exposed population are living at all ages shown in the
figure (S1(t) > 0).

The hazard functions hj(t) and, hence, the sur-
vival functions Sj(t) and hazard fraction [R(t) –
1]/R(t)] can be estimated under “essentially the same
conditions often cited for general study validity,” that
is, absence of confounding, misclassification, and dif-
ferential censoring (Robins & Greenland, 1989a).
From these, the expected number of deaths that
would occur at each age given continuous high or
low exposure can be estimated. However, these es-
timates are not sufficient to determine how many in-
dividuals would die earlier if exposed rather than un-
exposed, how much earlier each would die, or how
much longer each exposed individual would have
lived if unexposed. While the marginal distributions
of deaths by age in the exposed and unexposed birth
cohorts are observable, mortality data provide no in-
formation about the joint distribution of the ages at
which an individual would die conditional on high
or low exposure (one is observable, the other is
counterfactual).20 As illustrated in Section 1.2 and
Figure 1, many patterns of association between the
age of death conditional on exposure to high and to
low air pollution are consistent with the two marginal
distributions. Recognition of this point is not new;
Tsiatis (1975) proved that any set of marginal prob-
ability distributions for age at death conditional on
alternative exposure levels is consistent with an in-
finity of joint distributions across exposure levels,
and hence estimates of concepts that depend on
the joint distribution require additional information.
Rabl (2003) provided an excellent graphical illustra-

20Both epidemiological studies and randomized controlled trials
compare the mortality experience of different subpopulations
under the assumption that the members of each can be mod-
eled as being randomly drawn from a common source popu-
lation (perhaps controlling for observable characteristics). For
randomized controlled trials, this assumption is valid by con-
struction. Hypothetically, one could know the age of death for
each person conditional on being selected into each subpopula-
tion, in which case one would know the population distribution
of years of life lost. But it is not possible to associate a member
of one subpopulation with a single counterpart in the other: her
counterpart is equally likely to be any member of the other sub-
population. Hence, her counterfactual time of death if she had
been selected into the other subpopulation is equally likely to be
the time of death of each member of that subpopulation.

tion of why the number of deaths that are advanced
and the extent to which each is advanced cannot be
identified from epidemiological data. Athey and Im-
bens (2006) discuss these identification problems in
the econometrics literature and show that, when out-
comes are discrete, the counterfactual distribution of
outcomes may not be identified but can be bounded.

The inability to identify the joint distribution
of the ages at which an individual would die if she
was exposed or unexposed can be illustrated using
Figure 2. Consider the probability distributions for
age at death in the bottom panel. To transform the
probability distribution if exposed f1(t) to the distri-
bution if unexposed f0(t), one can imagine shifting a
small amount of probability of death at a specific age
t′ to some older age t′′. This corresponds to shifting
the age at death for some individual from t′ to t′′.
The effect will be to decrease the value of f1(t′) and
increase the value of f1(t′′). One can continue in this
way to shift probability density to the right (increas-
ing individuals’ ages of death) until the modified ver-
sion of f1(t) falls to the level of f0(t) for all ages where
f1(t) > f0(t) (i.e., all ages less than 86 years) and rises
to the level of f0(t) for all ages where f1(t) < f0(t) (i.e.,
all ages older than 86 years). The number of different
possibilities for shifting probability from one age to
another to achieve this transformation is infinite;
Figure 1 illustrates three possibilities for the example
described in Section 1.2. Hence, the set of joint
distributions associating age at death if exposed and
if unexposed that are consistent with the marginal
probability distributions is infinite (Tsiatis, 1975).21

Equivalently, one can think of representing the
relationship between individuals’ ages of death if ex-
posed and unexposed by shifting the survival curve
in the middle panel from S1(t) to S0(t). Any shift of
probability density from a younger (t′) to an older age
at death (t′′) in the density function f1(t) has two ef-
fects on the survival curve S1(t). First, it shifts the
point (t′, S1(t′)) to the right (to t′′) and down (to

21For the example illustrated in Figure 1, this procedure amounts
to distributing all of the probability for death at age 60 in
Smokeville to deaths at ages 70, 80, 90, and 100 in Clearville,
and either shifting to older ages or leaving in place amounts of
probability corresponding to deaths at ages 70, 80, and 90, sub-
ject to the constraint that the sum of these changes yields the
probability distribution for age of death in Clearville. Assuming
that exposure never decreases mortality hazard, no probability
increments can be shifted to younger ages of death. Hence, any
probability distribution for age of death in Clearville for which
the bin at age 70 contains no green or blue and the bin at age 80
contains no blue is possible.
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S1(t′′)). The downward shift is because the affected
individual moves from dying before to dying after all
those who die between ages t′ and t′′. Second, all the
points on S1(t) for values of t between t′ and t′′ shift up
(because these individuals are moved from dying af-
ter to dying before the affected individual). One can
continue shifting the survival curve S1(t) in this way
until it corresponds to the survival curve if unexposed
S0(t). Again, there is an infinite set of these small
probability shifts that transform the survival function
if exposed to the survival function if unexposed.

2.1. Bounds on the Etiologic Fraction

In this section, we investigate what can be in-
ferred about etiologic deaths from mortality data.
We change our focus from the exposed and unex-
posed populations to the birth cohorts that generate
the populations. As noted above, the exposed and
unexposed birth cohorts have the same survival func-
tions as the exposed and unexposed populations.

Robins and Greenland (1989a) derive bounds on
the “etiologic fraction,” defined as the fraction of
deaths occurring in the exposed birth cohorts that oc-
cur earlier than they would have if unexposed (equiv-
alently, the probability that a death randomly drawn
from all exposed deaths was advanced by exposure).
If S0(t) > S1(t) for all t > 0, the upper bound on
the etiologic fraction is 1. This occurs when exposure
shifts all deaths earlier in time. On the stronger and
common “constant proportional hazard” assumption
(R(t) = R > 1 is constant across t), the lower bound
on the etiologic fraction is (R − 1)/RR/(R-1). This value
is smaller than the hazard fraction (R – 1)/R.

The hazard fraction and the lower bound depend
on the value of R. In the limit as R decreases toward
1, the hazard fraction and the lower bound decrease
toward 0 and the ratio of the lower bound to the haz-
ard fraction decreases toward its limiting value 1/e
(� 0.37). As R increases toward infinity, the hazard
fraction, the lower bound, and the ratio of the lower
bound to the hazard fraction all increase toward the
limiting value 1.22 The ratio of the upper bound to
the hazard fraction, R/(R – 1), also depends on R. In
the limit as R increases to infinity, this ratio decreases
toward its limiting value, 1. But as R decreases to-
ward 1, the ratio of the upper bound to the hazard
fraction increases without limit; for R = 1.01, the ra-
tio is approximately 100. Hence, the bounds on the
ratio of the etiologic fraction to the hazard fraction

22Limiting values are derived in the Appendix.

are asymmetric; the number of etiologic deaths can-
not be smaller than about 37% of the total number
of attributable deaths (i.e., of the sum over all ages of
D(t)), but it can be much larger than the number of
attributable deaths when R is close to 1).23

The maximum number of etiologic deaths at age
t equals the total number of deaths at age t, f1(t).
This occurs when all deaths are advanced by expo-
sure. The minimum number can be derived using
the number of excess deaths at age t, �(t) = f1(t)
– f0(t). If �(t) � 0, it is possible that none of the
deaths at t are caused by exposure and so the mini-
mum number of etiologic deaths at t is zero. If �(t) >

0, at minimum these excess deaths must have been
caused by exposure. Combining these results, the
minimum number of etiologic deaths at t is max (0,
�(t)). Assuming constant proportional hazard with
R > 1, the integral of max (0, �(t)) over t leads to the
lower bound described above. Robins and Greenland
(1989a) showed that the range defined by these up-
per and lower bounds cannot be narrowed using only
mortality data. There always exist consistent causal
models that generate the lower and upper bounds of
the etiologic fraction.

Under the assumption that exposure never in-
creases the chance of survival (i.e., that S1(t) < S0(t)
for all t > 0), then �(t) must be less than zero for
very old ages. Clearly, if some members of the unex-
posed population live to be older than anyone in the
exposed population, excess deaths will be less than
zero when these individuals die.24 At ages for which
excess deaths are less than or equal to zero, the lower
bound on the fraction of deaths that are etiologic is
zero; it is possible that none of the deaths at these
ages are caused by exposure. An alternative (and of-
ten more plausible) explanation for excess deaths be-
ing less than zero at very old ages is that, although
some of the deaths at every age are caused by expo-
sure, the number of people surviving to very old ages
is larger when exposure is low; for these ages, both
the total number of deaths and the number due to
exposure are larger when exposure is low rather than
high.

As noted before, these results about identifiabil-
ity and bounds on numbers of etiologic deaths ap-
ply to populations and EBD studies as well as to

23Greenland, Robins, and coauthors describe other aspects of the
relationship between the etiologic and hazard fractions in a se-
ries of articles (Beyea & Greenland, 1999; Greenland, 1999,
2000, 2012, 2015; Robins & Greenland, 1989a, 1989b, 2000).

24In the example of Section 1.2, excess deaths at age 100 equal
minus one-quarter of the number in the birth cohort.
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cohorts. For cases of interest, the difference between
the numbers of etiologic and attributable deaths can
be quite large. We illustrate with a few recent exam-
ples from the literature.

Lelieveld et al. (2015) calculated that “outdoor
air pollution, mostly by PM2.5, leads to 3.3 (95% con-
fidence interval 1.61–4.81) million premature deaths
per year worldwide.” For values of R typical of the
parts of the world that dominate global air-pollution-
impact estimates, for example, 1.2 for ischemic heart
disease (Lelieveld et al., 2015), the hazard fraction
equals 0.17. The lower and upper bounds on the eti-
ologic fraction are 0.067 and 1. Hence, the number of
premature deaths due to exposure could be between
0.4 and six times as large as the reported value. This
possible bias is large compared with the reported
confidence interval (1.61/3.3 = 0.5, 4.81/3.3 = 1.5).
As noted by Lelieveld et al., the reported confidence
interval reflects imprecision in the estimation of R,
which is distinct from the inability to identify the eti-
ologic fraction, even if R is known precisely.25

In a project to develop concentration-response
functions for the health risks of air pollution in Eu-
rope, Héroux et al. (2015) reported R = 1.064 per
10 µg/m3 PM2.5 (annual mean) for all-cause natural
mortality, ages 30 years and older. The bounds on
the etiologic fraction are 0.023 and 1, whereas the
hazard fraction is 0.060. The corresponding bounds
on the ratio of the etiologic to the hazard fraction
are approximately 0.4 and 17. In their reply to a
letter to the editor, the authors acknowledged the
difference between the hazard and etiologic frac-
tions and cited passages from HRAPIE (2013) and
COMEAP (2010) that describe the difference quali-
tatively (Héroux et al., 2017).

Jonson et al. (2017) estimated the number of pre-
mature deaths in Europe that may be attributed to
excess NOx emissions from diesel cars. They esti-
mated that diesel cars contribute 0.19 µg/m3 to am-
bient PM2.5, and used a relative risk to concentra-
tion slope of 1.062 per 10 µg/m3 for all-cause natural
mortality in the adult population (HRAPIE, 2013).
A 50% reduction in diesel-car contribution to PM2.5

(0.095 µg/m3) implies the relative risk R = 1 + (1.062
– 1) 0.095/10 = 1.00059 and the hazard fraction (R –
1)/R = 0.00059. The lower and upper bounds on the
etiologic fraction are 0.00022 and 1, less than 0.4 and

25Note that the upper and lower bounds on the etiologic fraction
calculated using the limits of a confidence interval or other range
of values for R are farther apart than the bounds calculated for
a single value of R in that range.

almost 1700 times as large as the hazard fraction, re-
spectively.

With biological or other nonepidemiological in-
formation about the relationship between exposure
and mortality, the bounds may be narrowed. Robins
and Greenland (1989a) note that the hypothesis
that the etiologic fraction equals its upper bound
(all deaths are advanced by exposure) is implausi-
ble when there are multiple causes of mortality and
some are unaffected by exposure. Even when (as is
common) air-pollution studies limit their outcomes
to nonaccidental mortality or to cardiovascular mor-
tality, the existence of additional pathways that are
not affected by air-pollution exposure seems evi-
dent; hence, the possibility that the etiologic fraction
equals one is implausible.

Robins and Greenland (1989a) also suggest
the lower bound is implausible as it assumes all
exposure-related deaths occur as early as possible
and before the number of deaths in the exposed pop-
ulation falls to the number in the unexposed popu-
lation (ie, before f1(t) � f0(t); they assume h1(t) >

h0(t) for all t). However, they present an example of a
mechanism that generates an etiologic fraction equal
to the theoretical minimum (see their appendix I).
The lower bound (R – 1)/RR/(R−1) is the result of fol-
lowing the cohort forever (evaluating the integral on
their p. 851 over t from 0 to infinity), which may differ
from the value calculated over reasonable spans. To
investigate the effect of restricting the integration to
realistic follow-up periods (50 years, from age 30 to
80) for small values of the hazard ratio relevant to air
pollution (R = 1.1, HRAPIE 2013), we use the base-
line hazard h0 = 0.05/year suggested by Robins and
Greenland (1989a).26 The fraction of deaths that are
attributable (the hazard fraction) = 0.09. The frac-
tion that are etiologic calculated using the integral
is 0.037, close to the lower bound (R − 1)/RR/(R-1)

= 0.035. Using short follow-up periods (10 and 20
years), the result is 0.070 and 0.053. Hence, the value
of the integral exceeds the lower bound but can ap-
proach it even if realistic values are chosen for the
integration span.

When the population is heterogeneous (so that
an individual’s hazard may differ from the popula-
tion hazard), Robins and Greenland (1989b) show
that the etiologic fraction equals the hazard frac-
tion [R(t) – 1]/R(t) when individual increases in haz-
ard h1i(t) – h0i(t) are distributed independently of

26Using this constant hazard, the probability a 30-year old survives
to 100 is exp(−70 × 0.05) = 0.03.
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individual baseline hazards h0i(t) (where i indexes
individuals). Sufficient conditions for such indepen-
dence are (a) when the increase is additive to the
baseline or (b) when there is no heterogeneity in the
baseline hazard. If the population is well-ordered by
hazard,27 the hazard fraction is a lower bound on the
etiologic fraction if the effect of exposure is superad-
ditive to baseline (people at higher baseline risk face
a larger increase in risk) and is an upper bound if the
effect is subadditive. Note that none of the conditions
required for these results (well-ordered by hazard,
additivity, superadditivity, and subadditivity) can be
tested using epidemiological data (Robins & Green-
land, 1989b); any claim that one or another is satisfied
must be supported by other sources of information.28

2.2. Life Years Lost

The inability to statistically identify the number
of etiologic deaths has implications for estimating the
number of years of life lost and DALYs caused by air
pollution and other exposures. The expected number
of years of life lost due to exposure in the popula-
tion (YLL) is the steady-state reduction in life ex-
pectancy, that is, the difference between the areas
under the two survival curves,

YLL =
∞∫

0

S0 (t) dt −
∞∫

0

S1 (t) dt . (7)

Because the two survival curves are identified,
YLL due to exposure can be estimated using mor-
tality data. However, because the number of etio-
logic deaths at age t is not identified, years of life lost
due to exposure and conditional on death at age t,
YLL(t), cannot be estimated. As noted by Robins

27A population is well-ordered by hazard if individuals’ rank by
instantaneous baseline hazard h0i(t) does not depend on t. More
formally, if and only if, for all individuals i and k and for all t,
either h0i(t) � h0k(t) or h0i(t) � h0k(t).

28Additivity and superadditivity appear to be more plausible in the
context of mortality effects of air pollution. However, there is
some evidence suggesting subadditivity. Silverman et al. (2012)
report a case-control study on diesel-engine emissions in coal
miners and observe “an attenuation of the effect of cigarette
smoking among study subjects who were exposed to high lev-
els of diesel exhaust.” They identify possible mechanistic expla-
nations for a potential subadditivity, including (a) that PAHs,
nitro-PAHs, and related compounds in diesel exhaust could
compete with the metabolic activation of PAHs in tobacco
smoke, leading to enzyme saturation and (b) that diesel-exhaust
constituents may suppress enzymes that activate or induce en-
zymes that detoxify carcinogens in tobacco smoke.

and Greenland (1991), YLL can be expressed al-
ternatively as a function of total or of attributable
deaths by age. Using total deaths, YLL can be ex-
pressed as

YLL =
∞∫

0

f1 (t)
{

S−1
0 [S1 (t)] − t

}
dt, (8)

where f1(t) is the number of exposed deaths at age t
and the expression in curly brackets is the horizontal
distance between the survival curves at S1(t) (illus-
trated for t = 75 years by the short horizontal line
segment in the middle panel of Figure 2). This hor-
izontal distance corresponds to the years of life lost
by people dying at age t if all exposed deaths are eti-
ologic and the population is well-ordered by hazard
(i.e., the order in which people die if all are exposed
is the same as the order in which they would die if
all are unexposed). Alternatively, using attributable
deaths YLL can be expressed as

YLL =
∞∫

0

D(t)

⎡
⎣ 1

S0 (t)

∞∫
t

S0 (u) du

⎤
⎦dt, (9)

where D(t) is the number of attributable deaths at
age t and the term in square brackets is life ex-
pectancy at age t in the unexposed population. Ex-
pression (9) corresponds to the situation in which eti-
ologic deaths are equal to attributable deaths and
hazard depends only on current exposure. In this
case, if exposure were suddenly eliminated, individ-
ual life expectancy at every age would immediately
increase to its value for an unexposed individual of
that age.

Because total exposed deaths at age t (f1(t)) and
attributable deaths at age t (D(t)) are not equal but
expressions (8) and (9) yield the same total YLL,
the formulas for years of life lost at age t embedded
in the two expressions cannot be equal. This illus-
trates the fact that YLL(t) is not identified by mor-
tality data. Returning to the example in Section 1.2,
although exposure reduces life expectancy at birth by
10 years, mortality data do not allow one to deter-
mine which of many possible relationships between
age at death if exposed or unexposed is accurate.
These include the possibilities that: (a) people who
die at 60 if exposed would have lived 40 years longer
if unexposed and no one else is affected; (b) every-
one dies 10 years earlier if exposed than unexposed
(as modeled by Equation (8) and illustrated by panel
B of Figure 1); and (c) etiologic deaths are equal to
attributable deaths D(t), that is, the fractions of the
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exposed population whose deaths are advanced by
air pollution are 1/4, 1/16, 1/12, and 1/8, and YLL(t)
are 25, 20, 15, and 10, at ages 60, 70, 80, and 90,
respectively (as modeled by Equation (9) and illus-
trated by panel D of Figure 1).29

DALYs are defined as the sum of two compo-
nents: years of life lost due to mortality and years
lived with disability (GBD 2017 Risk Factors Col-
laborators 2018; Prüss-Üstün et al., 2003; World
Health Organization, 2016). The standard calculation
of years of life lost due to exposure multiplies esti-
mates of attributable deaths at each age D(t) by age-
specific reference life expectancies (Equation (9)).
This total is correct for the population but cannot be
disaggregated by age or cause of death. Estimates of
years lived with disability (YLD), the other compo-
nent of DALYs, are subject to a similar identifica-
tion problem. These are based on estimates of the at-
tributable cases of disease at each age, which are not
necessarily equal to the etiologic cases.30 As noted by
Murray, Ezzati, Lopez, Rodgers, and Vander Hoorn
(2003, p. 12 of 20), “if the outcome variable used
in causal attribution of disease and mortality to a
risk factor only involves counting of adverse events
(such as disease incidence or death), it is not possible
to characterize those cases whose occurrence would
have been delayed in the absence of the risk factor.”

3. ECONOMICS: VALUING MORTALITY
EFFECTS

The monetary value to a population of a re-
duction in mortality risk (as defined for benefit-cost

29The hazard fraction [R(t) – 1]/R(t) equals 1, 1/4, 1/3, and 1/2 at
ages 60, 70, 80, and 90, respectively. The probability distributions
for age of death conditional on surviving to age t if unexposed
are: age 60, 1/4 chance to die at ages 70, 80, 90, 100; age 70, 1/3
chance to die at ages 80, 90, 100; age 80, 1/2 chance to die at ages
90, 100; 90, sure to die at age 100. The number of attributable
deaths (as a fraction of all exposed deaths) is 1/4 × (1 + 1/4 +
1/3 + 1/2) = 0.52. If unexposed, life expectancy at age 90 is 10; at
age 80 is (20 + 10)/2 = 15; at age 70 is (30 + 20 + 10)/3 = 20; and
at age 60 is (40 + 30 + 20 + 10)/4 = 25. Using expression (9), life
years lost due to exposure (per capita) are 1/4 × 25 + 1/16 × 20
+ 1/12 × 15 + 1/8 × 10 = 10. Using expression (8), YLL condi-
tional on death at ages 60, 70, 80, and 90 = 10 and the fraction of
deaths occurring at each of these ages = 1/4; life years lost due
to exposure (per capita) equals 4 × (1/4 × 10) = 10.

30Moreover, YLD is calculated assuming that if an individual who
develops the disease from exposure were not exposed, she would
not suffer any disability from that disease (ignoring the possibil-
ity she would have developed the disease later and suffered the
identical number of years lived with disability, albeit at an older
age).

Fig. 3. VSL is the slope of the individual’s indifference curve at
current wealth w and survival probability 1 – h. The value of a
reduction in risk from h to h – r can be measured as compensating
variation c or equivalent variation m. For r � 0, c � m � r • VSL
(for clarity, the value of r in the figure is much larger than is usually
relevant).

analysis) does not depend on the number of etiologic
deaths. The monetary value is defined as the sum
over the affected population of each person’s private
value for her risk reduction. For a small change in
current mortality risk (over a short period), an indi-
vidual’s private value is approximately31 equal to the
product of the change in risk and her marginal rate of
substitution between wealth and mortality risk in that
period, often called her “value per statistical life”
(VSL). An individual’s VSL depends on her prefer-
ences and circumstances. As illustrated in Figure 3, it
can be represented as the slope of her indifference
curve between wealth and probability of surviving
the current period at her current wealth and survival
probability. VSL may also depend, inter alia, on the
individual’s age, life expectancy, and anticipated fu-
ture health, income, and expenses.

The term “value per statistical life”32 is often
misinterpreted as the monetary value assigned to an
individual’s life, or the amount an individual would
pay to avoid, or perhaps accept as compensation for,
immediate death (Cameron, 2010). Although esti-
mates of VSL are used to calculate the monetary
value to a population of a change in mortality risk,

31The approximation is exact for an infinitesimal risk reduction
and its accuracy decreases as the magnitude of the risk reduction
increases. Alolayan, Evans, and Hammitt (2017) and Hammitt,
Geng, Guo, and Nielsen (2019) provide bounds on the approxi-
mation error that are described below.

32The similar term “value of a statistical life” is perhaps more
common. “Value per statistical life” seems preferable as it em-
phasizes the concept is a rate. In the United Kingdom, VSL is
described as the “value of a prevented fatality” (HM Treasury,
2003).
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the VSL that is used is conceived as an average of the
individual rates of substitution in the affected pop-
ulation. As illustrated by Figure 3, VSL is a slope
conventionally measured in units of dollars (or other
currency) per unit change in survival probability (i.e.,
from 0 to 1). Equivalently, it can be measured in units
of dollars per “micromort” (a survival-probability in-
crement of 10−6; Howard, 1984), dollars per “stan-
dardized mortality unit” (a survival-probability in-
crement of 10−4; Jamison et al., 2013), or other units.

For a small increase in current survival probabil-
ity at age t, the individual’s monetary value is approx-
imately equal to vi(t) ri(t), where vi(t) is her VSL and
ri(t) is the increase in survival probability; if mortality
risk depends only on current exposure, ri(t) = h1i(t)
– h0i(t) (i indexes individuals). The total value V to
a population of N individuals of a reduction in their
current hazards is

V =
N∑

i=1

vi ri (10)

(to simplify notation, the dependence on age is sup-
pressed). The population value is often approxi-
mated as

V ≈ v̄

N∑
i=1

ri , (11)

where v̄ is the mean of vi and the sum of risk re-
ductions is the decrease in the expected number of
deaths occurring in the period, often called the num-
ber of “statistical lives saved” or “premature fatal-
ities averted.” The number of statistical lives saved
(or lost) depends on the population and the change
in hazard; for example, when the hazard depends on
current but not on past exposure and a population
with age distribution S1(t) is suddenly unexposed, the
instantaneous number of lives saved is the sum over
all ages of attributable deaths D(t) (Equation (5)).33

The approximation (11) is exact if vi and ri are
uncorrelated in the population. One case in which

33If exposure is suddenly reduced from high to low and remains
low thereafter (and annual births are constant), the annual num-
ber of deaths will initially fall then gradually rise to the initial
level. The change in the age distribution of deaths from the ini-
tial distribution f1(t) will initially approximate the distribution of
attributable deaths D(t) given by equation (5) (the approxima-
tion will be close if the hazard depends on current but not on
previous exposure) and will eventually converge to the steady-
state distribution of excess deaths �(t) given by equation (6).
An epidemiological study could estimate excess deaths by age
as they change over time; the sum of excess deaths over all ages
need not equal zero if the population is not in steady state.

they are not is when the change in hazard is corre-
lated with wealth (e.g., because the geographic pat-
terns of a change in air pollution and in wealth are
similar). As described below, VSL is positively cor-
related with wealth.

The value to an individual at age t of a small
continuing perturbation to her mortality hazard (e.g.,
due to a permanent change in air pollution) can be
represented as the expected present value of the as-
sociated stream of risk reductions,

Vi =
∞∫

τ=t

vi (τ ) ri (τ ) σi (τ ) e−ρ(τ−t)dτ , (12)

where vi(τ ) is her VSL and ri(τ ) is the reduction in
hazard at age τ , σ i(τ ) is her probability of survival to
τ conditional on being alive at age t, and ρ is the rate
at which she discounts future monetary flows (e.g.,
the interest rate on savings).34 VSL vi(t) may depend
on age t and on the survival function σ i(t), which itself
depends on her new hazard function, h1i(t) – ri(t). Fu-
ture VSL may also depend on the conditions under
which the individual can save or borrow money (and
hence reallocate her consumption of market goods
and services over time). The value to a population
is the sum over individuals of the private values Vi,
which depend on the individuals’ time paths of VSL
and of hazard reductions.

The economic model underlying VSL assumes
an individual seeks to maximize her expected utility,
which depends on her mortality hazard h in the cur-
rent period and her wealth w,

EU = (1 − h) ua (w) + h ud (w) , (13)

where ua(w) and ud(w) are her utility conditional on
surviving and not surviving the period, respectively
(Drèze, 1962; Jones-Lee, 1974; Weinstein, Shepard,
& Pliskin, 1980). The function ud(w) is often de-
scribed as a bequest function: it represents the util-
ity the individual gains from knowing her wealth will
benefit her heirs or others after her death. The func-
tion ua(w) is the individual’s expected utility condi-
tional on surviving the current period and depends
inter alia on her future income, expenses, and risks
to life, health, and wealth (Eeckhoudt & Hammitt,
2001).

34Equation (12) is an approximation that is exact for infinitesimal
changes in survival probability. Like Equation (10), it neglects
the change in the rate of substitution as the change in risk in-
creases.
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The individual’s marginal rate of substitution of
wealth for a reduction in current hazard holding ex-
pected utility constant is derived by totally differen-
tiating Equation (13), yielding

VSL = dw
dh

= ua (w) − ud (w)
(1 − h) u′

a (w) + hu′
d (w)

= �U (w)
EU ′ (w)

,

(14)

where the prime (′) denotes first derivative with re-
spect to w. The numerator of Equation (14) equals
the gain in utility from surviving the period rather
than dying and the denominator represents the ex-
pected marginal utility of wealth (i.e., the utility for-
gone by spending a small amount to increase survival
probability, which cannot be spent on other goods
and services). It is conventional and reasonable to
assume that ua(w) > ud(w) (survival is preferred to
death), ua

′(w) > ud
′(w) � 0 (the marginal utility of

wealth is strictly larger conditional on survival than
on death and the marginal utility of a bequest is
nonnegative), and ua

′′(w) � 0 and ud
′′(w) � 0 (the

two utility functions for wealth are weakly concave,
which implies the individual is averse to financial
risk; ′′ denotes second derivative with respect to w).
Under these conditions, VSL is strictly greater than
zero and is increasing in w and in h, which implies the
indifference curves are downward sloping and con-
vex, as illustrated in Figure 3.

The economic value of a small decrease in mor-
tality risk is well-approximated by the product of
the individual’s VSL and reduction in current haz-
ard, vi ri. For larger risk reductions, the value de-
pends on the concept of economic valuation that is
adopted, compensating or equivalent surplus. Com-
pensating surplus is the amount by which the individ-
ual’s wealth would have to be reduced so that she is
equally well off with the risk reduction and smaller
wealth as she would be without the change (the re-
duction in wealth compensates for the risk reduction,
leaving her no better off). Equivalent surplus is the
amount by which her wealth would need to be in-
creased so that she is equally well off with her ini-
tial hazard and the increased wealth, or with the re-
duction in hazard and initial wealth (the increase in
wealth has the equivalent effect on her wellbeing as
the risk reduction).35 For any reduction in current
hazard, the compensating surplus is less than or equal

35Compensating surplus is often described as the individual’s
“willingness to pay for the risk reduction” and equivalent sur-
plus as the individual’s “willingness to accept compensation to
forgo the risk reduction.”

to the equivalent surplus. Moreover, compensating
surplus is a concave function of risk reduction (it in-
creases at a decreasing rate) and equivalent surplus is
a convex function (it increases at an increasing rate),
which implies the two values diverge as the hazard
reduction increases.

The magnitude of the difference between the
economic value and the approximation vr can be
evaluated using Equation (14) supplemented by
empirical estimates of the sensitivity of VSL to
wealth (Alolayan, Evans, & Hammitt, 2017; Ham-
mitt, Geng, Guo, & Nielsen, 2019). The compensat-
ing surplus c for a reduction in hazard r equals the
product of r and a VSL that is between the initial
VSL (at wealth w and hazard h) and the smaller
VSL at hazard h – r and wealth w – c (illustrated in
Figure 3). The effect of the change in hazard on VSL
can be derived from Equation (14); holding wealth
constant, the ratio of VSL with hazard h to VSL with
hazard h – r is bounded above by 1−(h−r)

1−h = 1 + r
1−h .

When h is much smaller than one, this ratio is close
to one (r cannot exceed h). The effect of the reduc-
tion in wealth after paying c, holding risk constant,
depends on the magnitude of c relative to wealth and
on the sensitivity of VSL to wealth, generally mea-
sured by the wealth or income elasticity. Theory pro-
vides little guidance about the magnitude of the in-
come elasticity; most empirical estimates are on the
order of one, with some estimates as high as two or
three (Hammitt & Robinson, 2011; Hammitt et al.,
2019; Masterman & Viscusi, 2018; Viscusi & Master-
man, 2017). For the United States, typical estimates
of VSL are roughly $9 million and annual household
income averages roughly $60,000 (Robinson & Ham-
mitt, 2016). This implies the value of a risk reduc-
tion of 1/10,000 is less than $900 or 1.5% of income.
Compared with VSL at the initial point, VSL at the
smaller income would be 1.5% smaller with an in-
come elasticity of 1 and 4.4 percent smaller with an
income elasticity of 3 (i.e., VSL after paying $900
would be $8.6 million = $9 million [1 – 0.015]3). Com-
bining the effects of changes in risk and income im-
plies the value of the risk reduction of 1/10,000 is be-
tween $900 and $860. The equivalent surplus m for
a reduction in hazard r equals the product of r and
a VSL that is bounded by the initial VSL (at wealth
w and hazard h) and the larger VSL with hazard h
and wealth w + m. For a risk reduction of 1/10,000
and an income elasticity of 3, VSL after an increase
in wealth equal to m = $900 is about $9.4 million (=
$9 million [1 + 0.015]3); hence, the equivalent sur-
plus for a risk reduction of 1/10,000 is between $900
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and about $940. For larger risk reductions, the differ-
ence between the equivalent and compensating sur-
pluses can be arbitrarily large; compensating surplus
is bounded by ability to pay (i.e., by wealth or in-
come) but equivalent surplus can increase without
limit (Hanemann, 1991).

As suggested by the notation vi(t), an individ-
ual’s VSL may depend on age. Yet it is common prac-
tice in applications to use the same value for all ages,
in part because the evidence on how VSL varies with
age is weak. The effect of age on VSL in the theoreti-
cal model is ambiguous: an increase in life expectancy
conditional on surviving the current period (nega-
tively associated with age) presumably increases the
utility of survival ua(w), which increases the numer-
ator in Equation (14). But it may also increase the
opportunity cost of spending ua

′(w), hence, increas-
ing the denominator and making the effect on the
ratio indeterminate. To illustrate, an individual who
must support herself from a fixed quantity of wealth
must husband her resources carefully (and has a high
opportunity cost of spending) if her life expectancy
is long but may spend profligately (with low oppor-
tunity cost) if it is short. Empirical estimates of how
VSL varies with age conflict. There is some evidence
that VSL rises then falls with age, but estimates of
the amplitude of the change, the age at which VSL
peaks, and the rates at which it rises and falls differ
substantially among studies (Aldy & Viscusi, 2008;
Krupnick, 2007).

3.1. Valuing Life Years Lost

An alternative to the conventional approach to
valuing mortality risk using VSL is to value the cor-
responding change in life expectancy using the con-
cept of “value per statistical life year” (VSLY), de-
fined as the marginal rate of substitution between
wealth and life expectancy. Any change to an indi-
vidual’s hazard function implies a unique change to
her life expectancy. Hence, the value Vi of a con-
tinuing perturbation r(τ ) to her mortality hazard de-
scribed in Equation (12) can be characterized as the
product of a VSLY and the corresponding increase
in life expectancy (which depends on the initial haz-
ard function and the perturbation; Hammitt, 2007).
A special case of Equation (12) is an instantaneous
decrease r in mortality hazard h(t) for a short dura-
tion δ, which increases life expectancy by the prod-
uct of the increase in probability of surviving be-
yond age t and life expectancy at age t, that is, by

rδ

∫ ∞
t S(τ )dτ

S(t) . The value of this risk reduction can be de-
scribed as the product of VSL and the risk reduction
rδ, or as the product of VSLY and the gain in life ex-
pectancy. As described above, the appropriate VSL
depends on the individual’s age, hazard function, and
other characteristics; hence, the appropriate VSLY
depends on the same characteristics. VSLY also de-
pends on the specific perturbation of the hazard func-
tion; many different perturbations can yield the same
increase in life expectancy (e.g., a small hazard reduc-
tion over a long period and a larger hazard reduction
over a shorter period) and the values of these per-
turbations to an individual need not be the same.36 If
VSLY for an individual is independent of age, VSL
must be proportional to age-specific life expectancy,
which is generally decreasing with age. The common
finding that VSL rises then falls with age implies
VSLY must increase with age over some period, after
which it may remain constant, increase, or decrease
depending on how rapidly VSL decreases with age.
For example, Aldy and Viscusi (2008) estimate that
VSLY increases from age 18 to 54 then decreases to
age 62 (cohort-adjusted VSLY as illustrated in their
Figure 2).37

Both the population change in hazard function
and in life expectancy are identified in epidemiolog-
ical studies;38 hence valuation using VSL or VSLY
are both feasible. The inability to identify etiologic
deaths does not preclude economic valuation, which
is based on the monetary value of a reduction in haz-
ard. Given uncertainty about how VSL and VSLY
vary with age, life expectancy, and other factors, val-
uation in practice applies a constant VSL to all risk
reductions or a constant VSLY to all life-expectancy
gains. Which of these approaches better approxi-
mates the true value (e.g., Equation (12)) is unknown
and merits investigation.39

36Hammitt and Tunçel (2015) present survey evidence that indi-
viduals have heterogenous preferences over different time pat-
terns of reductions in their hazard functions that yield the same
increase in life expectancy.

37Their analysis is limited to employed individuals aged 18 to 62
years.

38Transient effects of a change in exposure may or may not
be identified depending on the type of epidemiological study.
For example, a long-term cohort study estimates the differ-
ence in hazard conditional on long-term differences in exposure;
daily time series and intervention studies estimate the effect of
changes in exposure.

39An alternative to valuing changes in life expectancy at a constant
rate (using a constant VSLY) is to value years lived using age-
specific values (perhaps based on average health by age). The
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3.2. Valuation and Identification of Individual
Risks

An individual’s valuation for a reduction in
exposure-related mortality risk depends on her haz-
ard function and the change to her hazard due to the
change in exposure. Neither her baseline hazard nor
the change can be observed. Absent additional infor-
mation, an individual may perceive the change to her
hazard as a random draw from the population dis-
tribution of changes in individual hazards with mean
equal to the change in the population hazard; in this
case, the change in population hazard is sufficient
for valuation.40 An individual with information about
her exposure, health, or other factors might perceive
her change in hazard to be larger or smaller than
the population average, but an analyst will typically
not have access to such information and cannot do
better than to estimate the individual’s risk reduc-
tion as equal to the population average (in some cir-
cumstances, such as when the change in hazard dif-
fers with spatial patterns of air pollution, it may be
possible to estimate the correlation with individuals’
wealth or other characteristics and hence part of the
correlation with VSL).

Even if it were known whether exposure ad-
vances everyone’s death by a small amount or ad-
vances the deaths of a few people by a larger amount
and has no effect on other people’s mortality, val-
uation would not be affected unless individuals had
information about how their own changes in hazard
differ from the population average. More-refined in-
formation about an individual’s prospects can affect
her valuation. In the extreme case where there is a
subset of the population who know their lives would
be extended by a reduction in exposure and a com-
plementary subset who know their lifespans would
be unaffected, those in the first subset would value
a reduction in exposure and those in the second sub-
set would not (setting aside altruism or other ways
in which their wellbeing may depend on others’ sur-
vival). Whether the population value of a change in
exposure is larger or smaller when the subpopula-

change in years lived at each age within a population can be de-
rived from the difference between survival curves and is statisti-
cally identified.

40This situation can be modeled as a two-stage lottery: in the first
stage, the individual’s altered mortality hazard is determined; in
the second stage, the lottery between surviving the current pe-
riod and dying is resolved. In conventional decision theory, this
two-stage lottery is equivalent to a simple lottery between sur-
vival and death with mortality hazard equal to the expected mor-
tality hazard from the first stage.

tions can be identified depends on the sensitivity of
individuals’ values to the magnitude of the change
in hazard and on the direction of the change. Ham-
mitt and Treich (2007) show that the economic value
to a population of a reduction in the population haz-
ard is larger when the individuals whose risk reduc-
tions differ from the average cannot be identified;
when individuals are identified, the increase in value
of those whose risk reductions are larger than av-
erage is insufficient to offset the decrease in value
of those whose risk reductions are smaller. In con-
trast, the total amount a population would demand as
compensation for an increase in the population haz-
ard is larger when the subsets who face larger and
smaller changes than average are identified.41 If the
risk changes to all individuals are small, individual
valuations are well-approximated by the product of
individual VSL and risk reduction and so whether in-
dividuals facing different risk changes are identified
and whether the value is for a risk reduction or risk
increase should have little effect on the population
value.

4. CONCLUSION

Table I summarizes some of the key concepts re-
lated to quantifying mortality and economic valua-
tion we have addressed. Our analysis yields several
conclusions:

Mortality data, whether from epidemiological
studies or randomized controlled trials, can be used
to estimate marginal probability distributions such
as population hazard and survival functions. Hence,
concepts that can be calculated from differences in
marginal distributions (e.g., attributable deaths, ex-
cess deaths, years of life lost due to exposure) can
be estimated. Concepts that depend on the joint dis-
tribution of age at death under different exposures,
such as etiologic deaths and years of life lost due to
exposure and conditional on age or cause of death,
cannot be estimated because they are not statistically
identified.

The result that the etiologic fraction is not statis-
tically identified should not be equated with the fact
that epidemiological studies cannot identify individ-
uals or groups of individuals who die (or develop a

41The cases described in the text are of compensating surplus. For
the equivalent surplus measures, information about differences
in individuals’ risks increases the amount of money a popula-
tion would demand to forgo a reduction in population hazard
and decreases the amount it would pay to prevent an increase in
population hazard. See Hammitt and Treich (2007).
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disease) because of exposure. It is stronger: one can-
not even determine the number of such individuals.

If attributable deaths are reported, authors
should take care to prevent readers from confusing
this statistic with a count of the number of deaths
caused by exposure. Numbers of deaths “attributable
to exposure” are the result of an attribution algo-
rithm; they are not equivalent to and should not be
interpreted as “numbers of deaths caused by expo-
sure.” As stated by the Committee on the Medi-
cal Effects of Air Pollutants (COMEAP, 2010), “at-
tributable deaths are not an estimate of the number
of individuals in whose earlier death air pollution has
played some part” (p. 61). “It is not plausible to think
of the figure of ‘attributable’ deaths as enumerating
an actual group of individuals . . . the group is in re-
ality a fiction, and . . . the number of people in whose
deaths air pollution has played a part might be much
larger . . . . We therefore also consider it inappropri-
ate to use the term ‘premature’ deaths to express the
outcome of the burden calculation” (p. 71).

When evaluating the EBD, total life years lost
in a population due to exposure can be estimated
but cannot be disaggregated into categories defined
by age at death or cause (e.g., disease). EBD stud-
ies typically disaggregate life years lost assuming the
fractions of deaths by age or cause that are due to
exposure are equal to the hazard fractions. The frac-
tion of deaths that are advanced because of exposure
(the etiologic fraction) can be smaller or much larger
than the hazard fraction; it can be as large as one and
as small as about 37% of the hazard fraction. These
results are conditional on the existence of a causal re-
lationship between exposure and mortality: if expo-
sure does not cause (advance) mortality, the etiologic
fraction is zero by definition. Estimates of the num-
ber of cases of disease caused by exposure, used to
calculate years lived with disability, are subject to the
same identification problem. EBD studies typically
assume the fraction of cases of a disease that are due
to exposure is equal to the hazard fraction, but the
etiologic fraction can be smaller or much larger. In
contrast, total or average life years lost due to expo-
sure in the population is a useful measure of burden;
it is identified and can be calculated from mortality
data. Life years lost in the population is not sufficient
for monetary valuation, however, because an individ-
ual’s VSLY may depend on her age, hazard function,
and aspects of the change in her hazard in addition to
the increase in life expectancy.

As explained by Greenland (2015, p. 160), the
article that introduced the term “etiologic fraction”
(Miettinen, 1974) produced confusion by equating
etiologic, excess, and attributable cases (though with-
out using the latter term). Although Miettinen‘s
conceptual misunderstandings were later clarified
(Greenland & Robins, 1988), the three terms are still
often equated, at least implicitly, as illustrated by
quotations from recent literature in Section 1.1.

The monetary value of a reduction in exposure-
related mortality risk, as defined for benefit-cost
analysis, can be estimated using the marginal distri-
butions that are identified using mortality data. The
monetary value for a population is the sum of indi-
viduals’ values, which depend only on the difference
between individuals’ mortality hazard functions if ex-
posed or unexposed; the probability distribution of
the difference in age of death between exposure con-
ditions is irrelevant. Inability to know the fraction of
deaths that are etiologic does not invalidate conven-
tional estimates of the monetary value of a change in
exposure-related population mortality hazard (e.g.,
due to a change in air pollution). But the common
practice of describing the sum of the reductions in in-
dividuals’ hazards as “statistical lives saved” can lead
to misinterpretation.

Economic values are always conditional on in-
formation; if all that is known for an individual is
that her change in hazard can be viewed as a random
draw from the population distribution of individuals’
changes in hazard, then the relevant measure for val-
uation is the mean change in population hazard. If
more information about the changes in individuals’
mortality hazards is available, it can affect their valu-
ations and hence the total population value (though
the effect on the population value will be small if indi-
viduals’ changes in risk are small). Such information
can also reduce uncertainty about how many deaths
are etiologic.

Because any change to an individual’s hazard
function implies a unique change to her life ex-
pectancy, the individual’s monetary value can be ex-
pressed as the product of a VSLY and change in life
expectancy. VSLY is individual-specific and may de-
pend on the change in hazard. An individual may
have preferences among alternative changes to her
hazard function that yield the same increase in life
expectancy (e.g., a small risk reduction over many
years or a larger risk reduction over a few years); if
so, her VSLYs for these changes would differ.
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The conventional approach to describing the ef-
fects of a change in exposure by the number of
“lives saved” or “premature deaths averted” and the
economic value of that change as the product of
lives saved and value per statistical life is mislead-
ing: the number of “lives saved” cannot generally
be determined and the value per statistical life is
not the economic value of saving a life. We suggest
that communication and understanding may be en-
hanced by describing the mortality effects and the
economic value of a change in exposure in terms
of the reductions in individuals’ mortality risks and
the individuals’ values of those changes. For exam-
ple, rather than describing the mortality effects of
eliminating air pollution on the 200 million US res-
idents aged 30 and older as preventing 100,000 pre-
mature deaths per year with a total annual value
of $1 trillion, we suggest describing them as de-
creasing annual mortality risk by an average of
5/10,000 (increasing life expectancy by about four
months) with an average annual individual value of
$5,000.

The confusion induced by equating premature,
etiologic, excess, and attributable deaths is not a
trivial semantic issue. Two decades ago, Greenland
(1999, subtitle) characterized the issue as “a method-
ologic error that has become a social problem.”

ACKNOWLEDGMENTS

We thank John S. Evans for encouraging us to
write this article. We also thank the anonymous re-
viewers, the editor-in-chief (Tony Cox), and area ed-
itor (Warner North), seminar participants at Harvard
University, the Toulouse School of Economics, New-
castle University, the Society for Benefit-Cost Anal-
ysis annual conference (George Washington Univer-
sity), and the Advances in Decision Analysis 2019
conference (Bocconi University) for helpful com-
ments and suggestions.

Appendix

The limiting values of the ratio of the lower
bound to the hazard fraction as R approaches
1 and infinity can be derived as follows. The
hazard fraction HF = R−1

R and the lower bound

LB = R−1

R
R

R−1
. The ratio HF

LB = R−1
R

R
R

R−1

R−1 = R
R

R−1 −1 =
R

1
R−1 and the logarithm of the ratio ln( HF

LB ) = ln(R)
R−1 .

By l’Hôpital’s rule, lim
R→1

[ln( HF
LB )] = lim

R→1

d
dR ln(R)

d
dR R−1

=

lim
R→1

1
R
1 = 1. Hence, lim

R→1
[ HF

LB ] = exp(1) = e and the

limiting value of LB/HF as R → 1 = 1/e.
To determine the limiting value of the ratio of

the lower bound to the hazard fraction as R ap-
proaches infinity, change the limiting value of R in
the expression using l’Hôpital’s rule above to ob-

tain lim
R→∞

[ln( HF
LB )] = lim

R→∞
1
R
1 = 0. Hence, lim

R→∞
[ HF

LB ] =
exp(0) = 1 and the limiting value of LB/HF as R →
� = 1.
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