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Abstract

Different Mechanisms of DEHP-induced Hepatocellular Adenoma Tumorigenesisin Wild-
type and Ppar a-null Mice: Kayoko TakasHIMA, €t al. Department of Preventive Medicine,
Shinshu University Graduate School of Medicine—Di (2-ethylhexyl) phthalate (DEHP)
exposure is thought to lead to hepatocellular hypertrophy and hyperplasia in rodents mediated via
peroxisome proliferator-activated receptor alpha (PPARa). A recent study revealed that long-term
exposure to relatively low-dose DEHP (0.05%) caused liver tumors including hepatocellular
carcinomas, hepatocellular adenomas, and chologiocellular carcinomas at a higher incidence in
Ppara-null mice (25.8%) than in wild-type mice (10.0%). Using tissues with hepatocellular
adenoma, microarray (Affymetrix MOE430A) as well as, in part, real-time quantitative PCR
analysis was conducted to elucidate the mechanisms of the adenoma formation resulting from
DEHP exposure in both genotyped mice. The microarray profiles showed that the up- or down-
regulated genes were quite different between hepatocellular adenoma tissues of wild-type and
Ppara-null mice exposed to DEHP. The gene expressions of apoptotic peptidase activating factor 1
(Apafl) and DNA-damage-inducible 45 alpha (Gadd45a) were increased in the hepatocellular
adenoma tissues of wild-type mice exposed to DEHP, whereas they were unchanged in
corresponding tissues of Ppara-null mice. On the other hand, the expressions of cyclin B2 and
myeloid cell leukemia sequence 1 were increased only in the hepatocellular adenoma tissues of
Ppara-null mice. Taken together, DEHP may induce hepatocellular adenomas, in part, via
suppression of G2/M arrest regulated by Gadd45a and caspase 3-dependent apoptosis in Ppara-
null mice, but these genes may not be involved in tumorigenesis in the wild-type mice. In contrast,
the expression level of Metwas notably increased in the liver adenoma tissue of wild-type mice,
which may suggest the involvement of Metin DEHP-induced tumorigenesis in wild-type mice.

Correspondence to: T. Nakajima, Department of Occupational and Environmental Health, Nagoya University Graduate School of
Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan, (tnasu23@med.nagoya-u.ac.jp).



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Takashima et al. Page 2

Keywords

Di (2-ethylhexyl) phthalate; Peroxisome proliferator-activated receptor alpha; Tumorigenesis;
Apoptotic peptidase activating factor 1; DNA-damage-inducible 45 alpha

Di (2-ethylhexyl) phthalate (DEHP) is a commonly used industrial plasticizer which is used
in the synthesis of plastics to improve their pliability and elasticity. These plastics are used
extensively in medical devices, plastic wrap, plastic gloves, plastic food packages and other
consumer products. Animal studies using DEHP have revealed toxicities including
hepatocarcinogenesis?), and a plausible endocrine disruptive effect has also recently
attracted attention. Therefore, DEHP has been replaced with alternative plasticizers such as
di-isononyl phthalate. In 2002, the Ministry of Health, Labour and Welfare (MHLW) banned
the use of DEHP in medical devices, baby toys and food packaging which contact fat and
fatty foods directly. In 1982, the International Agency for Research on Cancer (IARC)
classified DEHP in Group 2B (possibly carcinogenic to humans). However, in 2000, the
IARC re-evaluated DEHP, placing it in the Group 3 category, which is for chemicals not
classified as carcinogenic to humans?).

DEHP is a representative peroxisome proliferator (PP) in rodents. PPs such as the clinically
used fibrate drug clofibrate and the widely-used experimental compound Wy-14,643,
increase peroxisome numbers, up-regulate peroxisomal beta-oxidation, and cause
hepatocellular hypertrophy and hyperplasia when administered to rats and mice3).

The peroxisome proliferator-activated receptor alpha (PPARa), a nuclear receptor, mediates
the biological activities of PPs. In the study of wild-type and Ppara-null mice fed a diet
containing 0.1% Wy-14,643 for 11 months, 100% of wild-type mice had multiple
hepatocellular neoplasms, including adenomas and carcinomas, while Ppara-null mice were
tumor-free?). Two hypotheses have been advanced to account for the mechanism of
carcinogenesis by PP3). One is the oxidative stress hypothesis whereby increased -
oxidation induced by PP results in excessive production of reactive oxidative species
(ROS)® leading to DNA damage and cancer38:7). Another hypothesis is that imbalance in
hepatocyte growth control results in increased cell proliferation and suppression of apoptosis
thereby disrupting hepatocyte growth control®). It is likely that the mechanism is a
combination of ROS and altered cell proliferation. Indeed, PP-induced cell proliferation is
observed in the liver of wild-type mice but not in Ppara-null mice treated with Wy-14,643.
In addition, PPARa-dependent alterations in cell cycle regulatory proteins are likely to
contribute to the hepatocarcinogenicity of peroxisome proliferators®). Apoptosis was also
reported to be suppressed by the PP, nafenopin, possibly through inhibition of transforming
factor-beta 1-induced apoptosis®19). Finally, a microRNA cascade under control of PPARa
was found to lead to induction of c-Myc and its downstream target genes resulting in
enhanced hepatocellular proliferationd).

A recent study using the Apara-null and wild-type mice revealed that the incidences of liver
tumors including hepatocellular carcinomas, hepatocellular adenomas, and chologiocellular
carcinomas were higher in Apara-null mice exposed to DEHP than in wild-type micel?). In
that study, the mechanism of tumorigenesis was investigated using the normal tissues of
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DEHP-exposed mice, and it was demonstrated that inflammation and protooncogenes
altered by 0.05% DEHP-derived oxidative stresses may be involved in the tumorigenesis
found in Ppara-null mice, but not in wild-type mice. However, the mechanism was not
determined.

Tumorigenesis in Apara-null mice after low-dose DEHP exposure is Ppara-independent. To
determine the mechanism, we examined gene expression profiles in hepatocellular adenoma
tissues as well as control livers of wild-type and Ppara-null mice using microarray data. We
found the gene expression related to G2/M phase and caspase 3-dependent apoptosis
pathways were different in Ppara-null and wild-type mice. Apoptotic peptidase activating
factor 1 (Apafl) and DNA-damage-inducible 45 alpha (Gadd45a) were increased only in
wild-type mice. These results indicate that induction of Apafl and Gadd45a is inhibited in
Ppara-null mice under low-dose DEHP exposure. Thus, the progression of the G2/M phase
and suppression of caspase 3-dependent apoptosis may lead to PPARa-independent
hepatocellular adenoma formation.

Materials and Methods

Animal experiment protocols

This study was conducted in accordance with the Guidelines for Animal Experimentation of
the Shinshu University Animal Center. Ppara-null mice with a Sv/129 genetic background
were bred as described elsewhere!3), and with wild-type Sv/129 mice they were used to
identify PPARa-dependent or -independent hepatic tumor formation caused by DEHP. All
mice were housed in a temperature and light controlled environment (25°C, 12 h light/dark
cycle), and maintained on stock rodent chow and tap water ad /ibitum. Diet containing
DEHP (0.01 and 0.05%) were prepared with the rodent chow every two weeks, according to
the method of Lamb ef a/.1%) The mice were given diets containing 0, 0.01% or 0.05%
DEHP throughout the experiment (from three weeks to 22 months of age) and were
sacrificed by decapitation at about 23 months of age. Livers were collected to investigate
DEHP-mediated pathological changes. Small portions of livers were stored at —80°C until
use. The mechanism of DEHP tumorigenesis was investigated using livers of control and
hepatic tumor tissues of 0.01% and 0.05% DEHP-exposed mice with hepatocellular
adenomas.

Microarray analysis

Samples of normal or hepatocellular adenoma tissue of wild-type and Ppara-null mice
exposed to 0 or 0.05% DEHP, respectively, were homogenized using Mill Mixer (Qiagen,
Valencia, CA, USA) and zirconium beads, and total RNA was isolated using an RNeasy kit
(Qiagen). The purity of the RNA was analyzed by gel electrophoresis after confirming the
260/280 nm ratio to be between 2.0 and 2.2. Microarray analysis was conducted using
GeneChip® MOE430A probe arrays (Affymetrix, Santa Clara, CA. USA) according to the
manufacturer’s instructions. Superscript Choice system (Invitrogen, Carlsbad, CA, USA)
and T7- (dT) o4-oligonucleotide primer (Affymetrix) were used for cDNA synthesis, cDNA
Cleanup Module (Affymetrix) was used for purification, and BioArray High yield RNA
Transcript Labeling Kit (Enzo Diagnostics, Farmingdale, NY, USA) for synthesis of biotin-
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labeled cRNA. Ten micrograms of fragmented cRNA was hybridized to a MOE430A probe
array for 18 h at 45°C at 60 rpm, after which the array was washed and stained by
streptavidin-phycoerythrin using Fluidics Station 400 (Affymetrix) and scanned by Gene
Array Scanner (Affymetrix). The digital image files were processed by Affymetrix
Microarray Suite version 5.0. and the intensities were normalized for each chip by setting
the mean intensity to the median (per chip normalization). The results of the DNA
microarray were analyzed using GeneSpring GX 7.3 (Agilent Technologies, Santa Clara,
CA, USA). The relative increase or decrease in mMRNA abundance for each gene was
reported as a fold-change relative to the values of normal tissue in the control group.

Real-time quantitative PCR Analysis

Statistics

cDNA was synthesized from total RNA using Ominiscript Reverse Transcription (QIAGEN,
Tokyo, Japan). Reverse transcription was performed on a DNA Engine Thermal Cycler (Bio-
Rad Laboratories, Hercules, CA, USA) using QIAGEN One Step RT-PCR Kit (QIAGEN)
according to the manufacturer’s instructions. Of the up-regulated or down-regulated genes
obtained from microarray analysis, analyses of some specific genes thought to be related to
the DEHP-induced tumorigenesis of hepatocellular adenomas were conducted by real-time
quantitative PCR using GeneAmp5700 (Applied Biosystems, Foster City, CA, USA).
Specific primers were generated using Primer Express software (Applied Biosystems) or
purchased from TAKARA BIO (Otsu, Shiga, Japan). The following primers were generated
using Primer Express software and synthesized at Operon Biotechnologies (Tokyo, Japan):
myeloid cell leukemia sequence 1(Mcll), 5’ - CATTCTGGTAGAGCACCTAACACTTT-3"
(forward), and 5 *-CATTTACAACCCACATTAACTTGCA-3 ’ (reverse); Bc12-like
1(Bc1211), 5 ’- CAGAGACTGACAGCCTGATGCT-3 ’(forward), and 5° -
ATTTCAAAGAGCTGGAACAAGTGTAG-3’(reverse).

The following primers were purchased from TAKARA BIO: Glyceraldehyde-3-phosphate
dehydrogenases (GAPDH), DNA-damage-inducible 45 alpha (Gadd45a), apoptotic
peptidase activating factor 1(Apafl) and cyclin B2. Real-time quantitative PCRs were
performed using SYBR Green PCR Master Mix (Applied Biosystems) or SYBR® Premix
Ex Tag™ (TAKARA BI10). A comparative threshold cycle (Ct) was used to determine gene
expression relative to the control (calibrator). Hence, sample mRNA levels are expressed as
n-fold differences relative to the calibrator. For each sample, the Mc11, Bcl2l1, Gadd45a,
Apafl and cyclin B2 Ct values were normalized using the formula ACt=Cr tajget gene -

Ct target GAPDH- T0 determine the relative expression levels, the following formula was used:
AACT=A C1 (1) sample = CT(1) calibrator: @nd the value used to plot the relative target expression
was calculated using the expression 2 ~AAC,,

Comparisons were conducted on the real-time quantitative PCR analysis using a two-way
analysis of variance, followed by Student’s #test. Values of p<0.05 were considered
statistically significant.
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Ppara and related genes

In the Ppara-null mice, the PCR product of Ppara was not detected, whereas it was detected
in the livers of wild-type mice as a 677bp amplicon (data not shown), suggesting knockout
of the Ppara gene in the livers of Ppara-null mice. DEHP is known to up-regulate a gene
encoding cytochrome P450, Cyp4al0, via PPARa%). To confirm that 0.05% DEHP
activated the PPARa gene, the expression of Cyp4al0 mRNA was analyzed. In the livers of
wild-type mice, 0.05% DEHP treatment up-regulated the Cyp4al0 (6.7-fold), compared to
the control; no induction was found in the Ppara-null mice (data not shown). However,
0.05% DEHP did not affect the expression of the other PPARa-mediated genes such as acyl-
coenzyme A oxidase 1 (Acox1), suggesting that this dose activated PPARa., albeit very
weakly.

List of genes showing at least a 30-fold difference between adenoma and normal liver in
wild-type and Ppara-null mice

In order to investigate the characteristic differences in the gene expression profiles of
hepatocellular adenomas and normal tissues in wild-type or APpara-null mice, genes that
exhibited more than 30-fold differences in the microarray results were given more detailed
consideration (Table 1). Although the microscopic phenotype changes were the same
(hepatocellular adenomas) in both mouse lines, the gene expression profiles were quite
different, and there were no changes which were common to wild-type and Ppara-null mice.
The genes listed in Table 1 were then categorized by Simplified Gene Ontology as shown in
the subheading (GO Biological Process), and there were no particular pathways which were
altered. These results suggest that the tumorigenesis of hepatocellular adenomas in the wild-
type mice may have a mechanism different from that in Ppara-null mice.

Carcinogenesis-related genes

Alteration of particular pathways related to adenoma formation was not identified in the
overall gene expression profiles in the hepatocellular adenoma tissues of both wild-type and
Ppara-null mice when judged by analysis of those genes yielding 30-fold changes.
Therefore, the expression levels of carcinogenesis-related genes were inspected (Table 2).
Carcinogenesis-related genes were selected according to GeneSpring’s gene category,
carcinogenesis and tumor suppressor genes. Surprisingly, the expression profiles of these
genes were quite different between wild-type and . Apara-null mice.

The expressions of the met proto-oncogene (Met) and v-crk sarcoma vims CT10 oncogene
homolog (avian)-like (Crkl) were increased only in adenoma tissue of wild-type mice.
Expression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (avian)
(Mafb) were decreased in that of wild-type mice, but increased in Ppara-null mice. Most
tumor suppressor genes were increased in tumor tissue of wild-type mice, but decreased in
that of Ppara-null mice. Only MAD homolog 4 (Smad4) was decreased in tumor tissue of
wild-type mice, but increased in that of Ppara-null mice. These results suggest that
decreased expression of tumor suppressor genes may be related to the increased
tumorigenesis in Ppara-null mice exposed to DEHP.
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G2/M phase-related genes

The cell cycle is regulated by cyclins and cyclin-dependent protein kinases, which play an
important role in cell growth control'8:17). The microarray data of carcinogenicity-related
genes did not reveal any typical profiles in either mouse line. Since the expressions of cyclin
B1 (Ccnbl) and cyclin B2 (Ccnb2) were up-regulated in tumor tissue of Ppara-null mice,
G2/M phase-related genes were explored in more depth (Table 3). Myelin transcription
factor 1(Myt1) was down-regulated in tumor tissue of Ppara-null mice, but not in that of
wild-type mice. In contrast, the induction levels of cyclin-dependent kinase 7 (Cdk?7),
growth arrest and DNA-damage-inducible 45 alpha (Gadd45a) in tumor tissue of wild-type
mice were higher than those in Ppara-null mice.

Caspase 3-dependent apoptosis pathway-related genes

Apoptosis is executed via multiple pathways, all involving caspase activation!®). Caspase 3-
dependent apoptosis pathway-related genes were explored in depth. Table 4 shows
expression levels of caspase 3-dependent apoptosis pathway-related genes. The expression
level of myeloid cell leukemia sequence 1(Mcl1) in adenoma tissue of Ppara-null mice was
higher than that of wild-type mice. In contrast, expression levels of apoptotic peptidase
activating factor 1(Apafl) and caspase 3 in tumor tissue of wild-type mice were higher than
in Ppara-null mice.

Real-time quantitative PCR analysis

The expressions of two mRNAs related to control of the G2/M cell cycle, cyclin B2 and
Gadd45a mRNA, were measured using real-time quantitative PCR analysis (Fig. 1).
Expression of cyclin B2 mRNA was significantly up-regulated in tumor tissues of Ppara-
null mice compared to the normal tissues of control mice with the same genetic background,
and up-regulated in those of wild-type mice; in particular, one tumor revealed a 72-fold up-
regulation. The expression of Gadd45a mRNA was significantly up-regulated in tumor
tissues of wild-type mice compared to normal tissues of control mice, but not in the tumor
tissues of Ppara-null mice.

Next, the expression of three apoptosis pathway genes, Mcll, Apafl, and Bcl2I1 mRNA,
were also measured using the same method. In tumor tissues of Apara-null mice, the
expression of Mcll mRNA was significantly up-regulated compared to normal tissues of
control mice with the same genetic background. In contrast, expression was down-regulated
in tumor tissues of two wild-type mice, and no difference was observed in expression in
wild-type mice. The expression of Apafl mMRNA was significantly up-regulated in the tumor
tissues of wild-type mice compared to normal tissues of the control group. On the contrary,
there was no significant difference in the expression of these genes in Ppara-null mice. The
expression of Bcl2l1 mRNA was not significantly changed between tumor and normal
tissues of both Ppara-null and wild-type mice.

Discussion

Differences in tumorigenesis of relatively low-dose DEHP-induced hepatocellular adenomas
between Ppara-null and wild-type mice were clearly elucidated in the current study using
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microarray and real-time quantitative PCR analyses. These findings suggest that DEHP-
induced hepatocellular adenoma in Ppara-null mice was caused by enhanced progression at
the G2/M cell cycle checkpoint and suppression of apoptosis through caspase signaling. In
wild-type mice, however, these pathways might not be involved, suggesting that DEHP-
induced tumorigenesis is different in the two genotyped mice.

Cyclin B and cyclin D play a central role in cell cycle regulation19-23). From the microarray
data in genes encoding G2/M cell cycle phase proteins, cyclin B was increased in
hepatocellular adenoma tissues of Ppara-null mice. cyclin B forms a complex with Cdc2,
which is activated by dephosphorylation, and a dephosphorylated complex triggers
mitosis?0-22), Gadd45 inhibits mitosis and promotes G2/M arrest?4 25, Our findings that the
expression of Gadd45a was increased in the hepatocellular adenoma tissues of wild-type
mice, but not in those of Apara-null mice, suggest that activation of Cdc2/cyclin B complex
was not inhibited by Gadd45a, and that hepatocyte mitosis was promoted in the tumor
tissues of Ppara-null mice. However, in the tumor tissues of wild-type mice, increased
Gadd45a might inhibit the activation of the Cdc2/cyclin B complex, and mitosis of
hepatocyte cells might not be promoted in the tumor tissues. From the microarray data,
Mytl and p21/cip, which inhibit mitosis as well as Gadd45a, appeared to be down-regulated
only in the hepatocellular adenoma tissue of Ppara-null mice. Moreover, Cdc25b, which
also promotes M-phase entry, tended to be elevated in hepatocellular adenoma tissue of
Ppara-null mice. These results suggest that the changes in the expression of Myt1, p21/cip
and Cdc25b genes might also be related to control of the cell cycle G2/M checkpoint and
enhance cell proliferation in the tumor tissues of Ppara-null mice, though these gene
expressions were not reconfirmed by real-time quantitative PCR analysis. Other factors also
regulate the cell cycle. Since CDK7, which promotes mitosis, increased in hepatocellular
adenoma tissues of wild-type mice, but not in those of Ppara-null mice, cell proliferation in
wild-type mice might partly be related to an increase in CDK7. Taken together, although cell
proliferation due to enhanced mitosis may occur in the hepatocellular adenoma tissues of
both mouse lines, their signaling pathways may differ.

Why cell cycle regulation was different in hepatocellular adenoma tissues of Ppara-null and
those of wild-type mice could not be resolved in this study. In a previous study, PPARa
suppressed DEHP-induced oxidative stress: 8-oxoguanidine (8-OHdG) levels due to DEHP
exposure were higher in the livers of Ppara-null mice than those of wild-type mice,
suggesting that DNA damage is induced in the livers of Ppara-null micel?). Nevertheless,
DEHP treatment did not induce, and even appeared to down-regulate, Gadd45a in the livers
of Ppara-null mice, suggesting an enhancement of the surroundings for hepatic
tumorigenesis in these mice. Intraperitoneal injection of 2-nitropropane, an oxidative stress
inducing agent, increased 8-OHdG levels in mouse liver tissues and also increased the p53
protein level?®). The p53 protein is involved in DNA repair by recruiting reaper protein such
as Gadd4527). However, there was no significant difference in up-regulation of p53 between
tumor tissues of wild-type and Ppoara-null mice in the current experiment (data not shown).

The mitochondrial apoptotic pathway initiates the release of cytochrome ¢ from
mitochondria. Cytochrome c activates Apafl protein, which in turn activates caspase 9,
resulting in caspase 3-dependent cell death?8-39). Apafl mRNA was induced only in
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hepatocellular adenoma tissues of wild-type mice, but not in those of Apara-null mice. In
addition, caspase 3 was increased 2.4-fold in adenoma tissues of wild-type mice, but not in
those of Ppara-null mice, though the activity was not measured in this experiment. These
results suggest that DEHP might suppress apoptosis due to an inactivation event downstream
of caspase only in hepatocellular adenoma tissues of Ppara-null mice. On the other hand,
DEHP up-regulated Mcl1 expression only in the tumor tissues of Ppara-null mice. Mcll, a
member of the Bcl-2 family, strongly inhibits tBid-induced cytochrome c release3Y), and
delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells®?) and
hematopoietic cells33). Short-term treatment of mice with Wy-14,643 significantly decreased
the levels of anti-apoptotic Mcl1 transcript and protein in wild-type mice, but not in Ppara-
null mice34), suggesting the involvement of PPARa in Mcl1 expression. Since the dose of
DEHP used in this experiment was relatively low and activated PPARa very weakly, the
effect on Mcl1 might not have been observable in the wild-type mice. However, increased
Mcll in the hepatocellular adenoma tissues of Ppara-null mice might suppress the release of
cytochrome ¢, which may also be involved in the suppression of caspase 3-dependent
apoptosis. On the other hand, expression of Bcl2l1, which also inhibits cytochrome c release
as well as Mcl1, did not differ in hepatocellular adenoma tissues of Ppara-null and wild-
type mice treated with DEHP.

Of the carcinogenesis-related genes selected according to GeneSpring’s gene category, 16
and 12 genes were up-regulated in liver adenoma tissue of wild-type and Ppara-null mice,
respectively. However, expression levels of these genes did not change or were somewhat
down-regulated in the liver tissue of Ppara-null and wild-type mice, respectively. In
contrast, 5 and 1 of the expression levels of tumor suppressor genes were up-regulated in
liver adenoma tissue of wild-type and Ppara-null mice, respectively. It is striking that up- or
down-regulation of these carcinogenesis-related genes was starkly inconsistent with the two
genotype mice. Although these results were obtained from microarray analysis using only
one tissue of normal and adenoma in wild-type and Ppara-null mice, the gene expression
differences of these genes in the two genotype mice may explain the different mechanisms
of DEHP-induced tumorigenesis observed in wild-type and Ppara-null mice. Met is
overexpressed in a variety of malignancies3® and thought to be a proto-oncogene. The
expression level of Metwas notably increased (88-fold) in liver adenoma tissue in wild-type
mice, which may suggest the involvement of Metin DEHP-induced tumorigenesis in wild-
type mice.

In this study, data obtained using microarray showed correspondence with those from real-
time quantitative PCR. We handled tissues of hepatocellular adenomas obtained from two
doses, 0.01 and 0.05% DEHP treatment, as samples of adenoma tissues, and analyzed them
together. However, this handling did not affect data interpretation, because data obtained
from RT quantitative PCR showed phenotype-, not dose-related results.

The incidence of spontaneous liver tumors in mice is rare in all strains before 12 months of
age and then increases with age3®). Frequency and liver tumor type depend on strain and
sex37). We assume that liver tumors in Ppara-null mice resulted from DEHP exposure,
because the frequencies in the DEHP-treated group were higher than in the control group.
However, we could not determine whether DEHP promoted the spontaneous liver tumor in
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Ppara-null mice, because spontaneous hepatocellular tumors are known to occur in these
mice at 24 months of age3®). Thus, the mechanisms of spontaneous tumorigenesis may be
different between Ppara-null and wild-type mice. To clarify this, gene expression profiles of
liver tumors in the control group need to be analyzed.

Since neither the number of mice used in each group nor the DEHP concentrations were
very high in this experiment, the samples for analyzing tumorigenesis of hepatocellular
adenomas induced by DEHP were limited. In addition, we only analyzed mRNA expressions
of many genes using microarray and in part real-time quantitative PCR analyses. To
reconfirm the different tumorigenesis of DEHP between wild-type and Ppara-null mice
reported in this manuscript, further studies are needed with an increase in animal numbers or
DEHP exposure concentration, and analysis by immunohistochemical staining and/or
western blot of the important genes such as Gadd45a and Apafl, and caspase 3 activity. The
results of such studies may uncover a new mechanism of tumorigenesis which is induced by
DEHP.

In summary, tumorigenesis of low-dose DEHP-induced liver adenoma in Ppara-null mice
might be different from that of wild-type mice, possibly involving suppression of G2/M
arrest in the former which might be caused by inhibition of Gadd45a and inhibition of
caspase 3-dependent apoptosis. Thus, several mechanisms of tumorigenesis of
hepatocellular adenomas could be triggered by DEHP exposure in mice.
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Fig. 1.
mRNA levels of cyclin B2, Gadd45a, Mcl1, Apafl and Bcl2I1 in wild-type mice livers with

adenoma. mMRNA levels of GAPDH mRNA, cyclin B2, Gadd45a, Mcl1, Apafl and Bcl2l1
were measured by real-time quantitative PCR method in normal livers (n=7) of control and
hepatocellular adenoma tissues (n=3) of wild-type or Ppara-null mice exposed to 0, 0.01 or
0.05% DEHP. mRNA levels of each gene were normalized to those of GAPDH mRNA, and
were expressed as an n-fold differences. Open and closed rectangles, normal liver and
hepatocellular adenoma tissues of wild-type mice exposed to 0 and DEHP, respectively;
open and closed circles, normal liver and hepatocellular adenoma tissues of Ppara-null mice
exposed to 0 and DEHP. *Significant difference between normal and tumor tissues, p<0.05.
**Significant difference between normal and tumor tissues, p<0.01.
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Gadd45

G2 phase

M phase

Fig. 2.
G2/M arrest regulated by Gadd45. Gadd45 protein interacts with Cdc2-cyclin B complexes

and promotes G2/M arrest. Since Gadd45 in the hepatocellular adenoma tissues of wild-type
mice was induced by DEHP exposure, but not in those of Ppara-null mice, the promotion of
the arrest might not have occurred in the Ppara-null mice, but may have been in the wild-
type mice.
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Fig. 3.
Apoptosis pathway diagram via caspase 3. Since expression of Mcll1 was increased only in

the hepatocellular adenoma tissues of Ppara-null mice exposed to DEHP, while expression
of Apafl was induced only in those of wild-type mice, apoptosis via caspase 3 might be
inhibited in the Ppara-null mice, but not in the wild-type mice.
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