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Backbone reconstruction in temporal networks from epidemic data

Francesco Vincenzo Surano ,1,2 Christian Bongiorno,1,3 Lorenzo Zino ,2,* Maurizio Porfiri ,2,† and Alessandro Rizzo 1,‡

1Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
2Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering,

Brooklyn, New York 11201, USA
3Laboratoire de Mathématiques et Informatique pour les Systèmes Complexes, CentraleSupélec,

Université Paris Saclay, 91190 Gif-sur-Yvette, France

(Received 11 July 2019; published 15 October 2019)

Many complex systems are characterized by time-varying patterns of interactions. These interactions comprise
strong ties, driven by dyadic relationships, and weak ties, based on node-specific attributes. The interplay
between strong and weak ties plays an important role on dynamical processes that could unfold on complex
systems. However, seldom do we have access to precise information about the time-varying topology of
interaction patterns. A particularly elusive question is to distinguish strong from weak ties, on the basis of the sole
node dynamics. Building upon analytical results, we propose a statistically-principled algorithm to reconstruct
the backbone of strong ties from data of a spreading process, consisting of the time series of individuals’
states. Our method is numerically validated over a range of synthetic datasets, encapsulating salient features
of real-world systems. Motivated by compelling evidence, we propose the integration of our algorithm in a
targeted immunization strategy that prioritizes influential nodes in the inferred backbone. Through Monte Carlo
simulations on synthetic networks and a real-world case study, we demonstrate the viability of our approach.
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I. INTRODUCTION

In the past few decades, network science has experienced
significant developments, providing researchers with an array
of powerful tools to represent and analyze complex biological,
social, and technological systems [1]. Besides improving our
knowledge on the very structure of complex systems, network
science has contributed new paradigms to study dynamical
processes unfolding on a complex system. These paradigms
have shed light on the intertwining between structure and
dynamics in the spread of epidemic diseases [2], diffusion of
innovation [3], and opinion formation [4].

Empirical studies suggest that patterns of interactions be-
tween nodes in many complex networks evolve ceaselessly
in time [5,6]. These interactions can be categorized into two
main classes [7]. One class corresponds to interactions that
are recurrently formed between node pairs, following dyadic
relationships that are called strong ties [8]. Interactions in the
workplace or family ties belong to this class, which forms
the backbone of the network [9,10]. The second class encom-
passes interactions that are based on features of the nodes,
which are not attributable to dyadic ties with other nodes.
For instance, interactions among people queuing in a line or
sitting on a plane belong to this class, whereby interactions

*Now at Faculty of Science and Engineering, University of Gronin-
gen, 9747 AG Groningen, The Netherlands.

†Also at Department of Biomedical Engineering, New York Uni-
versity Tandon School of Engineering, Brooklyn NY, 11201; mpor-
firi@nyu.edu

‡Also at Office of Innovation, New York University Tandon School
of Engineering, Brooklyn NY, 11201; alessandro.rizzo@polito.it

are triggered by individual attributes such as extroversion in
talking to strangers. These relationships are called weak ties
[8]. Strong and weak ties concur in shaping the dynamic
behavior of complex networks [11–13].

Activity driven networks (ADNs) have emerged as a
valuable framework for temporal networks [14], allowing
for modeling the coevolution of the network structure and
the unfolding nodal dynamics at comparable timescales.
The temporal nature of the network is captured through a
single parameter that measures the node propensity to gener-
ate interactions. The distribution of this parameter, called ac-
tivity, can be inferred from real-world data [14]. The potential
of ADNs has been demonstrated through the study of several
network problems, including epidemics [15–19], diffusion of
innovation [20], opinion formation [21], and percolation [22].

In their fundamental incarnation, ADNs are an ideal tool
to model weak ties, whereby the whole process of network
assembly is driven by a node-specific attribute, the activity.
Routed ADNs (RADNs) have been recently proposed to in-
clude strong ties within the ADN paradigm [23,24]. In this
model, temporal connections are wired according to a stochas-
tic rule that encapsulates both the topological information of
strong ties and the unstructured connections of weak ties.
RADNs share similarities with other approaches to include
strong ties in ADNs, such as the superimposition of a static
network [25,26], and the inclusion of memory mechanisms in
the link wiring process [27,28].

The use of RADNs in real-world scenarios rely on accurate
knowledge of the activity distribution and the topology of the
backbone. While activities can be estimated following the
literature on ADNs [14,29], the inference of the backbone of
strong ties remains an open challenge. Preliminary efforts in
this direction can be found in Ref. [30]. Therein, the authors

2470-0045/2019/100(4)/042306(11) 042306-1 ©2019 American Physical Society

https://orcid.org/0000-0001-6924-5901
https://orcid.org/0000-0002-0946-6523
https://orcid.org/0000-0002-1480-3539
https://orcid.org/0000-0002-2386-3146
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042306&domain=pdf&date_stamp=2019-10-15
https://doi.org/10.1103/PhysRevE.100.042306


FRANCESCO VINCENZO SURANO et al. PHYSICAL REVIEW E 100, 042306 (2019)

have proposed a method to reconstruct the backbone of a
temporal network from the direct observation of the pattern
of interactions over an accessible time-window. Particularly
elusive is the problem of distinguishing strong from weak
ties from observations of node dynamics, which is typically
the only knowledge available in real epidemiological settings
[31].

In the technical literature, the problem of link recon-
struction and prediction has been studied from a variety of
angles, mostly relying on the direct observations of contacts
[32–34]. Dealing with observations of nodal dynamics, sev-
eral methods have been proposed to reconstruct patterns of
interactions [35], including the use of similarity [36], infor-
mation theory [37], belief propagation [38], likelihood max-
imization [39,40], compressed sensing [41,42], optimization
[43], nonparametric Bayesian methods [44], and data-driven
approaches [45,46]. However, these strategies are of limited
use when strong and weak ties coexist, thereby presently chal-
lenging the inference of backbone networks from observations
of node dynamics.

Drawing inspiration from Refs. [47,48], here we design
a backbone detection algorithm that identifies strong ties
from node dynamics, in the form of empirical data about a
spreading process. Because of its widespread use in the study
of epidemic outbreaks, we adopt the epidemiological lexicon
throughout the paper when referring to the spreading dynam-
ics. However, the application of our algorithm should not be
considered limited to the epidemiological field, since spread-
ing processes in temporal networks are widely used to model
other phenomena, including diffusion of innovation in social
groups [20] and information flow in brain networks [49–51].

Our algorithm is based on the intuition that strong ties
should leave a distinguishable footprint on the temporal evo-
lution of an epidemic outbreak. We analytically characterize
such a footprint in terms of the probability for a node to
contract the disease, given knowledge about the health state of
other nodes. Building upon this analytical result, we formulate
a statistically-principled algorithm to reconstruct the back-
bone topology. An extensive performance analysis is carried
out by means of numerical simulations to demonstrate the
effectiveness of the algorithm and identify potential limita-
tions. Finally, we demonstrate the possibility of implementing
the algorithm to inform immunization strategies that target
influential nodes of the backbone. The effectiveness of the
proposed technique is evaluated through Monte Carlo sim-
ulations both on synthetic networks and real-world data of
face-to-face interactions in a high school [52].

II. MATHEMATICAL BACKGROUND

We provide mathematical details of the models herein used
to study temporal networks with a backbone structure of
strong ties, along with dynamical process.

A. Routed ADNs

We consider a network of n nodes, each belonging to the
node set V = {1, . . . , n}. Temporal undirected links are repre-
sented through time-varying adjacency matrix At ∈ {0, 1}n×n,
where t ∈ Z+ is the discrete time index. The adjacency

matrix is assembled so that (At )i j = 1 if and only if node
i is connected with node j at time t . We denote by Ni

t the
neighborhood of node i at time t , that is, the set of other nodes
to which i is connected at time t .

Both strong and weak ties contribute to the evolution of At .
Strong ties are described by an undirected and time-invariant
adjacency matrix G ∈ {0, 1}n×n. We indicate with di the de-
gree of node i in the backbone network. Degrees are gathered
in the degree vector d ∈ Nn. Empirical evidence from real-
world observations suggests that real-world backbones are
often sparse [1] and nodes have bounded degree [53]. Without
loss of generality, we assume that the backbone network does
not contain isolated nodes, that is, di � 1, for all i ∈ V [54].

Following Ref. [24], each node i ∈ V is characterized by an
activity parameter ai ∈ [0, 1]. At each time, node i activates
with probability ai and generates an undirected link with
another node. The selection of which node to connect to
is probabilistically dictated by a row-stochastic [55] matrix
P ∈ Rn×n

�0 such that

P = (1 − γ )
1

n − 1
J + γ diag(d )−1G, (1)

where γ ∈ [0, 1] is a constant parameter and J is the n × n
matrix of all ones, except the diagonal entries, which are set
to 0. The generic entry Pi j represents the probability that i
connects with j. The first term on the right hand side of Eq. (1)
accounts for the weak ties, while the second summand models
strong ties in the backbone. The parameter γ ∈ [0, 1] weights
the role of strong versus weak ties in the formation of temporal
links. When γ = 0, the model reduces to a standard ADN
[14], such that strong ties are uninfluential; when γ = 1, the
probability of a connection mirrors the adjacency matrix of
the backbone network. A realization of an RADN is shown in
Fig. 1.

To generate a temporal network from t = 0, up to time T ,
we implement the following steps:

(1) the temporal adjacency matrix is initialized as (At )i j =
0, for all i, j ∈ V ;

(2) each node i ∈ V activates with probability ai, indepen-
dent of the others;

(3) for each node i that is active, a node j is selected with
probability Pi j , and we set (At )i j = (At ) ji = 1; and

(4) the time index t is incremented by 1; if t � T , the
algorithm is terminated, otherwise it is resumed to step 1.

B. Susceptible–infected–susceptible model

We focus on a susceptible–infected–susceptible (SIS) epi-
demic model [56]. In an SIS model, each node of the network
is characterized by a binary health state. Specifically, at time
t , node i ∈ V is either susceptible to the disease (X i

t = 0) or
infected (X i

t = 1). At each time, two contrasting mechanisms
govern the evolution of the epidemic process: propagation
and recovery. Each susceptible node can contract the disease
through interactions with infected nodes.

The propagation of the disease may occur with probability
λ ∈ [0, 1] along each link of the RADN independently of the
others, such that

P
(
X i

t+1 = 1
∣∣ X i

t = 0
) = 1 − (1 − λ)

∑
j∈Ni

t
X j

t . (2)
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FIG. 1. Illustration of a backbone network (a) along with three
consecutive realizations of an RADN (b–d) at time t = 0, 1, 2,
respectively. Red dashed links are the strong ties in the backbone, and
black solid links are temporal links generated from nodes’ activity.

Following the recovery mechanism, instead, each node i that
is infected at time t , recovers at time t + 1 with probability
μ ∈ [0, 1], becoming again susceptible to the epidemics. The
generality of our theoretical approach suggests that our algo-
rithm could be extended to more complex epidemic models
on ADNs [29,57].

III. BACKBONE DETECTION ALGORITHM

We present here the main technical contribution of this
work, which consists of an algorithm to detect the backbone
of strong ties in a temporal network from epidemic data. Our
method is based on the exact computation of the probability
of a node to contract the disease given the health states of
other nodes. Building on the knowledge about neighbors, we
are able to pinpoint the effect of the presence of strong ties
through a statistical test.

A. Conditional probabilities for RADNs

Given two nodes, i and j, observed from the initial time
0 over a time-window of duration T , we define the following
quantity:

P j→i := 1

T

T −1∑
t=0

[
P

(
X i

t+1 = 1
∣∣ X i

t = 0, X j
t = 1

)

−P
(
X i

t+1 = 1
∣∣ X i

t = 0
)]

. (3)

The quantity P j→i summarizes the extent by which the infec-
tion of node i over the time-window 0, . . . , T is explained by
the disease propagation from node j [58]. Intuition suggests
that such a quantity is larger when i and j are connected by
a strong tie, such that the infection of nodes connected by the
backbone network will increase the chance of contracting the

FIG. 2. Empirical estimation of P j→i in a realization of an
RADN with n = 200 nodes, γ = 0.95, λ = 0.9, μ = 0.1, and ai =
0.3 for all nodes, over all the pairs of nodes (i, j) ∈ V × V . The
orange distribution relates to nodes that share a strong tie and the
blue one to the opposite case. The backbone network is a 4-regular
random graph. The network is simulated for 35 000 time steps.
The figure suggests that conditioning on the state of node j affects
the infection probability for nodes that share a strong tie with j,
confirming our analytical results. The red dotted line is the lower
bound on P j→i in the presence of the strong tie {i, j}, computed using
Eq. (4a).

infection. For the considered RADN and a SIS process, math-
ematical analysis of this quantity, detailed in the Appendix,
confirms this intuition.

Specifically, we demonstrate that, in the asymptotic limit
of large time-windows, if there exists a strong tie between i
and j, that is, if Gi j = 1, then

lim
T →∞

P j→i �
μλγ

[(
1 − λ ai

di

)(
1 − λ aM

dm

)]di−1

λ
(
ai + (

1 − γ
(
1 − di

dm

))
aM

) + μ

1

eλ(1−γ )(ai+aM )

×
(

ai

di
+ a j

d j
− γ λ

aia j

did j

)
> 0, (4a)

almost surely, for any network size, where aM and dm are
the maximum activity and the minimum backbone degree
over the node set, respectively. However, if the two nodes are
disconnected in the backbone, that is, if Gi j = 0, then we find
that in the asymptotic limit of large networks,

lim
n→∞P j→i = 0. (4b)

As a consequence, if the size of the network is sufficiently
large, the probability that a node becomes infected is not
influenced by the health state of another, unless they share
a strong tie. Based on this analytical result, we construct our
identification algorithm, which starts from empirical observa-
tions of the disease dynamics to detect strong ties.

Figure 2 compares the empirical estimation of P j→i for
pairs of nodes that share (orange) or not (blue) a strong tie.
These simulations validate our analytical results and suggest
that P j→i is close to its asymptotic expressions in Eq. (4), also
for a reasonably small population size (that is, starting from
200–300 nodes, according to our numerical simulations) and
an observation window of limited duration. In fact, while the
empirical distribution of the entries of P j→i that correspond
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to strong ties (in orange) is shifted and bounded away from 0,
the empirical distribution of the entries that do not correspond
to strong ties is centered at 0.

By comparing our analytical bound from Eq. (4a) (dotted
red line) with the empirical observation, we propose that our
estimation, albeit conservative, yields an accurate estimate of
the order of magnitude of P j→i. The two empirical distribu-
tions are well separated and both of them can be accurately
fitted by a Gaussian distribution (dashed blue and orange, re-
spectively) with means equal to 0.000 and 0.026, respectively,
and standard deviations both equal to 0.003. This evidence
suggests that a central limit theorem should hold for P j→i,
which is defined as an average over T . As a consequence, we
may conjecture that the length of the time-window T plays a
key role in shaping the two distributions and, consequently,
in determining whether strong and weak ties are statistically
distinguishable. More details to support our conjecture can be
found in Sec. IV and in the Appendix.

B. Statistical test

Building on our analytical results, we put forward a
statistically-principled analysis to determine the presence of a
strong tie between the two nodes for a network of conveniently
large size. To perform such an analysis, for any pair of nodes
i and j, we measure the following four quantities over the
observation time-window of duration T :

(a) the number of time steps in which node i is susceptible,
denoted as si;

(b) the number of transitions of node i from susceptible to
infected, denoted as ii;

(c) the number of time steps in which node i is susceptible
and node j is infected, denoted as ni j ; and

(d) the number of transitions of node i from susceptible
to infected with node j being infected at the previous time,
denoted as qi j .
From the first two quantities, we compute the ratio ri = ii/si,
which measures the sampling probability that a susceptible
node i at time t becomes infected at t + 1.

According to Eq. (4b), if i and j do not share a strong tie,
then the probability that i contracts the infection should not
be influenced by j, that is, qi j should be a realization of a
Bernoulli trial with expected value equal to rini j . We set this
as the null hypothesis of our statistical test, which is rejected
if qi j is significantly larger than rini j . We associate with the
node pair a p value, coming from the binomial cumulative
distribution, equal to

πi j = 1 −
qi j−1∑
h=0

(
ni j

h

)
rh

i (1 − ri )
ni j−h. (5)

This procedure generates a set of n − 1 statistical tests for
each node, that is, n(n − 1) tests, overall. Hence, a multi-
ple comparison correction should be implemented to assess
whether each one of the null hypotheses can be rejected. We
adopt the Benjamini–Hochberg procedure to control the false
discovery rate, which offers a less conservative criterion with
respect to the standard Bonferroni criterion [59]. This method
is implemented as follows.

First, we set the level of significance α ∈ [0, 1]. The
quantity α measures the largest admissible probability that
at least one of the null hypotheses is erroneously rejected
and it is typically set to a small quantity, to ensure the
test significance. Then, the n(n − 1) p values are sorted in
ascending order and denoted as π (1) < π (2) < · · · < π ((n−1)n).
Let L be the largest integer for which it holds π (L) < Lα/(n −
1)n. Then, the null hypothesis is rejected for all the pairs of
nodes associated with a p value smaller than π (L). If the null
exists hypothesis is rejected for i and j, then we estimate that
there exists a link in the backbone network between nodes
i and j. Hence, we set the corresponding element of the
estimated backbone adjacency matrix Ĝ as Ĝi j = Ĝ ji = 1.
We note that this is the step that requires the highest
computational effort, since the n(n − 1) p values should be
computed and sorted in ascending order. The algorithm can
be implemented according to the pseudo code below.

Algorithm 1: Backbone detection algorithm

Examining more in depth the analytical results in Eq. (4a),
we foresee some issues that might hinder the applicability of
our algorithm, yielding a small value of P j→i, even though a
strong tie connecting i to j exists. In particular, this can occur
in two cases. First, if both degrees di and d j are large, such that
the two nodes have a large degree centrality in the backbone
network. Second, if both activities ai and a j are small. In
the following, we present detailed numerical simulations with
different parameter choices to demonstrate the accuracy of the
algorithm.

IV. NUMERICAL VALIDATION

We validate our backbone detection algorithm on several
synthetic datasets, to illustrate its applicability in real-world
scenarios and identify potential limitations. These synthetic
datasets consist of benchmark networks with n = 200 nodes,
generated according to the RADN paradigm described in
Sec. II A. We consider different distributions for the nodes’ ac-
tivities and backbone degrees. Specifically, the latter follows
a configuration model [1]. The epidemic process is simulated
using the SIS model illustrated in Sec. II B with λ = 0.9 and
μ = 0.1. Unless otherwise specified, we set the significance
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FIG. 3. Fraction of strong ties identified by our algorithm in the
scenario with both homogeneous activity distribution and backbone
degrees, for different values of the parameter γ . The backbone is a
4-regular network with 200 nodes. The other parameters are λ = 0.9,
μ = 0.1, and ai = 0.3, for all the nodes.

level of the statistical test to α = 0.05 and the parameter
γ = 0.95.

A. Homogeneous activity distribution
and homogeneous backbone

We first examine the possibility of identifying regular
networks of strong ties against weak ties generated using a
common activity value for the all nodes. In this scenario, the
backbone is chosen to be a 4-regular random network and the
activity is equal to ai = 0.3, for all i ∈ V .

In Fig. 3, we plot the true positive rate (TPR), which is the
fraction of links that the algorithm is able to correctly predict
(green); and the false discovery rate (FDR), which is the ratio
between the number of times it fails to properly identify a
link and the number of links in the backbone (red). Perfect
reconstruction is attained when the number of true positives
is equal to the total number of positives (TPR = 1) and the
number of false positives is equal to zero (FDR = 0). The
computations are carried out for different values of T , such
that larger values of T imply access to a longer time-window
for the estimation of the probabilities of transitions in the
algorithm.

For sufficiently large values of T , our algorithm is success-
ful in exactly reconstructing the topology of the backbone, for
any choice of the parameter γ . As suggested by the analytical
expression in Eq. (4a), where γ appears as a multiplicative
coefficient, the smaller γ , the larger values of T are required
by our algorithm. Choosing small values of T may hamper
the correct identification of links, but it rarely results into the
identification of false positives (for instance, only four false
positives are overall identified for γ = 0.95). Thus, increasing
T , we progressively improve the detection of strong ties, at-
tributing a very small quantity of wrong links to the backbone.
This is an important feature of the algorithm, whereby all the
links it discovers can be relied upon with an extremely high
confidence. When few data is available, that is, for small T ,
the output of our algorithm could be poor. A possible strategy
to circumvent the issue of limited data could be to not perform
the multiple comparison correction, which, however, could
beget a larger number of erroneous identifications.
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FIG. 4. Fraction of strong ties correctly identified by our al-
gorithm for both heterogeneous (“he”) and homogeneous (“ho”)
activity distributions, and for homogeneous degree in the backbone.
The backbone is a 4-regular network with n = 200 nodes. The other
parameters are γ = 0.95, λ = 0.9, and μ = 0.1. Three cases for
the activity distribution are examined: all the nodes have the same
activity ai = 0.2 (ho-low, dashed), ai = 0.8 (ho-high, dotted), and
half the nodes have ai = 0.2 and half have ai = 0.8 (he, colored).
For the last case of heterogeneous activities, the TPR curve is plotted
with respect to links between nodes with low activity (blue), links
between nodes of different activity (orange), and links between nodes
with high activity (green). Only one FDR curve is plotted for all the
cases, since they are practically indistinguishable (he, red).

B. Heterogeneous activity distribution and
homogeneous backbone

To better proxy a real-world setting, we release the assump-
tion that all the nodes have the same activity. As a stepping
stone, we consider the case in which nodes are randomly
divided into two activity classes with 100 nodes each: low-
activity nodes (ai = 0.2) and high-activity nodes (ai = 0.8).
Similar to the previous analysis, the backbone is a 4-regular
random network. To help teasing out the role of heterogeneity,
we also simulate the scenarios in which all the nodes are either
in the low- or high-activity classes.

Again, we examine the effect of T on true and false
positives, with respect to the number of positives. Results
in Fig. 4 confirm those from Fig. 3, whereby the fraction of
correctly identified links increases with T and the fraction of
misclassified links is always negligible. Comparing the three
scenarios, we observe that large values of the activity have a
negative effect on the performance of the algorithm. In fact,
an increased observation window is required to detect strong
ties in the homogeneous case with high activity, with respect
to the scenario with low activity.

Heterogeneity further reduces performance, hampering the
detection of strong ties between low-activity nodes. Even
though networks with a heterogeneous activity distribution
require a longer window to correctly detect all the strong
ties, we observe that, for sufficiently large T , our algorithm
is able to correctly reconstruct the backbone, with a negligible
fraction of erroneous identifications. Overall, these results are
in agreement with the theoretical analysis in the Appendix,
whereby decreasing the activities causes a reduction in the
probability difference in Eq. (4a).
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FIG. 5. Fraction of strong ties correctly identified by our al-
gorithm for both heterogeneous (“he”) and homogeneous (“ho”)
backbones, and homogeneous activities ai = 0.3, for all the nodes.
The other parameters are n = 200, γ = 0.95, λ = 0.9, and μ = 0.1.
Three cases for the backbone are examined: all the nodes have
the same low-degree di = 2 (ho-low, dashed); all the nodes have
the same high-degree di = 8 (ho-high, dotted); and half the nodes
have di = 2 and half have di = 8 (he, colored). For the last case
of heterogeneous degrees, the TPR curve is plotted with respect to
links between nodes with low degree (blue), links between nodes of
different degree (orange), and links between nodes with high degree
(green). Only one FDR curve is plotted for all the cases, since they
are practically indistinguishable (he, red).

C. Homogeneous activity distribution
and heterogeneous backbone

Next, we examine a backbone where the degree of
the nodes is not held constant throughout the network.

Specifically, we consider a network in which nodes are par-
titioned into two classes of 100 nodes each with low- (di = 2)
or high-degree (di = 8). To avoid confounding, we maintain
the activity at a common value of ai = 0.3, similar to results
in Fig. 3. Once again, to facilitate the assessment of the
effect of a heterogeneous degree distribution on the algorithm
performance, we analyze two control cases in which all the
nodes have the same low- or high-degree.

Figure 5 illustrates the fraction of links predicted as a
function of T for three considered settings. Consistently with
our previous results, we observe that increasing the length
of the observation steadily benefits the algorithm precision
in inferring strong ties, as shown in Fig. 5. The number of
false positives is always negligible, even for small values of
T , confirming that the algorithm can be reliably utilized for
backbone inference.

Comparing the two homogeneous cases of low- and high-
degree distributions, we register an expected decrease in
performance when dealing with higher degrees. In this case,
the value of added knowledge regarding the state of health of
one node is diluted by the presence of many other neighbors
that could have triggered the infection. Analytical results in
the Appendix provide a theoretical basis for this explanation,
whereby increasing the values of the degree causes a reduction
in the probability difference in Eq. (4a).

As one might expect, the performance of the algorithm to-
ward the inference of the heterogeneous network is in between
the two cases of homogeneous networks. To gain further
insight into the relationship between topological features and
successful reconstruction, we can isolate the specific links that
are first detected by the algorithm for small values of T . In

FIG. 6. TPR (a, b) and FDR (c, d) of our algorithm implemented on a network of n = 300 nodes with heterogeneity in both activity
distribution and backbone degree, for an observation window of T = 10 000 time steps (a, c) or T = 30 000 time steps (a, c). Both activities
and backbone degrees follow power-law distributions with exponents βa and βd , respectively. Other parameters are set to λ = 0.9, μ = 0.1,
and γ = 0.5. Each point is an average of ten independent simulations.
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agreement with our analytical result in Eq. (4a), the links
that require shorter observations are incident to low-degree
nodes. These links encompass both strong ties between low-
degree nodes and strong ties between nodes with high and
low degrees that might exemplify dissortative structures of
real networks [60,61]. Longer time-windows are required for
detecting links that connect pairs of high-degree nodes.

D. Highly heterogeneous activity distribution and backbone

To offer insight on the performance of our algorithm over
a wider class of RADNs, we systematically examine a two-
dimensional grid of salient parameters. We assume that both
the activity and the degree distributions follow a power-law
with exponents βa and βd , respectively. We vary each param-
eter from −5 to −2, which are representative of real-world
scenarios [62]. Parameters are varied in 11 steps with cutoffs
at 0.1 and 1 for the activity, and at 1 and n − 1 for the degree.

We observe that smaller values of the exponent of a power-
law yield distributions with a larger dispersion, in which most
of the nodes have small activity (degree) and few have an
extremely high activity (degree). Two different realizations
are examined, one with T = 10 000 and T = 30 000, respec-
tively. The weight γ is reduced to 0.5 to guarantee the spread
of the epidemic diseases for all the choices of parameters
investigated and the network size is increased to n = 300 to
ensure the presence of high-degree (activity) nodes in the
power-law distributions. The epidemic parameters are set as
λ = 0.9 and μ = 0.1, similar to the simulations in Sec. IV.

From Fig. 6, we recognize a marked effect of the parame-
ters on the performance of our algorithm. For lower values of
both parameters, βa and βd , our algorithm fails to identify the
backbone, under-predicting the number of strong ties. This is
in agreement with Figs. 4 and 5, which indicate that longer
observation windows are required to infer the backbone when
the RADN is dominated by high-degree and high-activity
nodes. The best performance is attained for higher values
of the two parameters. In this case, the algorithm correctly
detects all the strong ties, with a very small quantity of false
positives.

Comparing the results for T = 10 000 and T = 30 000,
interestingly, βa seems to have a stronger effect on perfor-
mance than βd , whereby at T = 30 000, the algorithm is able
to detect most of the strong ties for small values of βd but
its performance is strained when examining small values of
βa. This confirms our preliminary observation from Fig. 4
that heterogeneity in the activity distribution hampers the
detection of strong ties.

V. APPLICATION TO TARGETED IMMUNIZATION

In epidemiology, knowledge about the backbone network
might offer valuable information about how diseases spread
and which is the role played by individuals [63]. In this vein,
we conclude this paper by presenting an application of our
algorithm to design a targeted immunization protocol. Our
control strategy observes the disease spreading for a finite
time-window to identify the backbone network, and then
utilizes such an inference to prioritize immunization of nodes
in the network according to a centrality criterion. Specifically,
we immunize nodes according to decreasing values of their

PageRank centrality [64]. By means of Monte Carlo numeri-
cal simulations, we evaluate the performance of the approach
against a randomized immunization, where no information
regarding the backbone is utilized.

Similar to the analysis in Sec. IV D, we examine a bench-
mark network with n = 300 nodes. The backbone is generated
using a configuration model with power-law degree distribu-
tion of power βd = −3 and cutoffs at 1 and n − 1. Activities
are also drawn from a power-law distribution with exponent
βa = −3 and lower cutoff at 0.1. We consider an SIS epidemic
with λ = 0.9 and μ = 0.1. We run the model over a window
of 50 000 time steps implementing our algorithm to identify
the backbone. At this time, we execute two control strategies
(targeted and randomized), with a number of interventions
limited to 5% of the total number of nodes. We perform Monte
Carlo simulations by averaging over 100 independent runs of
the two control strategies.

The results of these simulations are summarized in Fig. 7.
In Fig. 7(a), we compare the performance of the two immu-
nization strategies for γ = 0.95, as in the numerical analysis
in Sec. IV. While randomized immunization decreases the
portion of infected nodes by 13%, targeted intervention de-
creases it by 55%, on average. The difference between these
two strategies is statistically significant (p value � 0.0001,

FIG. 7. Monte Carlo estimation over 100 runs of the effect of
randomized (orange) and targeted (blue) immunization on the frac-
tion of infected nodes. Dotted lines indicate the fraction of infected
nodes in the absence of any immunization technique. In (a), we show
the entire realizations for γ = 0.95. The solid line is the average,
while the light band is one standard deviation. In (b), we compare the
average fraction of infected nodes for different values of γ . Bands
identify 95% confidence intervals. Other parameters are n = 300,
βd = βa = −3, λ = 0.9, and μ = 0.1.
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FIG. 8. Difference in the fraction of infected nodes after the im-
munization phase, between the randomized and the targeted strategy
(color coded) in the high-school case study [65]. The dashed line
represents the epidemic threshold [56], below which none of the
nodes is infected at the onset of the immunization strategy. Darker
blue areas identify parameter regions where targeted immunization
has superior outcome. Each point is an average of 1 000 independent
simulations.

according to a two-sample z test) comparing the average
fraction of infected individuals after the implementation of the
immunization strategy, for 100 independent runs. In Fig. 7(b),
instead, the comparison between the two techniques is con-
ducted for different values of the parameter γ , spanning from
0.5 to 0.95 in steps of 0.05. Therein, we report the average
fraction of infected nodes in the 500 time steps that follow
the application of the control strategy. Predictably, the larger
the parameter γ , the stronger the improvement of the targeted
immunization with respect to the randomized one. In fact,
for small values of γ , the backbone has a marginal role on
the link formation process, reducing the effect of targeted
immunization exploiting the centrality measures in the back-
bone. However, the difference between the two strategies is
statistically significant in all the performed simulations.

Encouraged by these promising results, we apply our
targeted immunization technique to real-world face-to-face
interactions measured through proximity sensors in a high
school [52], available at Ref. [65]. The dataset comprises
188 508 temporal links, generated over T = 7 375 time steps
among n = 327 nodes. We run an SIS epidemic model for half
of the available dataset, starting from a fraction of one third
of infected nodes, selected uniformly at random. Then, 5%
of the nodes is immunized following either the randomized or
the targeted strategy. By performing an extensive Monte Carlo
simulation with 1 000 runs, we compare the two strategies for
different values of the epidemic parameters λ and μ. Figure 8
demonstrates that our immunization technique should always
be preferred to randomized immunization, whereby, for most
parameter choices, it outperforms randomized immunization.

VI. CONCLUSIONS

In this work, we have proposed an algorithm to unveil the
backbone of strong ties in a temporal network from empirical
data of a spreading process unfolding on the network nodes.

Building on analytical insight regarding the role of strong
ties on the process, we have put forward a statistically-
principled approach to discover strong ties from empirical
data. Extensive simulations have been performed to assess the
effectiveness of the proposed technique, which has proved to
be reliable in a variety of scenarios. Finally, we have examined
the integration of the proposed algorithm in the solution of
an important challenge in epidemiology, namely, targeted
immunization during an outbreak. The main contributions of
this work are: (i) the analytical computation of the effect
of strong ties on the infection probability for a susceptible–
infected–susceptible epidemic model on routed activity driven
networks; (ii) the design of a backbone detection algorithm
and its numerical validation; and (iii) the implementation of a
targeted immunization technique.

The promising preliminary results of our numerical anal-
ysis pave the way for several avenues of future research. We
aim to rigorously assess the performance of our algorithm,
as a function of the network size and the duration of the
window of observation. Future efforts should focus on the
development of accurate methods to deal with limited data,
without increasing the number of erroneous identifications. In
the analytical derivation of our bounds, we specialize the com-
putations to the SIS epidemic model. However, the generality
of our proving argument suggests that similar bounds could
be established for other models, as well, provided that they do
not admit permanently attractive states. These achievements
would be key to provide a theoretical basis for the generaliza-
tion of our algorithm to deal with other dynamics, including
richer epidemic processes or opinion diffusion. Such an ex-
tension will be part of our future research. In most real-world
scenarios, it is not tenable to have access to the entire node set,
thereby calling for methods to discover missing nodes, beyond
links.

The ability to reconstruct the structure of the backbone of a
complex system from the observation of an unfolding spread-
ing process finds application in disparate fields of investiga-
tion. Besides implementations to unveil the structure of social
networks, one should mention the field of connectomics [66].
The goal of this area of research is to reconstruct connection
patterns in animal and human brains, toward an improved
understanding of the relationship between network structure
and cognitive functionalities. We believe that our algorithm
may be of help to connectomics by offering a pathway for the
identification of recurrent interactions among the hubs of the
brain network. Finally, our study on targeted immunization
has demonstrated how information about the backbone can
be leveraged to design effective control techniques that could
steer the behavior of dynamical systems. Extending the frame-
work to other disease models and mathematically proving
performance bounds is the objective of future research.
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APPENDIX: COMPUTATION OF THE CONDITIONAL PROBABILITIES

We compute the infection probability for node i at time instant t , for either the case in which we include or exclude knowledge
about node j. Let x1, . . . , xn be the state of the system at time t , then the RADN model indicates that

P
(
X i

t+1 = 1
∣∣ X i

t = 0
) = 1 −

∏
k∈V \{i}

(1 − λaiPikxk )(1 − λakPkixk ). (A1)

Upon conditioning on X j
t = 1, we factor the term associated with j out of the multiplication to obtain

P
(
X i

t+1 = 1
∣∣ X i

t = 0, X j
t = 1

) = 1 − (1 − λaiPi j )(1 − λa jPji )
∏

k∈V \{i, j}
(1 − λaiPikxk )(1 − λakPkixk ). (A2)

First, we consider the case in which nodes i and j do not share a strong tie, that is Gi j = Gji = 0. In this case, from Eq. (1)
we derive Pi j = Pji = (1 − γ )/(n − 1). We substitute Pi j and Pji in Eqs. (A1) and (A2), and we compute the limit for n → ∞
of their difference as

lim
n→∞P

(
X i

t+1 = 1
∣∣ X i

t = 0, X j
t = 1

) − P
(
X i

t+1 = 1
∣∣ X i

t = 0
)

= lim
n→∞

[(
1 − λ(1 − γ )aix j

n − 1

)(
1 − λ(1 − γ )a jx j

n − 1

)
−

(
1 − λ(1 − γ )ai

n − 1

)(
1 − λ(1 − γ )a j

n − 1

)]

×
∏

k∈V \{i, j}
(1 − λaiPikxk )(1 − λakPkixk )

= lim
n→∞

[
λ(1 − γ )(ai + a j )(1 − x j )

n − 1
− λ2(1 − γ )2aia j (1 − x j )

(n − 1)2

] ∏
k∈V \{i, j}

(1 − λaiPikxk )(1 − λakPkixk )

� lim
n→∞

λ(1 − γ )(ai + a j )

n − 1
= 0. (A3)

We note that Eq. (A3) is the generic summand of P j→i in Eq. (3), from which the claim in Eq. (4b) follows. We further observe
that each of the summands of P j→i is a nonnegative random variable, which is bounded from above by the estimation in Eq. (A3).
Even though these random variables are not independent and not identically distributed (since they depend on the time-series
of the nodes’ health state that are self-correlated) they are bounded and their correlation tends to 0 in the long-time. Hence, a
central limit theorem applies to P j→i, according to Ref. [67]. Such an observation guarantees that P j→i converges to a Gaussian
distribution, as supported by the numerics in Fig. 2. However, an explicit statement of the central limit theorem cannot be readily
formulated, since it requires the computation of the variance.

We now consider the case in which nodes i and j share a strong tie, that is, Gi j = Gji = 1. Similar to the previous analysis,
from Eq. (1) we derive Pi j = (1 − γ )/(n − 1) + γ /di and Pji = (1 − γ )/(n − 1) + γ /d j . Defining the neighborhood of node
i in the backbone Ni

G := { j ∈ V : Gi j = 1}, we proceed specializing to the present case the difference between Eqs. (A1) and
(A2) at time t . Considering that (1 − k/x)x−1 � 1/ek , for any x � 1 and k > 0, and that di � n − 1, for any i ∈ V , we compute

P
(
X i

t+1 = 1
∣∣ X i

t = 0, X j
t = 1

) − P
(
X i

t+1 = 1
∣∣ X i

t = 0
)

=
{[

1 − λaix j

(
γ

di
+ 1 − γ

n − 1

)][
1 − λa jx j

(
γ

d j
+ 1 − γ

n − 1

)]
−

[
1 − λai

(
γ

di
+ 1 − γ

n − 1

)][
1 − λa j

(
γ

d j
+ 1 − γ

n − 1

)]}

×
∏

k∈V \{i, j}
(1 − λaiPikxk )(1 − λakPkixk )

� λγ (1 − x j )

(
ai

di
+ a j

d j
− λγ

aia j

did j

) ∏
k∈Ni

G\{ j}
(1 − λaiPikxk )(1 − λakPkixk )

∏
h/∈Ni

G∪{i}
(1 − λaiPihxh)(1 − λahPhixh)

� λγ (1 − x j )

(
ai

di
+ a j

d j
− λγ

aia j

did j

) ∏
k∈Ni

G\{ j}

(
1 − λai

di

)(
1 − λak

dk

) ∏
h/∈Ni

G∪{i}

(
1 − λ(1 − γ )ai

n − 1

)(
1 − λ(1 − γ )ak

n − 1

)

� λγ (1 − x j )

(
ai

di
+ a j

d j
− λγ

aia j

did j

)[(
1 − λai

di

)(
1 − λaM

dm

)]di−1[(
1 − λ(1 − γ )ai

n − 1

)(
1 − λ(1 − γ )aM

n − 1

)]n−1−di

� λγ

exp{λ(1 − γ )(ai + aM )}
(

1 − λ
ai

di

)di−1(
1 − λ

aM

dm

)di−1(ai

di
+ a j

d j
− λγ

aia j

did j

)
(1 − x j ) =: F (x j ), (A4)
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where aM is the maximum node activity and dm is the minimum degree in the backbone. The bounding function F (x j ) is such
that F (1) = 0, and F (0) > 0, for any γ > 0.

We now focus on the variable X j
t . According to the SIS dynamics described in Sec. II B, X j

t changes from 1 to 0 with
probability equal to μ, while the probability of switching from 0 to 1 depends on the health state of the other nodes, according
to Eq. (A1). However, it can be bounded from above as follows:

P
(
X i

t+1 = 1
∣∣ X i

t = 0
) = P

⎛
⎝ ⋃

k∈V \{i}
{i is infected by k}

⎞
⎠ �

∑
k∈V \{i}

P ({i is infected by k})

=
∑

k∈V \{i}
λaiPikxk + λakPkixk − λ2aiakPikPkixk � λ

∑
k∈V \{i}

(aiPik + aMPk )

= λ

{
ai +

[
1 − γ

(
1 − di

dm

)]}
aM . (A5)

Hence, the frequency of X j
t = 0 converges almost surely to at least μ/(λ(ai + (1 − γ (1 − di/dm))aM ) + μ) for T → ∞. Hence,

using Eq. (A4) and the definition of P j→i in Eq. (3), the latter quantity can be bounded from below as follows:

lim
T →∞

P j→i = lim
T →∞

1

T

T −1∑
t=0

[
P

(
X i

t+1 = 1 | X i
t = 0, X j

t = 1
) − P

(
X i

t+1 = 1 | X i
t = 0

)]
� lim

T →∞
1

T

T −1∑
t=0

F (X i
t )

= lim
T →∞

1

T

∑
t∈{0,...,T −1}:X i

t =0

F (0) � μ

λ
{
ai + [

1 − γ
(
1 − di

dm

)]
aM

} + μ
F (0)

� μλγ

eλ(1−γ )(ai+aM )(λ{ai + [1 − γ (1 − di/dm)]aM} + μ)

(
1 − λ

ai

di

)di−1(
1 − λ

aM

dm

)di−1(ai

di
+ a j

d j
− γ λ

aia j

did j

)
> 0.

(A6)

As shown in Fig. 2, our bound is accurate, albeit conservative. The main bottlenecks for improving the bound are in the
substitution of the random variables X j

t with 1 in Eq. (A4) and in the estimation of the time elapsed with X j
t = 0 in the derivation

of Eq. (A6). To obtain a tighter bound, one should rigorously compute the endemic state of an SIS model over an RADN, which
is a nontrivial open problem [17].

Similar to our observations following Eq. (A3), we should note that a central limit theorem could in principle be established
here as well, since P j→i is a temporal average of the transition probabilities. However, the derivation of its explicit statement is
not possible, since it requires the exact computation of mean and variance of the summands.

We conclude the Appendix by commenting that our derivation is performed by using specific properties of the SIS epidemic
model. We believe that a similar argument could be pursued to establish rigorous bounds on the transition probabilities for other
dynamics, including more complex and realistic epidemics processes, or opinion dynamics, such as the voter model. In fact, the
key properties of our argument is that the state transitions (from susceptible to infected) are triggered by the interactions and that
they occur multiple times, due to the spontaneous recovery process. The former leaves the footprint of strong ties on the nodal
dynamics, the latter affords the use of statistical tests to ensure significance to our results.
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