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In recent years, many variants of percolation have been used to study network structure and the behavior of
processes spreading on networks. These include bond percolation, site percolation, k-core percolation, bootstrap
percolation, the generalized epidemic process, and the Watts threshold model (WTM). We show that—except
for bond percolation—each of these processes arises as a special case of the WTM, and bond percolation arises
from a small modification. In fact “heterogeneous k-core percolation,” a corresponding “heterogeneous bootstrap
percolation” model, and the generalized epidemic process are completely equivalent to one another and the
WTM. We further show that a natural generalization of the WTM in which individuals “transmit” or “send a
message” to their neighbors with some probability less than 1 can be reformulated in terms of the WTM, and so
this apparent generalization is in fact not more general. Finally, we show that in bond percolation, finding the
set of nodes in the component containing a given node is equivalent to finding the set of nodes activated if that
node is initially activated and the node thresholds are chosen from the appropriate distribution. A consequence
of these results is that mathematical techniques developed for the WTM apply to these other models as well, and

techniques that were developed for some particular case may in fact apply much more generally.
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I. INTRODUCTION

To understand processes spreading on a static network G,
researchers frequently investigate how G behaves under perco-
lation. Percolation comes in many flavors, and the information
we gain depends on which variety we choose. Most frequently,
we study bond or site percolation, but researchers have
also found that k-core percolation, bootstrap percolation, the
generalized epidemic process, and the Watts threshold model
(WTM) provide valuable insights [1-6]. These processes are
closely related, and indeed similar mathematical approaches
have been used to study several of these processes [7,8]. Our
main result is that all of these (and some related) processes can
be derived as special cases of the WTM, and in fact several of
these are completely equivalent to the WTM.

Much of the motivation for studying percolation processes
comes from trying to understand spreading processes in
networks. If we consider systems in which nodes change status
in response to the status of their neighbors, and the potential
path of statuses they can have is acyclic (that is, they can never
return to a previous status), then many variants of percolation
can be applied. This is commonly used for susceptible-
infected-recovered (SIR) disease, in which an individual can
be infected by an infected neighbor. However, much recent
work has focused on the spread of “social contagion” or
“complex contagions” [9,10] in which multiple transmissions
may be required in order to cause “infection.” Sometimes this
is presented as assigning each node a threshold r,, such that u
becomes infected once r,, neighbors are “infected.” Other times
this is presented as a reduction (or increase) in the probability
that a neighbor will transmit as an individual encounters more
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infected individuals. This models the idea that after hearing
seemingly independent “confirmation” of a rumor, people may
be more likely to believe and spread it, or after seeing multiple
people engaging in buying a product, someone is more likely
to perceive a consensus and buy the product as well. Some
experimental evidence of this has been found [11,12].

We briefly review the processes we will study: In bond per-
colation, some edges are independently selected with uniform
probability p to be retained while the remaining edges are
deleted (with probability 1 — p). Similarly in site percolation,
some nodes are randomly selected with probability p and
the remaining nodes are deleted. Typically our interest is in
identifying the nodes in the connected components of the
residual network, and whether a “giant” component exists (that
is, a component whose size is proportional to the network size
in the infinite network limit).

Bond percolation and site percolation often show up
in the study of SIR disease spread where a single trans-
mission suffices to cause infection [13-24]. There is an
exact equivalence between the spread of an SIR disease
and bond percolation, and so much has been learned about
the threshold, scaling properties, and dynamics of an SIR
disease by studying the corresponding percolation model. This
percolation equivalence is based on the fact that an edge either
exists or does not in percolation, while in disease spread if the
edge transmits, the receiving node becomes infected.

In k-core percolation, all nodes with degree less than some
specified k are removed. This removal may reduce some nodes’
degrees below k. If so, these are removed. This “pruning”
process repeats until a state is reached in which all nodes
have degree at least k. This remaining network is called the
“k-core” of the network. It is seen to have hybrid phase
transitions, with a square-root-type scaling on one side of
a transition followed by a discontinuous jump [4,25]. In a
variant, “heterogeneous k-core” percolation [26], each node is
assigned its own threshold value and deleted if its degree goes
below the threshold. We note that many authors have used
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the term “bootstrap percolation” to denote k-core percolation,
and indeed this appears to be the original term [1,3,4], but
we reserve “bootstrap percolation” for a closely related dual
process. The k-core has been applied to many problems,
including understanding the failure of a physical system
under strain [27], network visualization [28], identification
of the component of a network responsible for establishing
a disease [29], and more generally for understanding the
structure of a network [30].

In bootstrap percolation (introduced in [1], where it
is called “diffusion percolation™), a collection of nodes is
initially “activated.” Then any inactive node with at least m
active neighbors becomes active. The process repeats until all
remaining inactive nodes have fewer than m active neighbors.
It was initially introduced to model the spread of a water-
filled crack in a rock. It has received considerable study on
lattices [31,32], and its behavior in large random networks has
been the subject of some more recent analysis [33]. Like k-core
percolation, it is seen to have a hybrid phase transition. We
introduce a natural generalization analogous to heterogeneous
k-core percolation in which each node is assigned its own
threshold. This “heterogeneous bootstrap percolation” does
not appear to have been studied previously.

In the generalized epidemic process (GEP) [2,5,34],
we think of an infection spreading through the network.
If a node has a single infected neighbor, its probability of
becoming infected is p;. If it escapes infection but a second
neighbor becomes infected, then its probability of becoming
infected is p,. This repeats and the probability of successful
transmission on the mth neighbor’s infection is p,,. If p,, = p
for all m, then this is the network version of the classical
Reed-Frost model [35] for a susceptible-infected-recovered
disease [36]. If p,, decreases as m increases, this could
model decreasing susceptibility due to an improved immune
response as exposures accumulate, or it could simply represent
preexisting heterogeneities in susceptibility that are revealed
as the number of exposures increases. An increasing p,, would
model some synergistic or cumulative effect of exposures as
seen in “‘complex contagions” [9]. For comparison with other
models, we allow p,, to depend on d,,, the degree of node u.

In the WTM [6,37], each node u is assigned an individual
threshold r,, which we assume is assigned to u# independently
at random, with a probability that may depend on its degree
d,. The probability that node u has a given r is given by
P(r, =r|d,) = q(r|d,). A node begins as either active or
inactive. If an inactive node u has at least r,, active neighbors,
then it becomes active. We assume that the initially active
nodes may be chosen independently at random [which can
be modeled by having ¢g(r|d) > 0 for some r < 0], or they
may be chosen by some other rule, in which case we treat
the set of initially active nodes as an input to the algorithm.
Often a common threshold r* is chosen so P(r, =r*) =1 or
a common fraction p* is chosen so P(r, = [p*d,]|d,) = 1.
As described above, this is frequently used to model social
contagions. In [6] it was conjectured that for a global cascade
to occur from an infinitesimally small initial proportion active,
a giant component of nodes with r = 1 would need to exist.
This is true in random configuration model networks, but false
inrandom clustered networks [8]. As with bootstrap and k-core
percolation, this is known to exhibit hybrid bifurcations [8].
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In these generalized percolation processes, typically we are
interested in the final set of active nodes, but sometimes we
may be interested in the temporal dynamics as these nodes
become active [8,25]. If we are interested in the temporal
dynamics, then we must assign additional rules for how long
it takes for a node to become active. Although the timing
will depend on the details of the additional rules, the final
set of active nodes is uniquely determined once the network,
thresholds, and initially active nodes are chosen. For our
purposes, we focus just on the final state.

We will show that by appropriately choosing the distribu-
tion of r and the initial set of active nodes, we can recover
other versions of percolation from the WTM, including site
percolation, k-core percolation, bootstrap percolation, and the
GEP. Going a step further, we show that the heterogeneous k-
core of a network, the deleted nodes in heterogeneous bootstrap
percolation, and the set of “infected nodes” in the GEP are
in fact all equivalent to the set of active nodes emerging
from the WTM. That is, given one model and the correspond-
ing distribution of thresholds, we can define the distribution of
thresholds of the other models to yield the same sets of nodes
with the same probabilities. A natural generalization of the
WTM has each node “transmitting” or “passing a message”
with some fixed probability 7. We show that by modifying
the threshold distribution, the original WTM (with T = 1)
can recover the same outcomes as for any other 7y < 1, and
thus allowing for 7 < 1 does not enlarge the set of possible
outcomes.

Finally, we investigate the relation with bond percolation.
If our interest in bond percolation is to identify the connected
component containing a given node u, then we can find this
component using the WTM with u as the initially active node
and appropriate threshold distribution. To find all connected
components, we can start the WTM with one initially active
node, run it to completion, and then choose a remaining
inactive node and rerun the WTM, iterating until no inactive
nodes remain. The set of nodes that are activated in each
pass correspond exactly to the components found in bond
percolation.

II. ANALYSIS

We begin by explicitly describing an algorithm that
implements the WTM. Each node is assigned a weight w
uniformly between 0 and 1 which will be used to sample from
the appropriate distribution of thresholds through the model-
dependent function dist_func. This function may depend on
the degree of the node. Typically, we choose the function to
return the largest value r, such that Z:‘;loo q(rid,) < wy.
If there are specified initially active nodes, they are given
a threshold of zero. Alternately, we can allow the randomly
assigned threshold to permit values , < 0, in which case these
nodes are initially active, and the iterative process begins.
For each active node, we reduce the threshold of any inactive
neighbor by 1. If a node’s threshold reaches 0, it activates.
Pseudocode for the algorithm is given in the Appendix.

Once the random thresholds and index nodes are set, the
final outcome of the WTM is deterministic. To show that the
other percolation processes give the same behavior, we will
show how to structure these processes to start from the same
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random weights w, and deterministically yield a final state that
is identical to the state found by the WTM for some threshold
distribution.

A. Site percolation

In site percolation, each node is retained with probability p
or deleted with probability 1 — p. To simulate site percolation,
we can generate a random number w, € (0,1) independently
and uniformly at random for each node u. If w, < p (which
occurs with probability p) we keep u, otherwise we delete it.
It is straightforward to see that this is identical to the algorithm
presented in the Appendix if the threshold is set to be r, =0
whenever w, < p andr, = d + 1 otherwise. In this case, with
probability p the node has threshold 0, and so it is initially
active, while with probability 1 — p it has threshold d + 1,
and so it can never become active as it will have at most d
active neighbors. Thus, nodes are retained in site percolation
iff they are active in the WTM. This is demonstrated in Fig. 1.

B. k-core percolation

We now consider k-core and heterogeneous k-core perco-
lation. The classical k-core percolation is deterministic: each
node with fewer than k neighbors is deleted. This iterates
until all remaining nodes have at least k neighbors among the
remaining nodes. To reproduce this with the WTM, we set
ry = d, —k + 1 regardless of w,.

With this threshold, all nodes with d, < k activate immedi-
ately in the WTM. In k-core percolation, these same nodes are
immediately deleted. For a given node « not in this set, let the
number of neighbors activated/deleted be denoted n,. In the
WTM, any remaining node with d, — k < n, then activates.
In k-core percolation, any node with d, — n, < k is deleted.
Again, these nodes are the same. Iterating as shown in Fig. 2,
the set of activated nodes in the WTM is the set of deleted
nodes in k-core percolation.

We can repeat this for heterogeneous k-core percolation.
We assign weights w, to each node and map that to a
heterogeneous k-core threshold k,. We can map this weight
to a WTM threshold such that if the node is assigned a given
k,, it is assigned r, = d,, — k, + 1 for the WTM. Then the
WTM and heterogeneous k-core percolation are equivalent: a
node is deleted in heterogeneous k-core percolation iff it is
activated in the WTM.

C. Bootstrap percolation

In bootstrap percolation, some initial nodes are activated,
and nodes become active once they have at least k active
neighbors (k is the same for all nodes). This is similar to
k-core percolation, but k-core percolation is subtractive while
bootstrap percolation is additive [26,33].

We consider bootstrap percolation with a set I of initially
active nodes, and we compare it to the WTM with r, = k for
all nodes except the nodes in Iy, which are initially active.
Following a similar argument to the WTM/k-core percolation
equivalence, we see that with this definition, the WTM adds
nodes to the system exactly when bootstrap percolation does.

If we consider heterogeneous bootstrap percolation, then
a similar argument also shows that it is equivalent to the
WTM. Because of the correspondence between the WTM and
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FIG. 1. Comparison of site percolation and WTM on a honey-
comb lattice. Results for p = 0.4 on the left and p = 0.8 on the right.
Top: Each node is assigned a weight. Middle: site percolation: If
the weight is less than p, the node is kept, otherwise it is deleted.
Bottom: WTM: If the weight is less than p, it is given a threshold
of 0. Otherwise it is given d + 1. Those with threshold 0 are shown
in color, and they activate immediately. Those with threshold larger
than their degree are uncolored and never activate.

heterogeneous k-core percolation, this means that heteroge-
neous bootstrap percolation is equivalent to heterogeneous
k-core percolation, with the deleted nodes in heterogeneous
k-core percolation matching the activated nodes in bootstrap
percolation.

At first glance, this contrasts with observations of [26].
They showed that the k-core and the activated nodes in
bootstrap percolation are not the same and can have different
internal structure. In fact, the distinction between the two
turns out to be that the nodes defined to be active for the
bootstrap version are the nodes deleted in the k-core version.
They are complementary processes. Any behavior observed
in heterogeneous k-core percolation can be observed in the
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FIG. 2. Comparison of the first steps of k-core percolation and
the WTM for the karate club graph [40]. Left: k-core percolation
with k = 4. Top: the original network. Middle: the first step of k-
core percolation. Bottom: the second step. Right: The WTM. Top:
thresholds of d, — 4 + 1. Middle: nodes with thresholds r, < 0 are
activated. Bottom: the second step. At each step, the activated nodes
of the WTM are exactly the deleted nodes in k-core percolation.

inactivated nodes of heterogeneous bootstrap percolation,
while any behavior observed in the activated nodes of
bootstrap percolation can be found in the deleted nodes of
k-core percolation. This equivalence is previously known [1].
Figure 3 demonstrates the equivalence between heterogeneous
bootstrap and heterogeneous k-core percolation.

D. Generalized epidemic process

We now consider the generalized epidemic process
(GEP) [2,5] for which the mth “infected” neighbor infects
node u (given that the previous m — 1 did not) with probability
Ppm(d,). Our approach resembles the “Sellke construction” [39]
of a simple epidemic model in a fully mixed population. In a
standard fully mixed epidemic simulation, an individual that
is susceptible at the start of a short time interval becomes
infected with a probability proportional to the number of
infected individuals. In the Sellke construction formulation,
however, we assume we know in advance for each individual
the cumulative amount of exposure it will receive before
becoming infected (this is a random number chosen from an
exponential distribution). We then begin the spread with some
initial infections, and when (or if) the exposure reaches that
threshold the individual becomes infected.

We will now study the network-based GEP using a
similar approach. The probability that the first m — 1 infected
neighbors do not infect u but the mth does is p,,(d,)) [T2—1[1 —

m=1
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FIG. 3. A comparison of heterogeneous bootstrap and heteroge-
neous k-core percolation for the social network of dolphins observed
by [38]. Left: heterogeneous bootstrap percolation. Top: thresholds
for activation, |d,/3]. Middle: first step: all nodes of degree 1 or
2 are activated. Bottom: second step: nodes that now reach their
threshold are activated. Right: heterogeneous k-core percolation. Top:
thresholds for deletion, d,, — |d, /3] + 1. Middle: first step: all nodes
of degree 1 or 2 are deleted. Bottom: second step: nodes that now
reach their threshold are deleted. The nodes deleted at each stage of
k-core percolation correspond exactly to the nodes activated at the
same stage of bootstrap percolation.

Pi(d,)]. We simply assign a random number w, € (0,1) and
map this to m,. Thus for any given node, it will become
infected upon the infection of its mth neighbor with probability
Pm(dy) ]_[%;}[1 — pw(d,)] independently of other nodes and
independently of whether we will calculate m,, in advance or
simply accept or reject infection with probability p,,(d,) as it
accumulates infected neighbors.

For the WTM we use the same mapping from w,, to r,, so
r, = m,. The node u activates exactly after the r,th neighbor
activates, while in the GEP u is infected at exactly the same
step. Thus any GEP can be expressed as a WTM. Showing
the inverse is straightforward, and so the GEP and WTM are
equivalent. If we do not allow p,, to depend on d, (as in the
original version), then this is a special case of the WTM.

E. Bond percolation

We finally consider bond percolation. Typically in bond
percolation, we can consider the edges in any order, choosing
to keep each edge with probability p or delete it with
probability 1 — p independently of the others. We then identify
the connected components of the network.

We will focus our attention just on identifying which nodes
form connected components after bond percolation; we are
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FIG. 4. Top left: original network, with the initial node high-
lighted. Top right: percolated network with the component of the
initial node highlighted taking p = 0.51. Edges shown within a
component are red, while edges in other components are black. Bot-
tom left: WTM outcome with thresholds found from the percolated
network using a breadth-first search for the WTM. Bottom right:
WTM outcome with thresholds from the percolated network using a
depth-first search for the WTM. In both WTM plots, the edges that
were responsible for the activation of a node are shown in red. Edges
that were never considered are shown dashed in black.

not interested in which edges exist within the components. In
Fig. 4 we compare a bond percolation approach to finding
the component containing a particular node with a WTM
approach to finding the same component. We first perform
bond percolation. We then select an initial node (highlighted
in the figure), and we follow edges out from that node in the
percolated network to find its component. Nodes are labeled
with r, where r is the number of edges of the original network
that were encountered (but deleted) prior to an undeleted edge.

We can think of this as being indistinguishable from
selecting an initial node, following edges out from that node
in some order, where each time an edge is considered, it is
deleted with probability 1 — p or followed with probability p.
The probability that the first  edges to a node are deleted but
the next is not is p(1 — p)".

We compare this with the WTM with a threshold of ¢, =
ry, + 1. The activated nodes are identical to the component
found using bond percolation. In general, assigning nodes a
threshold of 7, where T > 1 is taken with probability p(1 —
p)* !, will yield a set of active nodes from an initially active
node that come from the same distribution as the component
of that node following bond percolation.

In fact, we can generalize this approach to find all the
components. The steps in our process are to begin with a
network and assign thresholds using a geometric distribution:
for a threshold of , the probability of 7 is p(1 — p)*~'. We
then select a node and successively add nodes to its component
once their threshold number of neighbors have been visited.
This process is likely to terminate without exploring all nodes.
If this happens, we iteratively select a new node and add nodes
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FIG. 5. Activated clusters found using depth-first (left) and
breadth-first (right) searching using the WTM with a threshold of
7 occurring with probability p(1 — p)*~! (independently of d) and
p = 0.51fora9 x 9 lattice. The number at each node is its threshold.
The circled nodes are the initial nodes chosen for each cluster. The

bottom left node is chosen first, and its cluster traced out. The next
cluster is initialized by the bottommost of the leftmost remaining
nodes. Thick colored edges formed the final interaction that caused
activation. Nonexistent edges failed to cause activation (but moved
the node closer to its threshold). Dashed black edges were not
tested because both nodes were already active when the edge was
considered. The clusters remain the same for both search orders (but
edges change).

to its component whenever their threshold number nodes have
been visited (either in this stage or while building a previous
component). The resulting components match the components
observed in bond percolation. Nodes are activated exactly
when they are added to a component in the bond percolation,
and identifying in which iteration they are activated tells us
which component they are part of. We show two different
implementations based on a depth-first and breadth-first search
beginning with the same thresholds and initial node in Fig. 5.
The component reached in the first pass is the same for both
approaches as long as the initial nodes of the passes are chosen
in the same order. The algorithm described in the Appendix
is based on a breadth-first search, but this demonstrates that
other search orders will give the same outcomes.

To arrive at bond percolation, the thresholds for the
WTM process are assigned from a geometric distribution. It
would be interesting to study whether a different distribution
could be interpreted in the context of a generalized bond
percolation.

III. DISCUSSION

Many percolation processes have been studied in networks.
We have shown that site percolation, bootstrap percolation,
k-core percolation, and the GEP are all special cases of the
WTM. In fact, the GEP we consider is equivalent to the WTM,
and if we allow a node-specific threshold, then both bootstrap
and k-core percolation are also equivalent. Which one should
be considered the “base” model is a matter of personal choice.

Bond percolation is closely related to the WTM, but to
arrive at an equivalent model, the WTM assigns thresholds
from a geometric distribution, activates a node, follows the
WTM process to completion, and then activates another node.
The successive sets of activated nodes occur with the same
probability as would be found in bond percolation.
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We have further shown that generalizing the WTM to allow
for a homogeneous transmission probability 7" from active
nodes to neighboring inactive nodes results in a model that
can be thought of as a special case of the WTM. Thus the
potential space of models is not increased by this modification.
This commonality helps to explain why similar behaviors are
observed and similar mathematical methods apply to these
different processes.
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APPENDIX: ALGORITHM

In this appendix, we provide pseudocode for the WTM
algorithm. Other implementations are possible (this one is
based on a breadth-first search, but for example, a depth-first
search could also be used). The choice of the function
dist_func, which maps a randomly chosen weight from (0,1)
to a threshold, allows us to match other percolation models.
The steps of the WTM algorithm are shown as follows. The
main algorithm is the final function given. The other functions
are called by the main algorithm. First the weights are assigned
randomly, and then the weights are mapped (deterministically)
to a threshold, and the algorithm proceeds iteratively (and
deterministically). The appropriate choice of dist_func allows
us to select between the different models.

Input: Input network G, function generating numbers
from a distribution dist_func, and set of initially active

nodes Ij.

Output: Set ActivatedNodes of activated nodes.

function WTM_Assign_Weights(G)

for v in G.nodes do

Assign weight[u] uniformly from (0, 1)

return weight

function WTM_Assign_Thresh(G, dist_func, weight, I)

for v in G.nodes do
if u in Iy then
thresh[u] < 0
else

thresh[u] < dist_func(G.degree(u),

weight|u])
return thresh

function WTM_Process(G, thresh)
CurrentNodes < set of nodes in G with thresh < 0
ActivatedNodes + set of nodes in CurrentNodes
while CurrentNodes is not empty do
NextNodes < emptySet
for u in CurrentNodes do
for v in G.neighbors(u) do
if v ¢ ActiveNodes then
ActiveNodes.add(v)
NextNodes.add(v)

CurrentNodes < NextNodes

return ActiveNodes

function WTM(G, dist_func, )
weight = WTM_Assign_Weights(G)
thresh = WTM_Assign_Thresh(G dist_func, weight,

1y)

ActivatedNodes = WTM_Process(G, thresh)

return ActivatedNodes
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