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We analyze two alterations of the standard susceptible-infected-susceptible (SIS) dynamics that preserve the
central properties of spontaneous healing and infection capacity of a vertex increasing unlimitedly with its degree.
All models have the same epidemic thresholds in mean-field theories but depending on the network properties,
simulations yield a dual scenario, in which the epidemic thresholds of the modified SIS models can be either
dramatically altered or remain unchanged in comparison with the standard dynamics. For uncorrelated synthetic
networks having a power-law degree distribution with exponent γ < 5/2, the SIS dynamics are robust exhibiting
essentially the same outcomes for all investigated models. A threshold in better agreement with the heterogeneous
rather than quenched mean-field theory is observed in the modified dynamics for exponent γ > 5/2. Differences
are more remarkable for γ > 3, where a finite threshold is found in the modified models in contrast with the
vanishing threshold of the original one. This duality is elucidated in terms of epidemic lifespan on star graphs.
We verify that the activation of the modified SIS models is triggered in the innermost component of the network
given by a k-core decomposition for γ < 3 while it happens only for γ < 5/2 in the standard model. For
γ > 3, the activation in the modified dynamics is collective involving essentially the whole network while it is
triggered by hubs in the standard SIS. The duality also appears in the finite-size scaling of the critical quantities
where mean-field behaviors are observed for the modified but not for the original dynamics. Our results feed the
discussions about the most proper conceptions of epidemic models to describe real systems and the choices of
the most suitable theoretical approaches to deal with these models.
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I. INTRODUCTION

Network science has been marked by its interdisciplinary
nature since its consolidation as a new branch [1,2], especially
the investigation of dynamical processes on networked sub-
strates [3]. Epidemic spreading, one of the most prominent and
widely investigated issues, is usually investigated by means of
stochastic agent-based models [4]. Despite several advances in
the understanding of epidemic models on networks [4–11], it
remains target of recent intensive investigations [12–19].

One of the most basic but still not fully understood epidemic
processes on networks is the susceptible-infected-susceptible
(SIS) model [4], which consists of agents lying on the vertices
of a network which can be infected or susceptible. Infected
individuals become spontaneously healed (susceptible) with
rate μ and transmit the disease to their susceptible contacts
with rate λ. In principle, the SIS dynamics can exhibit a
phase transition between a disease-free (absorbing) state and
an active stationary phase, in which the epidemics persists
in an endemic state. The transition occurs at an epidemic
threshold λc. However, for uncorrelated random networks with
a power-law degree distribution P (k) ∼ k−γ , it was rigorously
proved [5] and later put in sound physical grounds [11] that
the absorbing phase is unstable in the thermodynamic limit
implying that the epidemic threshold is formally zero.

Considering that both real and computationally generated
networks are finite, the finite-size dependence of the epidemic
variables is a fundamental issue. Analytically, it is frequently

accessed by mean-field approximations that take into account
the network heterogeneity but truncate at some level the
dynamical correlations [8]. Two classes of mean-field theories
are mostly used. The degree-based theory [20,21], termed as
heterogeneous mean-field (HMF) [1,3], is a coarse-grained
mixing approach, in which the vertex degree is the relevant
quantity. This method is closely related to the annealed network
regime where the connections are rewired in time scales much
shorter than those of the dynamical processes taking place
on the top of the network [4,22]. The individual-based theory
[23–25], termed quenched mean-field (QMF) [7], considers the
network structure without mixing using its adjacency matrix
[1]. These theories predict equivalent epidemic thresholds
of the SIS dynamics on uncorrelated random networks with
power-law degree distribution of exponent 2 < γ < 5/2 but
are sharply conflicting for γ > 3 [7], for which HMF predicts
finite thresholds whereas QMF vanishing ones as N → ∞.
The latter is asymptotically in agreement with the exact results
[5,6] and supported by stochastic simulations [11,26,27]. For
5/2 < γ < 3, both theories state a null threshold as N → ∞,
but the way that the asymptotic value is approached and, thus,
the effective finite-size thresholds are different. Improvements
of these theories including dynamical correlations by means
of pairwise approximations [8] do not change the foregoing
scenarios [16,27,28].

Recently, a criterion formerly conceived for SIS model [11]
was applied to determine the nature of epidemic thresholds
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of generic processes on networks with power-law degree
distributions [12]. The criterion involves the recovering time
τk of an epidemics on a star graph, consisting of a central
vertex connected to k leaves of degree 1 that mimics the hubs
of a network, and the time τ (inf) that the hubs take to mutually
transmit the infection to each other. If τk � τ (inf), hubs remain
active for times sufficiently long to infect each other and
the epidemics is triggered by the mutual activation of hubs,
leading to a vanishing threshold in the thermodynamic limit.
If τk � τ (inf), the mutual reinfection is knocked out and the
transition to an endemic phase can only take place collectively
involving a finite fraction of the network and happens at a
finite threshold. In Ref. [12], this criterion notably predicted
that waning immunity [29], in which infected individuals
are temporarily immunized before to become susceptible,
leads to a finite threshold for γ > 3 which disagrees with
the prediction of QMF approximation, but in agreement with
extensive numerical simulations.

A fundamental question naturally arises. How robust is the
hub mutual activation mechanism of the standard SIS dynam-
ics? In the present work, we tackle this problem comparing
slightly modified versions of the standard SIS model, preserv-
ing the spontaneous healing and infection capacity increasing
proportionally to the vertex degree. All modified and original
models have the same thresholds in both HMF and QMF
theories. However, the criterion of mutual reinfection time of
hubs [11,12] predicts a finite threshold in the thermodynamic
limit for the modified models in uncorrelated networks [30]
with γ > 3, in contrast with the standard SIS. Stochastic
simulations [31] on large networks corroborate this prediction.
For 5/2 < γ < 3, we observed that the modified dynamics
present a vanishing threshold in better agreement with HMF
than QMF. For 2 < γ < 5/2, the SIS infection mechanism
is robust and all models have essentially the same epidemic
threshold. This duality is explained in terms of epidemic
activation mechanisms [9,12,32].

Our results gathered with previous reports of Ref. [12], in
which waning immunity can drastically change the threshold
behavior, lead to the following take-home messages. First, the
metastable, localized, and active states of the standard SIS
dynamics necessary to sustain the endemic activity for any
infection rate for γ > 3 are not universal and their realizations
in real epidemic processes may be unrealistic. Second, for
the widely more frequent case of networks with 2 < γ < 3,
the null threshold is a robust feature, obtained irrespectively
of the existence of locally self-activated star subgraphs. In
such an absence, epidemics is triggered in the innermost,
densely connected component of the network given by a k-core
decomposition [33], while for the original SIS model it happens
only for 2 < γ < 5/2 [32]. Last but not least, the HMF theory
[3,4,20], which has been frequently pretermitted due to its
failure in capturing the asymptotically null epidemic threshold
of the standard SIS for γ > 3 [7,23,24], is more accurate than
the QMF theory for the present modified SIS models and
also in other models as contact processes [28] and SIRS [12].
The origins of this worse performance of the QMF theory is
discussed in our conclusions.

The remaining of the paper is organized as follows.
Section II describes the investigated models, and their

mean-field theories are discussed in Sec. III. Epidemic thresh-
olds obtained in numerical simulations are presented and
compared with mean-field theories in Sec. IV. The finite-
size scaling of the critical quantities are provided in Sec. V.
We draw our concluding remarks and prospects in Sec. VI.
Appendices A, B, and C complement the paper with analytical
and numerical details.

II. EPIDEMIC MODELS

We investigate three epidemic dynamics where each vertex
of the network can be either infected or susceptible. The
infected ones are spontaneously healed with rate μ in all
models. In the standard SIS, hereafter called SIS-S , an infected
vertex infects each susceptible nearest-neighbor with rate λ.
In the SIS-T model, infection is a threshold process where
susceptible vertices are infected with rate λ if they have
at least one infected nearest-neighbor.1 Finally, SIS-A is a
modification of the contact process [35] where the infected
vertices simultaneously infect all susceptible neighbors with
rate λ. The symbols S , T , and A make reference to standard,
threshold, and all in the model definitions. The models rules
and some details of their computer implementations described
in Appendix A are summarized in Table I.

The modified dynamics preserve two central features of
the standard SIS model: spontaneous healing and infection
capacity of a vertex increasing proportionally to its degree.
All models have their counterparts in regular lattices with
a fixed coordination number k: SIS-S can be mapped in
the contact process (CP) [35,40], in which infected vertices
transmit to a nearest-neighbor chosen at random with rate
λCP and heals spontaneously, using λSIS = λCP/k. SIS-A was
investigated in Refs. [38,39] while SIS-T was investigated in
Refs. [36,37]. In lattices, all models belong to the directed
percolation universality class [35].

Figure 1 shows two important situations where the modified
models differ from the standard SIS. Consider an infinitesimal
time interval �t and an infected vertex (the center) surrounded
by k susceptible neighbors (leaves); see Fig. 1(a). The prob-
ability that s leaves are infected by the center for both SIS-S
and SIS-T is

P
(S,T )
leaf (s) =

(
k

s

)
(λ�t)s(1 − λ�t)k−s, (1)

while for SIS-A it is

P
(A)
leaf (s) = λ�tδs,k, (2)

where δs,k is the Kronecker δ symbol. Note that both ex-
pressions produce the same mean number of infected leaves
〈s〉 = λk�t . Now, the probability that a susceptible center
surrounded by s > 0 infected leaves, Fig. 1(b), is infected is
given by

P
(S,A)
center (s) = 1 − (1 − λ�t)s ≈ λs�t (3)

for SIS-S and SIS-A, while for SIS-T it becomes

P
(T )
center = λ�t. (4)

1This is an asynchronous version of the model investigated in
seminal papers [20,34] dealing with epidemic spreading on networks.

012310-2



ROBUSTNESS AND FRAGILITY OF THE SUSCEPTIBLE- … PHYSICAL REVIEW E 98, 012310 (2018)

TABLE I. Epidemic model definitions and some computer implementation details of the Gillespie algorithm (GA) presented in Appendix A.
Symbols: Ninf is the number of infected vertices; NSI is number of susceptible vertices with at least one infected nearest neighbor; Ne is the
number of edges emanating from infected vertices; and u is random variable uniformly distributed in the interval (0,1).

SIS-T (threshold) [36,37] SIS-A (all) [38,39] SIS-S (standard) [4]

Infected vertices are Infected vertices are Infected vertices are
spontaneously healed spontaneously healed spontaneously healed
with rate μ with rate μ with rate μ

Susceptible vertices become Infected vertices infect Infected vertices
infected with rate λ at once all susceptible independently infect
if they have at least one neighbors with each susceptible neighbor
infected neighbor rate λ with rate λ

GA infection probability GA infection probability GA infection probability

q = λNSI

μNinf + λNSI
q = λ

μ + λ
q = λNe

μNinf + λNe

GA time step GA time step GA time step

τ = − ln(u)

μNinf + λNSI
τ = − ln(u)

(μ + λ)Ninf
τ = − ln(u)

μNinf + λNe

So, while the infection of leaves by the center in SIS-S is
equivalent to SIS-T , the infection of the center by leaves in
SIS-S is equivalent to SIS-A.

The simulations of these models were performed using the
algorithms described in Appendix A, which include phantom
processes [31] in the statistically exact Gillespie algorithm
(GA) [41] for the simulations of general Markovian stochas-
tic processes. Some important implementation details are
highlighted in Table I. The equivalence between optimized
prescriptions and the original GA as well as their computational
performances for several models, including SIS-S , can be

FIG. 1. Some infection processes in the SIS models. (a) An
infected vertex (center) with many susceptible neighbors (leaves).
(b) A susceptible center with infected leaves. Transition probabilities
are defined in Eqs. (1)–(4).

found in Ref. [31]. The implementations of SIS-T and A can
be derived in an analogous way.

III. MEAN FIELD ANALYSIS

The HMF theory consists in dynamical equations for the
probability ρk that a vertex of degree k is infected and
disregards the stochasticity of the process. The probability that
a neighbor of a vertex of degree k is infected reads as [34] �k =∑

k′ P (k′|k)ρk′ where P (k′|k) is the probability that a neighbor
of a vertex with degree k has degree k′. So, ρk evolves as

dρk

dt
= −μρk + λ(1 − ρk)	k(�k), (5)

where 	k(�k) = k�k for SIS-S and SIS-A, and
	k(�k) = 1 − (1 − �k)k for SIS-T . The QMF theory
consists of dynamical equations for the probability ρi that a
vertex i is infected and reads as

dρi

dt
= −μρi + λ(1 − ρi)	i, (6)

where 	i = ∑
j Aijρj for SIS-S and SIS-A, and

	i = 1 −
∏

j |Aij =1

(1 − ρj )

for SIS-T , in which and the adjacency matrix is given by
Aij = 1 if i and j are connected and Aij = 0 otherwise.
The multiple simultaneous infections in SIS-A do not play
a role in these one-vertex mean-field theories since there
are no multiple connections. It is worth mentioning that
the HMF theory of SIS-T for uncorrelated networks with
P (k′|k) = k′P (k′)/〈k〉 [42] was recently investigated [43].

The mean-field epidemic thresholds can be obtained with
the stability analysis and linearization of Eqs. (5) and (6)
around the fixed points ρk = 0 or ρi = 0, respectively. The
linearized equations are the same for the three models

dρk

dt
= −μρk + λ

∑
k′

Ckk′ρk′ (7)
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and
dρi

dt
= −μρi + λ

∑
j

Aijρj , (8)

where Ck′k = kP (k′|k). The HMF and QMF thresholds are ob-
tained when the largest eigenvalue of the respective Jacobians
J HMF

kk′ = −μδkk′ + λCkk′ and J
QMF
ij = −μδij + λAij are zero.

For the HMF theory, it is given by [44]

λHMF
c = 1

ϒmax
, (9)

where ϒmax is the largest eigenvalue of Ck′k . For uncorrelated
networks we obtain

λHMF
c = 〈k〉

〈k2〉 , (10)

where 〈ks〉 = ∑
k ksP (k). For the QMF theory, we obtain [7]

λQMF
c = 1

�max
, (11)

where �max is the largest eigenvalue of the adjacency matrix
Aij .

The HMF theory on uncorrelated networks was compared
with the numerical simulations on annealed networks (see
Appendix A), for which this theory exactly predicts the
threshold and average density of infected vertices in the ther-
modynamic limit [22,45]. Simulations with absorbing states
near the transition need special techniques [31]. We use here the
standard quasistationary (QS) method described in Ref. [46],
in which the averaging is constrained to the active states and
converges to the actual stationary phase in the thermodynamic
limit. The threshold in finite networks can be estimated using
the principal peak of the dynamical susceptibility χ defined in
the QS state as [26]

χ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉 . (12)

Figures 2(a) and 2(c) confirm the agreement between
simulations on annealed networks and HMF theory for the
stationary densities and the thresholds, respectively, in all
investigated models. However, the fluctuations of the order
parameter are different as shown by the susceptibility curves
in Fig. 2(b). See also Sec. V.

IV. SIS MODELS ON SYNTHETIC
QUENCHED NETWORKS

A. Epidemic thresholds

We investigate networks having power-law degree distribu-
tion P (k) ∼ k−γ , generated with the uncorrelated configura-
tion model (UCM) [30] with minimal vertex degree kmin = 3
and structural upper cutoff kc = √

N , granting the absence of
degree correlations [47] permitting, therefore, comparison with
the HMF epidemic threshold given by Eq. (10). The thresholds
obtained in simulations are compared with HMF and QMF
theories in Fig. 3.

For γ < 5/2, here represented by γ = 2.25 in Fig. 3(a), all
models have approximately the same threshold well described
by both HMF and QMF theories, which have already been
reported for SIS-S [26].

FIG. 2. Comparison of HMF theory and simulations on annealed
networks with N = 105 vertices, degree distribution P (k) ∼ k−3.5,
minimal degree kmin = 3, and upper cutoff kc = √

N . (a) QS density
and (b) susceptibility versus infection rate curves are shown. Lines
in (a) are numerical solutions of Eq. (5) in the stationary regime and
the arrow indicates the HMF epidemic threshold λHMF

c = 〈k〉/〈k2〉.
(c) Finite-size dependence of the threshold estimated via suscepti-
bility and HMF theory. The curves correspond to averages over 10
independent network realizations.

For 5/2 < γ < 3, represented by γ = 2.7 in Fig. 3(b),
SIS-T and SIS-A have essentially the same threshold whose
scaling is very well fitted by the HMF theory and deviates
from QMF. The threshold of the standard SIS-S vanishes with
a scaling deviating from both HMF and QMF scalings. A good
agreement between the threshold of the standard SIS for γ =
2.7 can be recovered with the pairwise QMF theory of Ref. [27]
but not with the pairwise HMF theory of Refs. [16,28]; see
Appendix B.

The results for modified SIS models are markedly contrast-
ing with the standard one2 for γ > 3, represented by γ = 3.5
in Fig. 3(c). The modified SIS-T and A dynamics present
a finite threshold in very satisfactory accordance with HMF
theory and contrasting with the original SIS-S that presents the
well-known threshold approaching zero as the size increases.
Note, however, that the thresholds of SIS-S have a scaling
incompatible with QMF for the investigated size range that
cannot be reckoned by neither pairwise QMF [27] or HMF
[16,28] theories (see Appendix B). The latter still predicts a
finite threshold, inconsistent with simulations and the rigorous
results [5] for SIS-S .

2In the case of multiple peaks, which can be observed in SIS-S on
large UCM networks with γ > 3 [26,27], the principal peak is the
one that provide a threshold closest to the lifespan divergence and
matches the threshold of the lifespan method proposed in Ref. [11];
see Ref. [13].
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FIG. 3. Epidemic thresholds for SIS models on UCM networks with kmin = 3, kc = √
N , and different degree exponents (a) γ = 2.25, (b)

2.7, and (c) 3.5. Solid and dashed lines correspond to HMF and QMF theories, respectively. Curves are averages over 10 network realizations.
Negligible error bars in mean-field theories are not shown.

B. Activation mechanisms for γ > 3

To clarify the antagonistic results for γ > 3, we consider the
recovering time of the epidemics on star graphs for small values
of λ. Figure 4(a) shows the epidemic lifespan for the distinct
SIS models as a function of the star graph size. For standard
SIS-S , we see an exponential growth predicted by the approx-
imated discrete time dynamics of Ref. [11] (also Ref. [12])
given by τ

(S)
k ≈ 2

μ
exp[k(λ/μ)2]; see Appendix C. However,

SIS-T and SIS-A present epidemic lifespans increasing very
slowly with graph size, consistent with a logarithmic growth.
Applying the discrete time approach, a finite lifespan is
obtained for SIS-A and, after some refinement of the theory, a
logarithmic increase is found for SIS-T ; see Appendix C for
details. Indeed, the activities in SIS-A are more correlated, and
this has a significant effect on the probability of hub activation.

An upper bound for the long-range infection times of hubs of
degrees k and k′, denoted by τ

(inf)
kk′ , for uncorrelated networks

can be obtained following the same steps of Ref. [11] (also
Ref. [12]). The result is the same for all investigated SIS models
and given by

τ
(inf)
kk′ � τkk′ = 1

λ

[
N〈k〉
kk′

]b(λ)

, (13)

where b(λ) = ln(1 + μ/λ)/ ln κ and κ = 〈k2〉/〈k〉. Even being
rigorously an upper bound, the right-hand side of Eq. (13)
works very accurately for λ � μ and γ > 3 such that we can
adopt τ

(inf)
kk′ ≈ τkk′ as done for SIS-S [11] and other epidemic

models [12]. This agreement is confirmed in Fig. 4(b) for γ =
3.5. The simulation is run keeping one single vertex of degree
k always infected (never heals) and computing the time for the
infection to reach for the first time each vertex of the network,
limited to a maximal time tmax = 1010. Vertices that were not
reached are not included in the averages but they represent a
tiny fraction.

With the approximation given by the right-hand side of
Eq. (13), we have that τ (inf)

kk′ � τ
(inf)
kmax,kmax

, where kmax is the largest
degree of the network that scales as 〈kmax〉 ∼ N1/(γ−1) for
UCM networks with γ > 3 [47]. Also, we have that b(λ) is
finite since κ converges to a constant as N → ∞ for γ > 3,
providing an algebraic increase of τ

(inf)
kk′ with N . The condition

τ (inf) � τ
(T ,A)
k is obeyed such that epidemics in the modified

SIS models cannot be activated by hubs when λ � μ and a
collective phase transition at finite threshold is expected [12]
in contrast with τ (inf) � τ

(S)
k of the standard SIS, in which the

hub activation mechanism is at work and the threshold is null
in the thermodynamic limit.

C. Activation mechanisms for 2 < γ < 3

For γ < 3, the hubs are sufficiently close [48] to infect
each other even if their activity lifespans are not too large
(exponential) and the threshold goes to zero for all models as
N → ∞. However, there exists a difference in the threshold
scaling for γ = 2.7 but does not for γ = 2.25. It has been
claimed [9] that the most effective spreaders in an epidemic
processes lie in a subset containing the innermost core of
the networks identified by the maximal index of the k-core
decomposition3 [22,33]. For SIS-S , this mechanism is claimed
to hold for uncorrelated networks with γ < 5/2 but the case
5/2 < γ < 3 has activation ruled by the hubs [32]. Since hubs
cannot be activated in isolation for arbitrarily small λ in SIS-A
and SIS-T , we propose that the epidemic threshold should be
ruled by the subgraph identified by the maximal k-core for the
whole range of scale-free networks with 2 < γ < 3.

To check this conjecture we ran SIS models on subgraphs
containing only the vertices belonging to either the maximum
k-core or the star graph centered on the most connected vertex
of the network with degree kmax ≈ √

N . Figure 5(a) shows
that the SIS-S and SIS-A essentially have the same activation
threshold for the maximal k-core for both values of γ = 2.25
and 2.7 while the activation of the stars centered on the most
connected vertex happens in very different thresholds for these

3A k-core decomposition consists of the following pruning process.
Remove all vertices with degree ks = kmin plus their edges and all
other vertices that possess a degree kmin after the removal until no
more vertices of degree kmin appear in the process. Next, the procedure
is repeated for all vertices of degree ks = kmin + 1,kmin + 2 and so
on until all vertices are removed. The maximal k-core corresponds
to the subset of vertices and edges removed in the last step of the
decomposition.
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FIG. 4. (a) Activity lifespan for epidemic processes on star
graphs. The initial condition is the center infected and all leaves
susceptible. The number of runs varies from 103 to 105, the larger
number the smaller λ. (b) Mutual reinfection of hubs scaled according
to Eq. (13). The degree exponent is γ = 3.5, the size is N = 106 and
infection rate is λ = 0.05. The vertex that is kept infected has degree
k = 50. The dashed line is the prediction of the right-hand side of
Eq. (13).

models. The same analysis holds in the not shown data for
SIS-T . Therefore, the following framework can be drawn.
For γ = 2.25, the k-core is activated first than hubs and the
epidemic activation is triggered in the maximal k-core for all
models. For γ = 2.7, the hubs are activated firstly for SIS-S
while k-core is activated firstly in the other models such that
the epidemic activation is due to hubs for the standard model
and still k-core for the modified dynamics.

For γ = 2.7, the effective epidemic thresholds for the entire
networks are smaller than those calculated using only the
maximal k-core or star centered on the largest hub even with
these subgraphs being associated with the activation of the
epidemics. We performed simulations in a subgraph with
the maximal k-core plus their nearest-neighbors, which still
represents a subextensive fraction of the network as shown
in the inset of Fig. 6. The epidemic thresholds in this subset
are essentially the same as those of the whole network for
all models, as shown in Fig. 6 for SIS-A and SIS-S . The

105 106 107 108

N
10-3

10-2

10-1

th
re

hs
ol

d

SIS-S − γ=2.25
SIS-A − γ=2.25
SIS-S − γ=2.7
SIS-A − γ=2.7
SIS-S − star
SIS-A − star

(a)

FIG. 5. Epidemic thresholds for SIS-S and SIS-A running on the
maximum k-core subgraph of networks with degree exponents γ =
2.25 and 2.7. The simulation results on star graphs with kmax ≈ √

N

leaves are also presented. The averages were done over 10 networks
realizations.

trimming of edges reduces the epidemic activity in the subset
containing only the maximal k-core while the k-core mediates
the mutual interactions among hubs in the activation driven by
them. We see that a large fraction of the network is redundant
for the epidemic threshold independently if hub (SIS-S) or
k-core activation (SIS-A and T ) is at work. In both cases, the
relevant region to reproduce the numerical threshold includes
the maximal k-core plus its nearest neighbors.

Returning to the case γ > 3, UCM networks do not present
a k-core structure in the sense that the decomposition provides a
single component containing the whole network [33]. So, since
hubs cannot sustain activity for λ � μ, the phase transition
happens collectively, involving a finite fraction of the network
at a finite threshold [12].
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All - SIS-S
All - SIS-A
k-core+NN - SIS-S
k-core+NN - SIS-A
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k-core
k-core+NN
y~x-0.99

y~x-0.35

(b)

FIG. 6. Epidemic thresholds for SIS-S and SIS-A running on a
subgraph with the maximum k-core plus the nearest-neighbor (NN)
vertices of a UCM network with γ = 2.7. Inset shows the fraction of
the network that belongs to the maximal k-core including or not its
NNs. Lines are power-law regressions.
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TABLE II. Critical exponents of the FSS for the SIS models on
UCM (ν and φ) and annealed (νann and φann) networks. Exponents for
SIS-S with γ = 3.5 are missing due to the smearing of the transition.

γ = 2.25 γ = 2.7 γ = 3.5

Model ν νann ν νann ν νann

T 0.845(6) 0.84(2) 0.697(4) 0.692(6) 0.55(1) 0.555(3)
A 0.519(9) 0.517(4) 0.52(1) 0.515(9) 0.499(6) 0.49(3)
S 0.63(2) 0.655(2) 0.60(2) 0.57(1) – 0.506(7)

φ φann φ φann φ φann

T 0.167(2) 0.169(1) 0.353(1) 0.352(1) 0.458(1) 0.467(3)
A 0.530(2) 0.528(2) 0.514(1) 0.513(1) 0.494(1) 0.497(1)
S 0.329(5) 0.329(4) 0.372(1) 0.421(1) – 0.496(1)

V. FINITE-SIZE SCALING OF CRITICAL QUANTITIES

The transition between endemic and disease-free phases
can be suited as an absorbing state phase transition [35,49].
The finite-size scaling (FSS) at the critical point (or epidemic
threshold) is fundamental for the characterization of the
transition and its critical exponents [35,49]. Several studies
concerned with the universality of the phase transition of
the contact process [35] on complex networks have been
performed both numerically and analytically [28,45,50–56].
For SIS-S , numerical analyses have been done [26,46]. A basic
approach is to fit the critical QS density and susceptibility to
power-laws in the forms

ρ ∼ N−ν (14)

and

χ ∼ Nφ, (15)

where ν and φ are the critical exponents related to FSS.
We considered simulations on annealed networks with

same degree distributions as the quenched ones to represent
the mean-field counterpart; see Appendix A for algorithms.
Figure 7 presents the FSS of ρ and χ at the effective, size-
dependent epidemic threshold of the three SIS models on
both UCM and annealed networks. For γ = 3.5, we used
a hard cutoff kc ∼ N1/γ that prevents outliers in the degree
distribution and multiple peaks in the susceptibility curves of
quenched networks [13,26] making, thus, the determination of
the transition point much more accurate; see Refs. [13,31] for
further discussion. For γ < 3 the structural cutoff kc = √

N

was used. The FSS exponents obtained by simple power-law
regressions for N � 106 are shown in Table II. Uncertainties
were calculated using different fit regions aiming at estab-
lishing equivalences or discrepancies between annealed and
quenched simulations rather than accurate estimates of the
asymptotic exponents.

The FSS of the critical quantities provides a scenario in
consonance with that observed for the thresholds. The FSS
of both SIS-T and A are in full agreement with the annealed
simulations showing their mean-field behaviors for all values
of γ investigated. Moreover, the agreement between quenched
and annealed networks is also found for SIS-S forγ < 5/2. For
γ > 5/2, the dichotomy with respect to SIS-S is again present.
A significant difference in the scaling happens for γ = 2.7 and

a sharp difference is obtained for γ = 3.5. In the latter, we can
see a susceptibility of the SIS-S bending downwardly for the
quenched network, which has been associated to a smearing
of the phase transition [57], while in the annealed network a
power-law typical of an ordinary critical phase transition is
seen. No sign of smearing is observed for SIS-T and A.

The FSS provides different exponents for distinct models.
So, despite being described by the same mean-field equations,
the role played by stochastic fluctuations depends on the model.
Further analytical studies are required to clarify the distinction
among the exponents.

VI. DISCUSSION

Conception of theoretical frameworks for epidemic pro-
cesses frequently passes over the model’s fine-tuning due to
the belief that universality takes over and all central features,
related to the leading properties and symmetries of a system,
will be obtained irrespective of the specific details. However,
this does not seem to be always the case when the substrate
carrying out the process is a complex network. The standard
SIS model, called SIS-S in this work, is an example that
behaves very differently from most of other related processes.
For example, while many fundamental models on random
networks with a power-law degree distribution (susceptible
infected recovered (SIR) model [58], Ising model [59,60],
synchronization [61], etc.) have a finite order parameter for
any value of the control parameter only for degree exponent
γ < 3 [3], this happens for any value of γ in SIS-S [5,7]. A
dichotomy also appears in the two basic mean-field theories
for SIS-S , namely, QMF and HMF, which predict different
outcomes for the epidemic threshold for γ > 5/2 [7,26], being
only QMF in agreement with the asymptotically null threshold
for γ > 3.

One could naturally wonder if these peculiar characteris-
tics of SIS-S are universal features observed in many other
processes. We investigated two slightly different versions of
the standard SIS, termed SIS-A and SIS-T , in which the
spontaneous healing and the unlimited infection capacity of a
vertex are preserved. These alternative models present exactly
the same thresholds of the SIS-S in both QMF and HMF
theories. Stochastic simulations on uncorrelated synthetic net-
works, however, show a dual scenario where the three models
have essentially the same vanishing thresholds for γ < 5/2
but disparate results are found for γ > 5/2. In particular,
a finite threshold is observed for γ > 3 in both modified
models, in contrast with the asymptotically null threshold of
the standard case. This same framework was observed for
SIRS model in Ref. [12], in which an individual acquires
temporary immunity when the agents cannot neither transmit
infection nor be infected. The dissonance is explained in terms
of self-sustained, long-lived activation of hubs for any finite
value of λ [11] that holds for SIS-S but does not for the
other models. The epidemic lifespan of hubs with the modified
dynamics increases slowly (algebraically or logarithmically)
with the hub degree in contrast with the exponential increase
of the standard case. The last one permits the long-range mutual
activation or reactivation of hubs [11,12].

We also analyzed the activation mechanisms of the epidemic
phase on uncorrelated networks. While the activation for SIS-S
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FIG. 7. Finite-size scaling of the critical QS quantities for SIS models on UCM networks with different degree exponents. The QS densities
of infected vertices are shown in (a)–(c) while the QS susceptibilities are shown in (d)–(f). The data correspond to averages over 10 network
realizations and error bars are smaller than symbols.

occurs in the innermost, densely connected core of the network,
determined by the largest index of a k-core decomposition, for
γ < 5/2 and in hubs for γ > 5/2 [32], this happens for the
whole range of scale-free networks with 2 < γ < 3 for SIS-A
and SIS-T . Absence of a k-core organization [33] and a short-
lived activity in star subgraphs as λ → 0 for γ > 3 suggests
that the activation of the epidemic phase in the modified SIS
models is collective, involving essentially the whole network
[12], and occurs at a finite threshold.

The aforementioned dichotomy is also observed in the
finite-size scaling of the quasistationary density and sus-
ceptibility computed at the epidemic threshold. Agreements
between simulations on quenched and annealed versions of
the investigated networks are observed for SIS-A and SIS-T
irrespective of the degree exponent. In turn, they deviate in
the hub activated regime with γ > 5/2 in SIS-S , being more
marked for γ > 3 where the transition observed for quenched
networks seems to be smeared [57], in contrast with a regular
critical transition in the annealed case.

Here, we also comment the nature of the epidemic activation
in processes with spontaneous healing with uniform rates and
a bounded infection produced by a vertex, differing from the
three SIS models investigated here and from SIRS [12]. In
these bounded infection models, the epidemic lifespan on
stars is finite for any value of the infection rate [12] and
the epidemics can be activated only collectively in a finite
threshold for any value of γ , as observed in simulations of the
contact process on quenched networks [50,52,54], for example.
Table III summarizes the activation mechanism of the different
epidemic models investigated or discussed in the present work.

An interesting point observed in our analysis is that the HMF
theory was more accurate than QMF theory in all investigated
cases, except for SIS-S . Dynamical correlations are neglected
in both approaches assuming that the states of interacting

vertices, in case of QMF, or interacting compartments, in the
case of HMF, are independent. This approximation becomes
more problematic for QMF since we explicitly reckon the
interactions with the actual nearest-neighbors of each vertex
and assume that their states are independent. The leading
approximation in HMF is to assume that the probability to
be infected depends only on the vertex degree, neglecting the
local structure of the network. As an effect, HMF theory may
not be able to capture localized activity due to specific motifs as
those observed for star subgraphs in the SIS-S model. Finally,
QMF theory is not a genuine mean-field approach since it does
not present mixing of vertices while HMF does through the
degree compartmentalization. Our results thus reinforces the
belief that mean-field approaches with heterogeneous mixing
are suitable approximations for most dynamical processes on
networks with a small-world property, in which the average
distance between vertices increases logarithmically with the
system size [1].

Our results gathered with previous reports raise an im-
portant question on the modeling of epidemic processes on
networks. Once details may matter, which would be the actual
mechanisms used in models that correspond to real epidemics

TABLE III. Activation mechanisms for different epidemic models
presenting active steady states on uncorrelated networks with degree
distribution P (k) ∼ k−γ .

Model 2 < γ < 5/2 5/2 < γ < 3 γ > 3

SIS-S Max k-core Hub Hub
SIS-T Max k-core Max k-core Collective
SIS-A Max k-core Max k-core Collective
SIRS Max k-core Max k-core Collective
CP Collective Collective Collective
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and which would be the best approaches to analytically
investigate real epidemic processes? The summary presented
in Table III suggests that the hub activation mechanism, inten-
sively investigated recently [5,7,11–13,15,17,62,63], seems to
be more a peculiarity than a rule in epidemic spreading. We
expect that our results will guide the analysis of other classes
of the dynamical process on networks such as the complex
contagion models [64–67] where activation requires more than
one interaction to be effected.
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APPENDIX A: COMPUTER IMPLEMENTATIONS
OF THE EPIDEMIC MODELS

To build the computer implementations, all involved rates
are reckoned using statistically exact prescriptions based on the
Gillespie algorithms [41]. We consider phantom processes that
do nothing but counting for time increments. These ideas are
detailed in Ref. [31]. Below we present recipes for the models
investigated in the present work.

1. SIS-S
The SIS-S dynamics in a network of size N with infection

and healing rates λ and μ can be efficiently simulated as
follows. A list with all infected vertices, their number Ninf ,
and the number of edges Ne emanating from them are recorded
and constantly updated. Each time step involves the following
procedures. (i) With probability

p = μNinf

μNinf + λNe
, (A1)

an infected vertex is selected with equal chance and healed.
(ii) With complementary probability 1 − p, an infected vertex
is selected with probability proportional to its degree. A
neighbor of the selected vertex is chosen with equal chance
and, if susceptible, is infected. Otherwise, no change of state
is implemented (it is a phantom process). (iii) The time is
incremented by

τ = − ln(u)

μNinf + λNe
, (A2)

where u is a pseudorandom number uniformly distributed in
the interval (0,1) and the simulation runs to the next step.

2. SIS-A
This model implementation is very similar to the contact

process [35]. A list with the infected vertices and their number
Ninf is built and constantly updated. At each time step, the rules
are the following. (i) With probability

p = μ

μ + λ
, (A3)

an infected vertex is randomly chosen and healed. (ii) With
complementary probability 1 − p, all susceptible neighbors

of a randomly chosen infected vertex are infected at once. (iii)
The time is incremented by

τ = − ln(u)

(μ + λ)Ninf
. (A4)

3. SIS-T
As in SIS-S and A, a list containing the infected vertices

and their number Ninf is built and constantly updated. We
have also to maintain an auxiliary list including the number
of infected neighbors ni of each vertex i and the total number
of susceptible vertices NSI that have at least one infected
neighbor. At each time step, the rules are the following. (i)
With probability

p = μNinf

μNinf + λNSI
, (A5)

an infected vertex is selected with equal chance and healed.
With complementary probability 1 − p, an infected vertex is
selected with probability proportional to its degree and one of
its neighbors is randomly chosen. If the selected neighbor i is
susceptible it is accepted and infected with probability 1/ni .
The procedure of choosing a susceptible vertex is repeated until
one of them is found. The time is incremented by

τ = − ln(u)

μNinf + λNSI
. (A6)

4. Simulation on uncorrelated annealed networks

On uncorrelated annealed networks, the unique difference
in SIS-S and SIS-A with respect to the quenched case is that
the choice of the neighbors to be infected is done by selecting
any vertex of the network with probability proportional to its
degree.

For SIS-T , however, the algorithm becomes trickier and,
consequently, very slow. The probability that a susceptible
vertex j becomes infected is given by

Pj = 1 − (1 − �)kj , (A7)

where kj is the degree of vertex j and � = Ne/(N〈k〉) is the
probability that a randomly selected neighbor (at the other
side of the edge) is infected in the annealed network. Let
us define a total rate that one tries to infect a susceptible
vertex as L = λ(N − Ninf ), which is larger than the real one
since only the susceptible vertices that have at least one
infected neighbor can actually be infected and this happens
with probability Pj < 1. The total rate that a vertex is healed
is M = μNinf . The algorithm becomes the following. (i) An
infected vertex is randomly chosen and healed with probability
p = M/(L + M). (ii) With probability 1 − p, a susceptible
vertex is randomly chosen and infected with probability Pj .
(iii) The time is incremented by τ = − ln(u)/(L + M).

The exactness of these algorithms is confirmed in Fig. 2
where simulations on annealed networks are compared with
the integration of the HMF equations.

APPENDIX B: PAIRWISE APPROXIMATIONS FOR SIS-S

The pairwise heterogeneous mean-field (PHMF) approx-
imation for SIS-S with μ = 1 on uncorrelated networks
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FIG. 8. Comparison of pairwise approximations with simulations
(symbols) for epidemic thresholds of the SIS-S on UCM networks,
given by Eqs. (B1) and (B2). Data correspond to averages over 10
network samples.

provides a threshold [28]

λPHMF
c = 〈k〉

〈k2〉 − 〈k〉 . (B1)

The threshold of the pairwise quenched mean-field approxi-
mation (PQMF) is obtained when the largest eigenvalue of the
matrix [27],

Lij = −
(

1 + λ2ki

2λ + 2

)
δij + λ(2 + λ)

2λ + 2
Aij , (B2)

is null. Figure 8 shows the thresholds of the pairwise theories
computed for UCM networks.

APPENDIX C: APPROXIMATED EXPRESSIONS
FOR EPIDEMIC LIFESPAN ON STAR GRAPHS

To obtain approximated expressions for the lifespan of the
SIS epidemic processes (S , A, and T ) on a star graph with
k leaves, we consider the following discrete time dynamics
based in Ref. [12]:

(i) At time t = 0, the center is infected and all leaves are
susceptible.

(ii) At a time t = t1, the center is healed and n leaves are
simultaneously infected with probability P1(n|k).

(iii) At time t = t1 + t2, the center is reinfected and all
leaves become simultaneously susceptible. This occurs with
probability P2(n).

The probability that the dynamics survives after this se-
quence is

Q =
k∑

n=1

P2(n)P1(n|k), (C1)

and the probability that the dynamics ends up at the sth step is
Qs−1(1 − Q). So, the average number of steps is

〈s〉 =
∞∑

s=0

sQs−1(1 − Q) = 1

1 − Q
. (C2)

Next, we define the times ti and probabilities Pi (i = 1,2) for
each model.

The steps for standard SIS [11,12] are reproduced here as a
guide to the other models. We chose t1 = t2 = 1/μ, which is
the average time that a vertex takes to be healed. The probability
that the center infects a leaf before healing is p = λ/(μ + λ)
[11], which is the same for all leaves. So, the probability that
n leaves were infected at time t1 becomes

P1(n|k) =
(

k

n

)
pn(1 − p)k−n. (C3)

The probability that at least one leaf reinfects the center before
healing at time t2 is

P2(n) = 1 − (1 − p)n. (C4)

Plugging Eqs. (C3) and (C4) into (C1), we obtain

Q = 1 − (1 − p2)k ≈ 1 − exp(−kλ2/μ2), (C5)

where the approximation holds for the regime λ � μ, in which
we are interested in. Now, substituting Eq. (C5) into Eq. (C2),
we obtain

τS
k = (t1 + t2)〈s〉 ≈ 2

μ
exp

(
λ2

μ2
k

)
. (C6)

The prediction is an exponential increase with the star size.
For SIS-A, since all leaves are simultaneously infected

before healing with probability p = λ/(μ + λ) we have that
P1(n|k) = pδn,k and the other variables are assumed to be
the same. So, we have Q = p[1 − (1 − p)k], which leads to
〈s〉 ≈ 1 and the epidemic lifespan

τA
k = (t1 + t2)〈s〉 ≈ 2

μ
(C7)

for λ � μ. The prediction is a finite lifespan.
For SIS-T we have the same expression of SIS-S forP1(n|k)

while the probability that center is reinfected is simply P2(n) =
p, irrespective of n. So, 〈s〉 ≈ 1 as in SIS-A. However, since
infection rate of the center is independent of how many infected
leaves are present, we must use the average time for all leaves
to be healed instead of the average time for a single leaf to be
healed. Considering the healing processes of each leaf as being
an independent Poisson process and neglecting the possibility
of reinfections of leaves during this process, the average time
for n leaves to be healed is

t
(n)
2 =

∫ ∞

0
t[n(1 − e−μt )n−1e−μt ]μdt ≈ 0.92

μ
ln n. (C8)

The term between brackets is the probability that one single
leaf is infected at time t , μdt is the probability that it heals at
time t , and the saddle point approximation was used to compute
the integral assuming n � 1. So, replacing n by the average
number of infected leaves in part (ii), 〈n〉 = pk, to estimate
t2 = 〈t (n)

2 〉 ≈ t
(〈n〉)
2 , we obtain

τ T
k ≈ 1 + 0.92 ln(pk)

μ
� 0.92

μ
ln k (C9)

for λ � μ. The prediction is a logarithmic increase with the
star size.
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