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intRoduction
The specialty of radiation oncology was born from the 
convergence of physics, chemistry, biology and medicine,1 
and has continued to evolve through the progress of each of 
these disciplines. A cancer cell- centric view of the problem2 
drove efforts to improving cancer cell kill, which in the case 
of radiation therapy focused on safely enhancing tumour 
dose and interference with DNA damage repair.3 During 
the past two decades, a paradigm shift that recognises the 
essential role of the immune system in cancer development 
and progression has become broadly accepted,4 reflecting 
the extraordinary progress in cancer immunology and 
immunotherapy.5 The recognition of the necessity to also 
target the immune system when treating cancer to achieve 
long- term tumour regression and possibly cure, has changed 
the global strategy of oncology.6 Whereas cytotoxic agents, 
including chemotherapy and radiation therapy, remain a 
mainstay of treatment, there is a growing appreciation for 
their direct and indirect effects on cancer immunity as key 

determinants for clinical success or failure.7,8 This insight is 
especially important to design combinatorial therapies that 
can recruit into response tumours refractory to immuno-
therapy. In this new landscape radiation has emerged as a 
promising modality because of its potential for enhancing 
responses to immunotherapy,9 extending its role from a 
local treatment to one that can be used to activate effec-
tive immune responses and tackle systemic disease, by 
inducing systemic, abscopal effects. Here, we will review 
the history and mechanisms of the abscopal effect of radia-
tion and discuss some of the barriers to achieving abscopal 
responses. Finally, we will propose future experimental 
questions to optimise the induction of abscopal responses 
in the clinic.

A brief history of the abscopal effect of 
radiation
Abscopal responses were first described in 1953 in an 
article published in this journal by RH Mole,10 who had 
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aBstRact

For over a century, ionising radiation has been used to treat cancer based on its cytotoxic effects on tumour cells. 
Technical progress has enabled more precise targeting of the tumour to reduce normal tissue toxicity while delivering 
higher radiation doses per fraction of treatment.
In 1953, unexpected regression in lesions outside of the irradiated field were noted by an observant physician, RH Mole, 
who named such phenomenon “abscopal effect” from the Latin ab (position away from) and scopus (mark or target), 
in an article published in this journal. Clinical abscopal responses have been reported over the years but because of 
their very rare occurrence they could not be methodically studied, remaining akin to a curiosity. Nevertheless, their 
occurrence has ignited interest in studying the systemic effects of radiotherapy. Progress in dissecting the mechanisms 
that govern the function of the immune system in cancer has enabled to study the implication of immunity in the 
abscopal effect of radiation. It has become clear that ionising radiation activates canonical pathways of response to 
viral infections, and can stimulate antitumour immunity. These immune stimulatory effects of radiation have become 
clinically relevant in the current era of cancer immunotherapy, rendering abscopal responses in patients an attainable 
aim. Here, we will briefly review the parallel evolutions of two separate fields of medicine, radiation therapy and cancer 
immunology, and discuss their therapeutic partnership.
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noticed that tumour regression was sometimes observed in 
non- treated lesions when one specific tumour area was focally 
irradiated. The definition of abscopal responses is based on the 
concurrent presence of metastatic sites that will regress after 
focal radiotherapy to one. This phenomenon has been repeatedly 
reported over the years in the radiation oncology and radiology 
literature,11–15 but it remained confined to be a curiosity due to 
its rare occurrence. A systematic review of the literature between 
1969 and 2014 identified only 46 reported cases of abscopal 
responses.16 It is only with the introduction of immune check-
point blockade (ICB) therapy in clinical practice that the interest 
in abscopal effects of radiation has soared, with a continuous 
increase in the number of publications since 2011, the year when 
the first immune checkpoint blocking antibody, ipilimumab, was 
approved for patients treatment (Figure 1). This increase reflects 
the occurrence of abscopal effects when radiotherapy is used in 
patients treated with ICB, in cancers otherwise unresponsive to 
ICB. It also demonstrates the emergence of a new strategy in 
oncology that of investigating a personalised approach to immu-
nising patients against their individual tumour.17,18

Pitfalls in defining abscopal effects
Unfortunately, over the years the term “ abscopal’ has been often 
misused, both in preclinical and clinical setting. For instance, it 
has been applied to define responses in some preclinical experi-
mental settings that do not satisfy the requirements to measure 
an abscopal effect. Tumour control that is achieved after vaccina-
tion of mice with ex vivo irradiated cancer cells is not an abscopal 
response.19. In experiments designed to demonstrate abscopal 
responses, rejection of concurrent established tumours is 
studied. The importance of a rigorous definition stems from the 
different requirements for development of an immune response 
after injection of irradiated cancer cells vs irradiation of a tumour 
that has developed an immune suppressive tumour microenvi-
ronment (TME), as described in the next sessions. Thus, preclin-
ical models of synchronous development of multiple cancers 
better mimic clinical metastatic disease, permitting to measure 
abscopal effects. Importantly, the results of these preclinical 
experiments in poorly immunogenic tumours have translated to 
the clinic, as discussed later.

A misuse of the concept of abscopal responses can also occur 
in clinical trials. To correctly assess abscopal responses of focal 
radiation and immunotherapy, prospective randomised trials 
must be designed with a control arm of immunotherapy alone 
vs the experimental arm that combines the same systemic immu-
notherapy with focal radiation. This design prevents misinter-
preting as abscopal a response induced by the systemic effects of 
the immunotherapy tested. Another approach consists of pilot, 
single arm prospective studies that combine focal radiation with 
immunotherapies that have already failed to demonstrate activity 
when used alone, a strategy we tested in several trials.20–22 In the 
latter situation, radiotherapy can “re- position” immunotherapy 
agents, by synergising with them to induce an effective immune 
rejection of cancer that the drug alone could not achieve.

Finally, the term “abscopal” has been employed to define 
responses in non- treated lesions in mice and patients treated 
with various types of intratumoral immunotherapy that does not 
include focal radiotherapy. We agree with the consensus state-
ment from an expert panel on intratumoral immunotherapy 
that this is not an appropriate use of “abscopal” and the term 
“anenestic tumour responses” should be used instead to describe 
tumour responses in non- injected lesions.23

From bench to bedside: modelling the immune 
mechanisms of radiation
The implantation of the tumour in immunodeficient mice has 
been a conventional experimental system to test the efficacy of 
cancer therapeutics against human tumours for a long time, 
which obscured the role of adaptive immunity in the response 
to the treatment tested. While a systemic effect of focal radio-
therapy was already forseen by Dr Joseph Shohan,24 it is only in 
1979 that original experiments by Stone and colleagues reported 
that the dose of focal radiotherapy needed to cure mice bearing 
syngeneic tumours was about twice as large in the absence of T 
cells than in their presence,25 demonstrating the key role of T 
cells in achieving tumour elimination by focal radiotherapy. In 
the following years, much progress was made in understanding 
the function, specificity and mechanisms of activation of T cells. 
However, the role of the immune system in tumour control and 

Figure 1. Number of publications per year identified doing a search on Pubmed for the term “Abscopal effect” from 1954 to 2019.
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the potential therapeutic value of adaptive immunity remained 
controversial until the early 2000s. Among the many discoveries 
that moved the field forward was the experimental demonstra-
tion that the elimination of neoplastic cells by the immune system 
results in selection of tumours that are able to escape immune 
control.26 This work formed the basis of the “immunoediting” 
theory.27 Immunoediting, together with initial evidence that 
targeting an inhibitory receptor hindering T cell activation leads 
to tumour rejection,28,29 fostered investigations into the mecha-
nisms of tumour immune escape.

In parallel, increased understanding of the biology of dendritic 
cells (DCs) and their role in activating T cells raised interest for 
their use as cancer vaccines, although several challenges were 
identified, including which tumour antigens to load DCs with.30 
Taking advantage of the availability of Flt3 ligand (Flt3L), a 
growth factor capable of expanding DCs in mice,31 Chakravarty 
et al32 hypothesised that radiation, by inducing cancer cell death, 
could promote uptake of tumour antigens by DCs33 in mice 
treated with Flt3L. Using a highly metastatic variant of mouse 
Lewis lung carcinoma they showed that a tumour curative single 
dose of 60 Gy focal radiation did not extend the survival of the 
mice, which died of lung metastases. However, focal radiation 
combined with Flt3L markedly improved survival, which was T 
cell- dependent, suggesting that the combined treatment was able 
to prime antitumour T cells.32

In the early 2000s, we set out to test the hypothesis that the 
abscopal effect was mediated by the activation of antitumour T 
cell responses in a mouse model of breast cancer. To this end, 
we used 67NR, a non- metastatic tumour, and an experimental 
system where the tumour was implanted in both flanks of an 
immunecompetent mouse and only one tumour irradiated, while 
the other was followed to measure abscopal responses. Radiation 
given at a dose of 2 or 6 Gy caused growth delay of the treated 
tumour but had no effect on the untreated one. We reasoned 
that a tumour could grow in immunocompetent syngeneic mice 
only if it suppressed immune recognition, as postulated by the 
immunoediting hypothesis, and radiation alone was insuffi-
cient to overcome the barriers hindering antitumour immune 
responses. Defective DC function had been identified as a mech-
anism of immune evasion in breast cancer,34 so we treated mice 
with Flt3L to restore a functional DC compartment. While Flt3L 
alone had no effect on tumour growth, when used with radiation 
it promoted abscopal responses, as demonstrated by regression 
of the unirradiated tumour, that were tumour- specific and medi-
ated by activation of antitumour T cells.35 These results demon-
strated a new paradigm, whereby barriers to an immunological 
intervention that by itself has no demonstrated therapeutic effect 
could be overcome by focal radiotherapy, and induce systemic 
tumour responses. It also provided unequivocal evidence that 
the abscopal effect of radiation is immune- mediated, and can 
be induced if radiation is combined with strategies that address 
established, tumour- associated immunological dysfunctions.

This concept was confirmed in the following years in many 
preclinical studies testing combinations of radiation with 
immune modulators for their ability to induce local and systemic 

antitumour T cell responses.36,37 Importantly, some of these 
combinations were translated into clinical trials. For instance, 
we conducted a proof of principle clinical trial, which tested the 
combination of focal radiation with a DC growth factor available 
for clinical use, granulocyte- macrophage colony- stimulating 
factor (GM- CSF), in patients with advanced metastatic disease 
(NCT02474186). GM- CSF alone has no therapeutic effect in 
solid tumours. However, in this trial of 41 patients, in combina-
tion with focal radiotherapy it resulted in a rate of 27% abscopal 
responses. Interestingly, patients achieving an abscopal response 
had a protracted survival compared to the ones who did not.20 
Similarly, Brody et al38 tested the combination of focal radiation 
and a Toll- like Receptor 9 (TLR9) agonist injected into the irra-
diated tumour, in 15 patients with low- grade B- cell lymphoma. 
One patient achieved a complete clinical response, and three 
reached a partial response, associated with development of 
tumour- reactive CD8 T cells.

Inspired by the growing evidence from Allison’s lab that CTLA-4 
was a critical inhibitory receptor limiting T cell activation in 
tumours, and that CTLA-4 blockade was effective when combined 
with a tumour vaccine in inducing the rejection of poorly immu-
nogenic tumours,29,39 we tested if an in situ vaccination strategy 
by focal radiation could induce responses to CTLA-4 blockade 
in resistant tumours. Results obtained in different mouse tumour 
models showed that focal radiation and CTLA-4 blockade elic-
ited antitumour CD8 T cells capable of controlling distant 
micrometastatic disease,40 and mediate abscopal responses.41 The 
clinical relevance of these findings became evident a few years 
later when abscopal responses were observed in a melanoma 
patient. This patient initially had responded to ipilimumab (the 
FDA- approved human anti- CTLA-4 antibody) but eventually 
progressed in multiple visceral sites. Maintained on ipilimumab 
therapy despite progression, she received palliative radiation to 
one metastasis, with measurable responses at multiple abscopal 
sites.42 This case report fostered several retrospective investiga-
tions in melanoma patients who had received radiation while on 
treatment with ipilimumab, as well as prospective clinical studies 
testing radiation and ICB in melanoma and other cancers.21,43–48 
Although the results of many of these studies have yet to be 
reported, current evidence indicates that the combination of 
radiation with ICB is generally safe. The persistent unpredict-
ability of abscopal responses however, highlights the hurdles and 
pitfalls that need to be considered in moving the field forward,49 
as will be discussed below.

Mechanisms of in situ vaccination by radiation
Activation of naïve T cells requires their interaction with a DC 
that cross- presents tumour antigens and provides co- stimu-
latory signals to the T cell. Conventional DCs Type 1 (cDC1) 
are very efficient at activating CD8 T cells and have been shown 
to play a central role in cancer.50 Radiation promotes tumour 
antigen cross- presentation by enhancing the translocation to the 
cell surface of “eat me signals” like calreticulin, that stimulate 
the phagocytosis of the cancer cells by DCs, and the release of 
damage- associated molecular pattern (DAMP) molecules that 
lead to DC activation and expression of co- stimulatory mole-
cules.51 Among the various DAMP induced by radiation, a critical 
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role is played by DNA fragments, which as part of the DNA- 
damage response (DDR) to radiation, gain access to the cytosol 
of irradiated cells. In the cytosol, DNA leads to activation of 
canonical viral defense pathways via cyclic GMP- AMP synthase 
(cGAS)/stimulator of Interferon genes (STING), culminating in 
the production of interferon type I (IFN- I) and IFN- stimulated 
genes (ISG) including cytokines and chemokines that recruit 
innate and adaptive immune cells to the tumour.52 The DNA 
that gains access to the cytosol of the irradiated cancer cells has 
been demonstrated to activate the cGAS/STING pathway in the 
cancer cells themselves, as well as in innate immune cells present 
in the TME, including DCs.19,53,54 The mechanisms responsible 
for transfer of the IFN- stimulatory cytosolic DNA from cancer 
cells to DCs in the irradiated tumour remain incompletely char-
acterised: in addition to phagocytosis, exosomes produced by the 
irradiated cancer cells may contribute to this process.55

The IFN- I produced in the TME was demonstrated to be critical 
for the recruitment of cDC1 to the tumour and for the devel-
opment of spontaneous and radiation- induced antitumour CD8 
T cell responses in experimental models.56–58 Once loaded with 
tumour antigens and activated by DAMPs in the irradiated 
tumour, cDC1 migrate to the draining lymph node (dLN) where 
they activate naïve CD8 T cells.59 Therefore, the functionality of 
the dLN is critical for priming of antitumour T cell responses 
by radiation: consistently, inclusion of the dLNs in the irradiated 
field and their damage have been shown to hinder this process,60 
a clinically relevant finding.

Once activated in the dLN tumour- specific CD8 T cells migrate 
to the tumour, guided by inflammatory cytokines and chemo-
kines that are upregulated by radiation.61,62 Their ability to 
extravasate and infiltrate the tumour is enhanced by radiation- 
induced adhesion molecules on the vascular endothelium.59,63 
Recognition and killing of the cancer cells by cytotoxic CD8 T 
cells (CTLs) is also enhanced by radiation- induced upregulation 
of major histocompatibility class I antigens (MHC- I), NKG2D 
ligands and death receptors on the cancer cells.64–67 Conversely, 
radiation- induced upregulation of programmed death ligand-1 
(PDL-1) on the cancer and myeloid cells can inhibit CTL- 
mediated tumour rejection.68,69

Enhanced presentation of some tumour antigens by MHC- I 
expressed on the cancer cells following radiation has been shown 
to improve their recognition by CTL.65,66 Reits et al66 investi-
gated in more details the mechanisms whereby irradiated cancer 
cells increase their expression of surface MHC- I. They demon-
strated by mass spectrometry analysis of the peptides eluted from 
surface MHC- I of the melanoma MelJuSo cell line that peptides 
derived from enzymes involved in DNA repair and protein 
catabolism, which are upregulated in expression following radi-
ation, were uniquely presented by the irradiated cells. We have 
provided the first evidence of development of CD8 T cells specific 
for a mutated neoantigen encoded in KPNA2, a gene upregu-
lated in expression by radiation, in a patient with chemotherapy- 
refractory metastatic non- small cell lung cancer (NSCLC) that 
was treated with ipilimumab and focal radiotherapy to one 
metastasis.21 These tumour- specific T cell clones appeared in 

the peripheral blood shortly after completion of radiation and 
the first cycle of ipilimumab, and remained elevated while the 
patient achieved a complete response in all of the non- irradiated 
lesions. Together with an increase in IFN- I that was detectable in 
the circulation following radiation, these data support the inter-
pretation that in situ vaccination was achieved in this patient, 
and that the observed abscopal effects were mediated by the 
neoantigen- specific T cells. This patient was part of a clinical 
trial of combined ipilimumab and focal radiation in refractory, 
metastatic NSCLC. In this disease setting, ipilimumab alone has 
demonstrated lack of significant activity, however in 18% of the 
39 patients accrued objective abscopal responses were detected 
with the addition of focal radiotherapy to a single lesion. Of 
notice, patients with objective responses had a significant eleva-
tion of IFN- I when measured in the blood 3 weeks post- radiation 
and compared to pre- radiation levels.21

Overall, current data support a model whereby radiation, as a 
direct consequence of DNA damage, elicits cellular responses 
that mimic a viral infection. The cytosolic DNA stimulates IFN- I 
and downstream ISGs to recruit and activate DCs. Immunogenic 
mutations that are expressed in rapidly induced genes involved 
in DNA repair and stress responses are preferentially presented 
in the MHC- I pathway, similarly to the rapid synthesis and 
preferential presentation of viral genome- encoded proteins in 
infected cells.70 The lower antigen levels required at the effector 
phase as compared to the priming phase of the antitumour 
immune response, may explain the abililty of T cells specific 
for immunogenic mutations upregulated by radiation to medi-
ated abscopal responses. Morevover, both in mice and cancer 
patients, CTL- mediated killing of tumour cells has been shown 
to induce an antigen cascade or spread, i.e. the activation of T 
cells recognising additional tumour antigens different from the 
antigen recognised by the CTL.71,72 Thus, efficient killing at the 
irradiated tumour site could prime T cells to multiple tumour 
antigens that are shared with the non- irradiated metastases.

Barriers to the abscopal effect
Despite the progress made in understanding the immunolog-
ical effects of ionising radiation, and the emerging promise of 
the combination of immunotherapy and radiation, responses 
remain unpredictable. Additional studies are needed to under-
stand why in some patients focal radiotherapy with ICB elicits 
abscopal responses while in others it fails to. Table 1 lists some of 
the potential mechanisms to explain these failures, by schemati-
cally grouping them as associated with three main sources, host, 
tumour and treatment. Naturally, multiple causes may converge 
to generate therapeutic failure, and are listed separately to simply 
ease their description. Examples of host’s characteristics that may 
preclude the abscopal effect include hematological impairment 
at the time of combined treatment, with a neutrophil to lympho-
cytic ratio >4,20 limited tolerance to ICB, hindering adequate 
blockade,45 and the presence of a microbiome that is unfavour-
able to response to ICB.73

Among the possible causes that are tumour- specific are the 
downregulation of the molecular machinery required for the 
IFN- I pathway activation in response to radiation (for instance, 
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through the process of methylation),74 the induction of multiple 
immunosuppressive mediators, including PDL-1, TGFβ, 
adenosine,68,69,75 and the reality of antigenic heterogeneity 
among different metastases.76 Evidence is rapidly emerging for 
the need to individually define and then strategically address 
multiple immunosuppressive mechanisms that characterise 
patients’ established metastasis, to achieve therapeutic success of 
radiation and immunotherapy combinations.77

With regard to treatment- related barriers, much debate exists 
on how to optimise the application of classical radiotherapy 
when combined with immunotherapy and particularly ICB. 
Our group has compared fractionated (3–5 fractions of 6 to 8 
Gy each) vs single dose regimens of radiotherapy, and shown the 
superiority of the former in inducing abscopal responses with 
ICB in preclinical models.41 Similarly, a fractionated treatment 
with 2 doses of 7.5 Gy/fraction was shown to be more effec-
tive at inducing tumour control and tumour immunity than a 
single dose of 15 Gy by Schaue et al.78 Although data from trials 
comparing prospectively different radiation regimens for their 
efficacy in inducing abscopal responses with ICB in patients are 
not available, a recent retrospective review of patients with brain 
metastasis treated with ICB and either single dose or fractionated 
stereotactic radiosurgery (SRS) supports the superiority of the 
hypo- fractionated regimen of 9 Gy in three fractions (total dose 
27 Gy) vs single dose SRS.79 A similar fractionation regimen (8 
Gy in 3 fractions, total dose 24 Gy) was tested by Theelen et al80 
in a prospective trial of metastatic NSCLC patients, comparing 
radiotherapy plus pembrolizumab to drug alone and demon-
strating doubling of objective response rate and median survival 
by the combinatorial approach. More studies are warranted to 
establish the optimal fractionated regimen and whether ablative 
doses (BED >100) are required81–83

Finally, as mentioned above, genomic and immune heterogeneity 
among metastatic sites is common and has been shown to affect 
antigenic composition and influence the response to immu-
notherapy.76,84,85 While targeting a single site and monitoring 
response outside the field is a practical way to assess a successful 
systemic immune response, in a setting of advanced metastatic 
disease it is likely to be limited by the fact that different metas-
tases may not share common antigens. An approach of irradi-
ating each metastatic site, as tested in a pilot study by Palma et 
al86 in the setting of oligometastatic disease (up to five sites) has 
shown to significantly enhance survival when compared to best 

supportive care, and offers promise for combination with ICB, 
and future immunotherapies.

conclusions
The original intuitions for a systemic effect of ionising radiation 
have been confirmed by preclinical work on the viral mimicry of 
ionising radiation and substantiated a new therapeutic paradigm 
that applies focal radiotherapy as a partner to immunotherapy. 
Both modalities have the potential to benefit from the partner-
ship, but much research is still required to refine this approach 
and enhance its potential to successfully immunise patients 
against their cancers.

The path so perceptively opened by Mole in his original publi-
cation in this journal is now followed by many investigators. 
Furthermore, growing numbers of patients are surviving their 
cancer because of the abscopal effects of radiation.

Interest in the abscopal effect has catalysed efforts to understand 
the immune effects of radiation and has enabled its combination 
with modern immunotherapy, opening a novel application for 
one of the oldest cancer treatments.
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Table 1. Examples of mechanisms associated with failure to achieve an abscopal response to radiation and immunotherapy

Host Tumour Treatment
Advanced immune- suppression Cytosolic DNA sensors and/or IFN- I genes methylation Inadequate immunotherapy to overcome established 

cancer immunosuppression

Patient microbiome Induction of multiple immune suppressive mediators 
(TGF β, adenosine, PDL-1)

Suboptimal dose and fractionation of radiation

Host toxicity after 
immunotherapy

Cancer heterogeneity Suboptimal targeting (need to treat all tumour sites)
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