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Abstract Many tasks used to study decision-making encourage subjects to integrate evidence

over time. Such tasks are useful to understand how the brain operates on multiple samples of

information over prolonged timescales, but only if subjects actually integrate evidence to form their

decisions. We explored the behavioral observations that corroborate evidence-integration in a

number of task-designs. Several commonly accepted signs of integration were also predicted by

non-integration strategies. Furthermore, an integration model could fit data generated by non-

integration models. We identified the features of non-integration models that allowed them to

mimic integration and used these insights to design a motion discrimination task that disentangled

the models. In human subjects performing the task, we falsified a non-integration strategy in each

and confirmed prolonged integration in all but one subject. The findings illustrate the difficulty of

identifying a decision-maker’s strategy and support solutions to achieve this goal.

Introduction
Unlike reflexive behaviors and simple sensorimotor response associations, cognitive functions are

not beholden to fleeting sensory information or the real-time control of motor systems. They incor-

porate many samples of information, spanning timescales of tenths of seconds to years. A fruitful

approach to study how the brain operates on information over prolonged timescales has been to

record and perturb neural activity while subjects make decisions about noisy sensory stimuli

(Shadlen and Kiani, 2013). The presence of this noise encourages subjects to reduce it by integrat-

ing the sensory information over time. If the timescale of integration is long enough, then the neural

mechanisms of this decision process are likely to provide insight into those that allow cognitive pro-

cesses to operate over long timescales.

One concern is that a subject may not integrate sensory evidence when making these decisions,

even though they are encouraged to do so. The concern is exacerbated in animal subjects because

they must learn the task without explicit instructions. Experimentalists are therefore posed with a

challenge: they must infer a subject’s decision strategy from behavioral measurements like choice-

accuracy and reaction time (RT). Correct identification of a subject’s strategy is especially important

for neuroscience, which aims to elucidate biological mechanisms of evidence integration. Results

cannot bear on the neural mechanisms of evidence integration if subjects were not integrating

evidence.
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Mathematical models of evidence integration provide a framework for using behavioral measure-

ments to infer a subject’s decision strategy. These models posit that samples of noisy evidence are

integrated over time until a threshold is exceeded or until the stream of evidence (e.g. the stimulus)

is extinguished, at which point a decision is made. Examples include drift-diffusion, race, and

attractor models (Gold and Shadlen, 2007; Deco et al., 2013). Integration models predict several

observations that are common in behavioral data: in fixed stimulus duration (FSD) tasks, subjects’

decisions appear to incorporate evidence presented throughout the entire stimulus presentation

epoch (e.g. Odoemene et al., 2018; Deverett et al., 2018; Morcos and Harvey, 2016; Katz et al.,

2016; Yates et al., 2017; Wyart et al., 2012); in variable stimulus duration (VSD) tasks, accuracy

improves with increasing stimulus duration (e.g. Britten et al., 1992; Gold and Shadlen, 2000;

Kiani et al., 2008; de Lafuente et al., 2015; Kiani and Shadlen, 2009; Bowman et al., 2012;

Brunton et al., 2013; Robertson et al., 2012); and, in free response (FR) tasks, RTs for the most dif-

ficult stimulus conditions are longer than those for easier stimulus conditions (e.g. Roitman and

Shadlen, 2002; see Ratcliff and McKoon, 2008 for review). Indeed, the fits of integration models to

behavioral data are often remarkably precise. These observations are commonly adduced to con-

clude that a subject integrated evidence.

Yet, it is unclear whether these observations reveal a subject’s actual decision strategy. For exam-

ple, previous work has shown that models that posit little to no integration can also fit data from FR

tasks (Ditterich, 2006; Thura et al., 2012). This raises a critical question: which behavioral observa-

tions corroborate an integration strategy? In cases where integration cannot be differentiated from

strategies that lack integration, it will be important to identify why, as doing so may aid the design

of experiments that encourage integration.

We compared the predictions of evidence integration to those of strategies that lack integration

in a number of task-designs. We found that many signatures of evidence integration are also pre-

dicted by non-integration strategies, and we identified the critical features that allowed them to

mimic integration. We used these insights to design a novel variant of the random-dot-motion dis-

crimination task that disentangles evidence integration from non-integration strategies. With this

task-design, we ruled-out a non-integration strategy in each subject and confirmed prolonged inte-

gration times in all but one. Our results underscore the difficulty of inferring subjects’ strategies in

perceptual decision-making tasks, offer an approach for doing so, and illustrate the importance of

evaluating strategies at the level of individual subjects.

Results
We explored the observations predicted by an evidence integration strategy and those predicted by

two non-integration strategies in binary perceptual decision-making tasks. The main model repre-

senting an integration strategy was a variant of the drift-diffusion model (Ratcliff and McKoon,

2008) that has been used extensively to explain behavioral data from random-dot-motion discrimi-

nation tasks (Figure 1A). For simplicity, we refer to this model as integration. It posits that noisy evi-

dence is sequentially sampled from a stationary distribution of random values representing the

noisy momentary evidence from the stimulus and is perfectly integrated (i.e. with no leak). The deci-

sion can be terminated in two ways: either the integrated evidence exceeds one of two decision-

bounds (the timing of which determines the decision’s duration) or the stimulus is extinguished. In

both cases, the choice is determined by the sign of the integrated evidence.

The first non-integration model we considered was extrema detection (Figure 1B). The model

was inspired by probability summation over time (Watson, 1979), which was proposed as an expla-

nation of yes-no decisions in a detection task. Extrema detection is also similar to other previously

proposed models (Cartwright and Festinger, 1943; Ditterich, 2006; Cisek et al., 2009;

Brunton et al., 2013; Glickman and Usher, 2019). In the extrema detection model, evidence is sam-

pled sequentially from a stationary distribution until a sample exceeds one of two decision-bounds,

which terminates the decision. Crucially, however, the sampled evidence is not integrated. Evidence

that does not exceed a decision-bound has no effect on the decision; it is ignored and forgotten. If

an extremum is detected, the process is terminated and no additional evidence is considered. If the

evidence stream extinguishes before an extremum is detected, then the choice is made independent

of the evidence (i.e. random guessing).
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The second non-integration model, what we term snapshot, not only lacks integration but also

sequential sampling. The decision-maker acquires a single sample of evidence at a random time dur-

ing the stimulus presentation. This single sample of evidence is compared to a decision criterion in

order to resolve the choice. The distribution of sampling times is not constrained by any mechanism

and can thus be inferred to best match data. Similar to extrema detection, if the evidence stream

extinguishes before a sample is acquired, then the choice is determined by a random guess. To facil-

itate comparison, we parameterized the three models as similarly as possible, such that they were
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Figure 1. Three general decision-making models. Each schematic represents the evidence that resulted in a

single, positive choice. (A) The evidence integration model. Sequential samples of noisy momentary evidence are

integrated over time until a decision-bound is reached, resulting in a positive or negative choice. The momentary

evidence is assumed to be sampled from a Gaussian distribution with mean proportional to the stimulus strength.

If the stimulus is extinguished before a decision-bound is reached, then the decision is based on the sign of the

integrated evidence. (B) The extrema detection model. Momentary evidence is sequentially sampled but not

integrated. A decision is made when one of the samples exceeds a detection threshold (i.e. an extremum is

detected). Samples that do not exceed a detection threshold are ignored. If the stimulus is extinguished before an

extremum is detected then the choice is determined randomly. (C) The snapshot model. Momentary evidence is

neither sequentially sampled nor integrated. Instead, a single sample of evidence (i.e. a snapshot) is acquired on

each trial and compared to a decision criterion to render a choice. The sampling time is random and determined

before the trial begins.
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conceptually nested. In other words, extrema detection only differed from integration in its lack of

integration, and snapshot only differed from extrema detection in its lack of sequential sampling.

We assumed flat decision-bounds in the integration and extrema detection models, unless stated

otherwise.

In the first part of this paper, we simulated each model in fixed stimulus duration, variable stimu-

lus duration, and free response task-designs to identify observations that differentiate between inte-

gration and non-integration strategies. On each simulated trial, the models specified a positive or

negative choice based on noisy sensory evidence. We also tested whether an integration model can

fit simulated data generated by non-integration models. Our primary focus with this complementary

approach was not to validate (or invalidate) that a model comparison metric favors the non-integra-

tion model, but to ask whether the integration fit could lead to erroneous conclusions had the non-

integration models not been considered. In the second part of the paper, we used the insights

gained from the first part to identify the decision strategies of subjects performing a random-dot-

motion discrimination task.

Integration and non-integration strategies are difficult to differentiate
Fixed stimulus duration tasks
In FSD task-designs, the sensory stimulus is presented for a fixed, experimenter-controlled duration

on every trial and subjects report their choice after viewing the stimulus. The stimulus strength typi-

cally varies across trials such that the correct choice ranges from obvious to ambiguous. Therefore, if

a subject performs well and integrates evidence, they should exhibit a sigmoidal psychometric func-

tion that saturates at near-perfect accuracy when the stimulus is strong.

To infer integration, the experimenter also exploits the stochastic aspects of the stimulus and

attempts to ascertain when, during the stimulus presentation, brief fluctuations in stimulus strength

about the mean exerted leverage on the decision. The strength of evidence is represented as a time

series, and the experimenter correlates the variability in this value, across trials, with the decision.

This is achieved by averaging across the trials ending in either decision and subtracting the averages

or by performing logistic regression at discrete time points spanning the stimulus duration. We refer

to the outcome of either approach as a psychophysical kernel (Figure 2B). It is a function of time

that putatively reflects a subject’s temporal weighting profile, or the average weight a subject places

on different time-points throughout the stimulus presentation epoch (cf. Okazawa et al., 2018). The

shape of the psychophysical kernel is thought to be informative of decision strategy because a given

strategy often predicts a specific temporal weighting profile. For example, a subject that perfectly

integrates evidence weights every time-point in the trial equally, and so they ought to have a flat

psychophysical kernel. In a FSD task-design, the observations of a flat psychophysical kernel and suc-

cessful task-performance (i.e. a sigmoidal psychometric curve) are commonly cited as evidence for

an integration strategy (e.g. Shadlen and Newsome, 1996).

We found that these observations also arise from non-integration models. We simulated integra-

tion, extrema detection, and snapshot (with a uniform sampling distribution) in a FSD task-design

and asked whether extrema detection and snapshot can generate data that mimics data generated

by integration. As shown in Figure 2A, the extrema detection and snapshot models can produce sig-

moidal psychometric curves whose slope matched that of the integration model.

Given the simulated choice-data, all three models produced psychophysical kernels that are effec-

tively indistinguishable (Figure 2B). To calculate a psychophysical kernel for each model, the simula-

tions included a small, 100 ms stimulus pulse whose sign and timing were random on each trial (see

Materials and methods for details). The kernel was calculated by determining the pulse’s effect on

choices as a function of time, as defined by a logistic regression (Figure 2B). The non-integration

models posit that only a very short time-period during the stimulus epoch contributes to the choice

on each trial. Yet, their psychophysical kernels misleadingly suggest that evidence presented

throughout the entire stimulus epoch contributed to choices. These results held for a range of gen-

erating parameters (Figure 2—figure supplement 1). We thus conclude that the observations of

high choice-accuracy and a flat psychophysical kernel are not, on their own, evidence for or against

any particular decision-making strategy.

Why are extrema detection and snapshot able to mimic integration in a FSD task? First, they can

match the choice-accuracy of the integration model because of the lack of constraints on how the
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sensory stimulus is transformed into a signal-to-noise ratio (SNR) of the momentary evidence. In

each model, this transformation is determined by a single parameter, k. In many cases, the SNR can-

not be measured directly and thus the true SNR is generally unknown. Each model’s k parameter is

therefore free to take on any value. This bestows extrema detection and snapshot with the ability to

produce choice-accuracy that matches that of integration; while these models are highly suboptimal

compared to the integration model, they can compensate by adopting higher SNR (Figure 2A,

inset).

Nevertheless, this trade-off does not explain why extrema detection and snapshot can produce

flat psychophysical kernels. Snapshot can produce a flat kernel—and theoretically any other kernel

shape—because the data analyst is free to assert any distribution of sampling times. The shape of

the desired psychophysical kernel can thus be used to infer the shape of the distribution of sampling

times. To generate a flat kernel, we used a uniform distribution for the sampling times.

It is less intuitive why extrema detection can predict a flat kernel. Indeed, in extrema detection,

the sample of evidence that determines the choice is exponentially distributed in time (see

Materials and methods). This implies that the model should produce early temporal weighting that

decays toward zero. The degree of early weighting is governed by the k and decision-bound param-

eters, the combination of which determines the probability of detecting an extremum on each sam-

ple for a given stimulus strength. If this probability is high, then it is very likely that an extremum will

be detected early in the trial. In contrast, if this probability is low enough, then detecting an extre-

mum late in the trial will only be slightly less likely than detecting it early in the trial. A low detection

probability also leads to more trials that end before an extremum is detected, in which case the

choice is determined by random guessing. These guess trials effectively add noise centered at zero

weighting to the kernel. With this noise, it is exceedingly difficult to distinguish the very slight, early

weighting from flat weighting, even with tens of thousands of trials.
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Figure 2. Integration and non-integration models produce similar psychometric functions and psychophysical

kernels in a fixed stimulus duration task (stimulus duration = 1 second). (A) Proportion of positive choices as a

function of stimulus strength for each model simulation (N = 30,000 trials per simulation). The inset displays the

SNR parameter (k) for each of the three models. All three models are capable of producing sigmoidal

psychometric functions of similar slope but require different SNR parameters. (B) Psychophysical kernels produced

from the choice-data in A. Each simulated trial contained a small, 100 ms long stimulus pulse that occurred at a

pseudorandom time during the trial. Kernels are calculated by computing the pulse’s effect on choices

(coefficients of a logistic regression, Equation 16) as a function of pulse time. Shaded region represents the

standard error. Like integration, non-integration models are capable of producing equal temporal weighting

throughout the stimulus presentation epoch.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Extension of the exercise in Figure 2 to a low sensitivity regime (A) and a high sensitivity

regime (B).
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Variable stimulus duration tasks
A major benefit of integrating information over time is that a decision-maker can reduce noise

through averaging. This leads to a prediction: a subject’s sensitivity (i.e. accuracy) should improve if

they are given more time to view the stimulus, and thus average-out more noise. More precisely, if a

subject is perfectly integrating independent samples of evidence, then the improvement in sensitivity

should be governed by the square-root of the stimulus duration. This prediction can be tested with a

VSD task, in which the experimenter-controlled stimulus duration on each trial varies randomly.

Indeed, sensitivity often improves with increasing stimulus duration and often does so at the rate

predicted by perfect integration (Kiani et al., 2008; Brunton et al., 2013). These observations are

complemented by the fact that integration models fit VSD data well. If these observations can be

relied on to conclude that a subject was integrating evidence, then they should be absent for data

generated by non-integration models.

Yet, simulations reveal that these observations are also predicted by non-integration models. We

simulated VSD data with either an extrema detection model or a snapshot model (with an exponen-

tial sampling distribution). The figure shows that the sensitivity of both models improved with

increasing stimulus duration, although sensitivity plateaued for the longer stimulus durations (data

points in Figure 3A and B, respectively).

Unlike integration, the extrema detection and snapshot models do not improve their sensitivity

by averaging-out noise. Instead, the improvement of sensitivity is attributed to the guessing mecha-

nisms posited by the models. If the stimulus extinguishes before an extremum is detected or a sam-

ple is acquired, then the models’ decisions are based on a coin flip. Thus, the simulated data result

from two types of trials: ones in which decisions are based on sampled evidence, and ones in which

decisions result from random guessing. The models predict that sensitivity should improve with time

because guesses are less likely with longer stimulus durations (Figure 3C–D).

Given this integration-like behavior of extrema detection and snapshot, we wondered whether an

integration model could successfully—and hence misleadingly—fit the simulated datasets.

Figure 3A and B show fits of the integration model (magenta curves) to the simulated extrema

detection and snapshot data, respectively. Note that the model fits deviate from perfect integration

at the longest stimulus durations because of the decision-bound parameter, which allows a decision

to be made before the stimulus extinguishes (see Kiani et al., 2008). Qualitatively, integration pro-

vided an excellent account of the simulated extrema detection dataset. Indeed, the agreement

between the integration model and the data might lead an experimenter to erroneously conclude

that the data were generated by an integration strategy. The fit of the integration model to the sim-

ulated snapshot dataset was noticeably worse (Figure 3B). We also compared the fit of the integra-

tion model to that of the corresponding data-generating model (Figure 3A–B, dashed curves) using

a standard model comparison metric. For both datasets, a model comparison unsurprisingly favored

the data-generating model over the integration model (DBIC ¼ �70:34 when extrema detection gen-

erated the data; DBIC ¼ �182:79 when snapshot generated the data). We found similar results when

integration served as the data-generating model (Figure 3—figure supplement 1A); the extrema

detection model fit the simulated data well, whereas the snapshot model did so considerably worse.

In our implementations of extrema detection and snapshot, choices are determined by random

guessing if the stimulus extinguishes before an extremum is detected or a sample is acquired. We

considered whether a different rule for choices in this condition would lead to different conclusions.

One alternative is a ‘last-sample’ rule, in which the sign of the final evidence sample determines the

choice. Similar rules are often implicit in models that implement a non-integration strategy with high

levels of leak (e.g. the ‘burst detector’ model from Brunton et al., 2013). For snapshot, a last-sam-

ple rule eliminated the model’s ability to improve its sensitivity with time because expected perfor-

mance is independent of when the snapshot is acquired. However, this was not the case for the

extrema detection model. Figure 3—figure supplement 1B shows the fit of the last-sample model

to the simulated data in Figure 3A, which was generated by an extrema detection model that used

the guess rule. The last-sample rule still predicts sensitivity that increases with stimulus duration, but

with a shallower slope. Interestingly, the fit was worse than that of the integration model

(DBIC ¼ 8:73), even though the last-sample model is conceptually similar to the data-generating

model. As is the case in a FSD task-design, the guessing mechanism is essential to extrema detec-

tion’s mimicry of integration in a VSD task-design.
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Free response tasks
In a FR task, subjects are free to report their decision as soon as they are ready, thus furnishing two

measurements on each trial: the subject’s choice and reaction time (RT; relative to stimulus onset).

Note that any model designed to explain data from a FR task must prescribe how a decision is termi-

nated (e.g. a decision bound). Additionally, models generally posit that the measured RT is the sum

of the duration of two processes: (i) the decision process—the evaluation of evidence up to termina-

tion—and (ii) a set of operations, unrelated to the decision, comprising sensory and motor delays.

The durations i and ii are termed the decision time and the non-decision time, respectively. Bounded

evidence integration explains why decisions based on weaker evidence are less accurate and take

longer to make, and it can often explain the precise, quantitative relationship between a decision’s

speed and accuracy (Gold and Shadlen, 2007; Ratcliff and McKoon, 2008).

Could FR data generated from a non-integration model be mistakenly attributed to integration?

Several analyses and model fitting exercises on simulated data demonstrate that this is indeed possi-

ble. First, extrema detection also predicts that RT should depend on the stimulus strength

(Figure 4A, top; see also Ditterich, 2006): the weaker the stimulus strength, the more samples it

5

10

20

S
e

n
s
it
iv

it
y

0.1 0.2 0.4 0.8

Stimulus duration (s)

0

0.2

0.4

0.6

0.8

P
ro

b
. 
g

u
e

s
s
 t
ri
a

l

A

C D

B
Integration

Snapshot
Extrema detection

5

10

20

0.1 0.2 0.4 0.8

Stimulus duration (s)

0

0.1

0.2

0.3

Figure 3. Non-integration models mimic integration in a variable stimulus duration (VSD) task. (A) Sensitivity as a

function of stimulus duration for simulated data generated from an extrema detection model (black data points;

N = 20,000 total trials). Sensitivity is defined as the slope of a logistic function (Equation 18) fit to data from each

stimulus duration (error bars are s.e.). The dashed cyan line represents the data-generating function (extrema

detection). The solid magenta line represents the fit of the integration model to the simulated data. Although the

data were generated by an extrema detection model, there is a close correspondence between the data and the

integration fit. (B) The same as in (A), except the data were generated by a snapshot model. (C,D) The probability

of a guess trial as a function of stimulus duration. Extrema detection (C) and snapshot (D) mimic integration in a

VSD task in part because of the ‘guess’ rule. If the stimulus is extinguished before an extremum is detected or a

snapshot is acquired, the choice is determined by a random guess.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Integration as the data-generating model (A) and exploration of a last-sample rule in

extrema detection (B).
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takes for an extremum to be detected. In contrast, the snapshot model does not predict this—and

hence does not mimic integration—because the time at which a sample is acquired is independent

of stimulus strength. For this reason, we do not include snapshot in subsequent analyses.

Second, it is possible for integration to successfully predict choice-accuracy from mean RTs, even

though the data were generated by an extrema detection model. The integration model with flat

bounds has separate, closed-form equations that describe the RT and choice functions given a set of

model parameters (see Materials and methods). This allows us to estimate the model parameters

that best fit the mean RT data, which can then be plugged into the equation for the choice function

to generate predictions for the choice-data (Shadlen and Kiani, 2013; Kang et al., 2017;

Shushruth et al., 2018). Conveniently, the same procedure can be performed using the equations

derived for the extrema detection model (also with flat bounds; see Materials and methods). The

top panel in Figure 4A shows the fits of both models to the simulated mean RTs (solid curves), and

the bottom panel displays the resulting choice-accuracy predictions (dashed curves). The predictions

of both models are remarkably accurate, and, the models are indistinguishable on the basis of either

the RT fits or the choice-accuracy predictions. Further, the similarity of the models’ behavior does

not depend on which is the data-generating model; extrema detection can fit RT means and predict

choice-accuracy when integration serves as the data-generating model (Figure 4—figure supple-

ment 1). Thus, although an integration model might accurately fit—and even predict—data from a

FR task-design, strong conclusions may not be warranted. Later, however, we will show that choice-

accuracy predictions can be informative with just one additional constraint.

Finally, integration and extrema detection are not distinguishable on the basis of the shapes of

the RT distributions. Because the models assume that RTs are determined by the sum of the decision

time and the non-decision time, the predicted distribution for RT is the convolution of the decision
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extrema detection model (black data points; N = 19,800 total trials, 1800 trials per stimulus strength). RT (top) and the proportion of positive choices

(bottom) are plotted as a function of stimulus strength. Solid colored curves are fits of the integration (magenta) and extrema detection (cyan) models

to the mean RTs. Dashed curves are predictions using the parameters obtained from the RT fits. Note that the models’ predictions are

indistinguishable. (B,C) The models produce similar RT distributions (right) but predict different decision times (left) and non-decision times (middle).

The predicted RT distribution is the convolution (denoted by *) of the decision time distribution with the non-decision time distribution. (B) Depicts

these distributions for difficult trials (stimulus strength = 0) and (C) depicts these for easy trials (stimulus strength = ±.512).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Extrema detection can fit RT means and predict choice-accuracy when integration serves as the data-generating model.

Figure supplement 2. Model comparison between integration and extrema detection for simulated data.
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time distribution with the non-decision time distribution (here, assumed to be Gaussian). As

described earlier, the extrema detection model posits decision times that are exponentially distrib-

uted. Thus, one might be tempted to rule-out this model because RTs do not typically conform to

an exponential distribution. However, after convolving the exponential decision time distribution

with the Gaussian non-decision time distribution, the resulting RT distribution is similar to that of the

integration prediction and to what is typically observed in data (Figure 4B and C). Indeed, the ex-

Gaussian distribution—precisely what the extrema detection model predicts—is often used as a

descriptive model of RT distributions (Luce, 1986; Ratcliff, 1993; Whelan, 2008). We fit the integra-

tion and extrema detection models to the RT distributions simulated by extrema detection. Both

models fit these RT distributions reasonably well (by eye), although a model comparison favored

extrema detection (DBIC ¼ �316:41).

A more systematic model-comparison further illustrates that the models are difficult to disentan-

gle in a FR task, especially when there is a limited number of trials. We simulated 600 datasets, half

of which were generated by integration and the other half of which were generated by extrema

detection. Each dataset comprised 10, 100, or 1000 trials per signed stimulus strength and the gen-

erating parameters were chosen pseudorandomly within a range of plausible parameter values (see

Materials and methods). We then fit the full RT distributions of each simulated dataset with the inte-

gration and extrema detection models and calculated a DBIC statistic for each comparison (Fig-

ure 4—figure supplement 2). With 10 trials per stimulus strength (120 trials in total), the large

majority of DBICs did not offer strong support for either model (DBIC<10 in 181 of 200 datasets)

and a large proportion of datasets with 100 trials per stimulus strength (1200 trials in total) still did

not yield strong support for either model (DBIC<10 in 63 out of 200 datasets). In contrast, all but

one dataset with 1000 trials per stimulus strength (12,000 trials in total) yielded strong support for

the data-generating model.

While extrema detection and integration predict similar RT distributions, extrema detection pre-

dicts shorter decision times and longer non-decision times. Because decision times are exponentially

distributed in the extrema detection model, they are skewed toward shorter times compared to inte-

gration (Figure 4B and C, left). The model also predicts shorter decision times because it requires

high SNR; the probability of detecting an extremum on each sample is exceedingly high when the

stimulus is strong, such that the decision is made within a few samples. Given shorter decision times,

extrema detection must predict longer non-decision times in order to produce RT distributions that

are similar to those produced by integration (Figure 4B and C, middle). Importantly, the difference

in non-decision time is robust and typically ranges from 50 to 150 ms. Therefore, empirical con-

straints on the non-decision time should, in theory, disentangle the models.

Our results thus far show that many observations commonly taken as evidence for an integration

strategy can also be explained by non-integration strategies. However, we also identified the factors

that allow non-integration models to mimic integration. In the next section, we leverage these

insights to design a task that disentangles the models and test whether subjects used an integration

strategy to perform the task.

A motion discrimination task that disentangles the models
The modeling exercises described above illustrate that integration and extrema detection differ in

their predictions for SNR (determined by the k parameter) and non-decision time (in FR task-

designs). This suggests that constraining the estimates of these parameters should cause the models

to make predictions that are substantially different and hence testable. How can this be achieved

experimentally? It is generally not possible to measure the SNR of the momentary evidence used by

a subject, and an estimation of SNR from neural data relies upon assumptions about how sensory

information is encoded and decoded (e.g. Ditterich, 2006). Instead, we reasoned that SNR in a FR

task ought to be closely matched to that in a VSD task, so long as properties of the sensory stimulus

are unchanged. Therefore, if a subject performs trials in both a VSD and a FR task-design, a model

that accurately estimates SNR should be able to parsimoniously explain data from both trial-types

with a single, common k parameter. A model that does not accurately estimate SNR would require

two separate k parameters to explain data from both trial-types. To be even more stringent, a suc-

cessful model should be able to fit data from one trial-type and use the estimated k parameter to

accurately predict data from the other trial-type. We also reasoned that the non-decision time can

be constrained and/or empirically estimated through conditions that minimize the decision time. If a
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subject makes decisions that are so automatic that the decision times are negligible, then the result-

ing RTs would reflect only the non-decision time and hence confer an empirical estimate of the non-

decision time distribution. Additionally, because decision time generally decreases as the stimulus

strength increases, the non-decision time can be constrained by including sufficiently strong stimulus

strengths.

We incorporated these constraints into a random-dot-motion (RDM) discrimination task. The task

requires subjects to judge the direction of motion in the RDM stimulus and report their decision by

making an eye movement to a corresponding choice target (Figure 5A). We included blocks of trials

that switched between a FR design and a VSD design and forced the models to fit data from the

VSD trials using the k parameter derived from fits to FR trials. We constrained the non-decision time

in two ways: first, we interleaved a small proportion of 100% coherence trials, which contain

completely unambiguous motion and thus require minimal decision time to render a correct choice.

Second, we conducted a supplementary experiment in which subjects received trials that

included only 100% coherent motion and were instructed to respond as quickly as possible while

maintaining perfect accuracy. We refer to these trials as speeded decision trials. In these trials, deci-

sion time is minimized as much as possible, thereby giving rise to an empirical estimate of the non-
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Figure 5. A motion discrimination task that disentangles the integration and extrema detection models. (A) Schematic of the task. The task requires

subjects to judge the direction (left versus right) of a random-dot-motion (RDM) movie in blocks of free response (FR) and variable stimulus duration

(VSD) trials. In a second task (not shown), subjects were presented with 100% coherent motion only and were instructed to respond as fast as possible

while maintaining perfect accuracy. (B) Simulation of FR trials in the RDM task (N = 2145 trials, 165 trials per stimulus strength). Reaction time (top) and

the proportion of positive choices (bottom) are plotted as a function of stimulus strength. Data (black points) were generated from an extrema

detection model (same parameters as in Figure 4). Positive (negative) motion coherence corresponds to rightward (leftward) motion. The arrow shows

the non-decision time used to generate the simulated data. Solid curves are model fits to the mean RTs. Both models were constrained to use the

data-generating non-decision time. Dashed curves are predictions using the parameters obtained from the RT fits. With the non-decision time

constrained, only the data-generating model succeeds in fitting and predicting the data. (C) Simulation of VSD trials (N = 3000 trials). Data (black

points) were generated with an extrema detection model, using the same k parameter as in B. Dashed curves are model fits. Each model’s k parameter

was fixed to the value estimated from fits to the FR data. (D, E) Same as in (B) and (C) with integration as the data-generating model.
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decision time mean and standard deviation. We forced the models to adopt these non-decision time

estimates when fitting data.

Before describing the experimental results, we first verify, through simulations, that this task-

design disentangles the models. Figure 5B-E shows model fits to simulated data generated by

extrema detection and integration performing the task described above. The models can be clearly

distinguished. First, only the data-generating model successfully predicted choice-data from mean

RTs (Figure 5B, D). Interestingly, each model failed in a systematic way when it was not the data-

generating model: the integration model produced an overly narrow RT function and overestimated

the slope of the choice function; the extrema detection model produced an overly broad RT function

and underestimated the slope of the choice function. Second, only the data-generating model suc-

cessfully predicted sensitivity in the VSD trials when forced to use the k parameter derived from fits

to the FR data (Figure 5C and E). Finally, a model comparison heavily favored the data-generating

model when comparing fits to the full RT distributions (DBIC ¼ �1172:0 when extrema detection

generated the data; DBIC ¼ 1080:1 when integration generated the data). We will use these analyses

as benchmarks when we analyze data from the human subjects.

The decision strategies of human subjects performing a motion
discrimination task
Six human subjects performed the motion discrimination task. As expected, stronger motion led to

more accurate and faster choices in FR trials (Figure 6A). In VSD trials, longer stimulus durations

were associated with greater sensitivity (Figure 6B). The speeded decision trials gave rise to similar

non-decision time estimates across the six subjects (black arrows, top row of Figure 6A; Table 1),

and it succeeded in minimizing decision time, as RTs in this experiment were substantially faster than

those for the 100% coherence trials that were interleaved in the main experiment (Figure 6—figure

supplement 1). As predicted by our results in the first part of the paper, if we did not include the

constraints on the non-decision time and SNR, integration and extrema detection could not be

clearly differentiated on the basis of their fits to—and predictions of—the subjects’ data (Figure 6—

figure supplement 2).

With constraints on the non-decision time and k parameter, extrema detection was incompatible

with each subject’s dataset. Figure 6A shows the mean RT fits (solid curves) and the corresponding

choice-data predictions (dashed curves) for both models. We also fit a logistic function to the

choice-data alone (black curves), which approximates an upper-limit on the quality of the choice-

accuracy predictions given binomial variability and the assumption that choices are explained by a

logistic function of motion coherence. Extrema detection produced visibly poor fits to the mean RTs

in many cases, and in all cases fit the mean RTs worse than integration (Table 1). Additionally, the

model systematically underestimated the slope of the choice function when predicting choice-data.

In other words, the subjects’ choice-accuracy was too high to be explained by an extrema detection

model, given their pattern of decision times.

We next asked whether the extrema detection model can accurately fit the VSD data using the k

parameter estimated from fits to the FR data. While the variants of the models we used to fit the

mean RTs are parsimonious in that they use only four free parameters, they may not yield the most

accurate estimates of the k parameter. Therefore, we estimated k with an elaborated version of

each model in which the decision-bounds can symmetrically collapse toward zero as a function of

time. The collapsing decision-bounds allow the models to fit the full RT distributions while account-

ing for some features in the data that are not accounted for by the parsimonious model (e.g. longer

RTs on error trials; see Ditterich, 2006). These estimates of k are shown in Table 2 (top row), and

were generally similar to the values estimated by the parsimonious model (Table 1, top row). With k

constrained, the extrema detection model’s fits to the VSD trials were visibly poor for four of the six

subjects (dashed cyan curves in Figure 6B). In the remaining two subjects (S3 and S5), extrema

detection produced a reasonable fit to the VSD data. Nevertheless, for every subject, extrema

detection failed at least one of the benchmarks described above.

In contrast, we found strong evidence in favor of the integration model for some of the subjects.

For subjects 1-3, the model’s ability to fit and predict data despite rigid constraints was remarkable.

First, the predicted choice function closely resembled the fitted logistic function (Figure 6A), and

the log-likelihood of the prediction was statistically indistinguishable from that of the logistic fit in

two of these subjects (S1: p ¼ 0:012; S2: p ¼ 0:052; S3: p ¼ 0:058, bootstrap). Second, integration
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could accurately fit data from VSD trials using the k parameter derived from fits to the FR data

(Figure 6B). Finally, integration was heavily favored over extrema detection when fitting the full RT

distributions (Table 2). We thus find clear support for an integration strategy in three of the human

subjects.

For subjects 4-6, the evidence in favor of the integration model was less compelling. The model

overestimated the slopes of the choice functions for subjects 4 and 5 (dashed curves, bottom row of

Figure 6A), and these predictions were worse than those of the extrema detection model (Table 1).

In subject 6, integration offered a reasonable prediction for the slope of the psychometric function,

but inaccurately predicted the subject’s choice-bias. The fit of the integration model to these sub-

jects’ VSD data also produced mixed results (Figure 6B). The integration model could fit VSD data

from subject 5 using the k parameter derived from the fits to the FR data, but, as mentioned above,

so could the extrema detection model. And, in subjects 4 and 6, constraining the k parameter

caused integration to underestimate sensitivity as a function of stimulus duration. Despite these

shortcomings, integration was heavily favored over extrema detection for these subjects based on

fits to the full RT distributions (Table 2).
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Figure 6. Failure of the extrema detection model and mixed success of the integration model in human subjects performing the RDM task. (A) Free

response (FR) trials. Reaction times (top) and proportion of rightward choices (bottom) as a function of motion strength for six human subjects (error

bars are s.e.; ~1800 trials per subject). Positive (negative) motion coherence corresponds to rightward (leftward) motion. The arrows (top) indicate each

subject’s estimated non-decision time from the speeded decision trials. Solid curves are model fits to the mean RTs (integration, magenta; extrema

detection, cyan). Dashed curves are model predictions using the parameters obtained from the RT fits. Solid black lines (bottom) are fits of a logistic

function to the choice-data alone. For visualization purposes, data from the interleaved 100% coherence trials are not shown (see Figure 6—figure

supplement 1). (B) Variable stimulus duration (VSD) trials (~3000 trials per subject). Sensitivity as a function of stimulus duration for the same subjects as

in (A). Sensitivity is estimated using logistic regression (sliding logarithmic time window, see Materials and methods). Dashed curves are model fits to

the VSD data, using the k parameter derived from model fits to the FR data.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Data from the RDM task for each subject, separated by trial-type.

Figure supplement 1. The reaction times from the ‘speeded decision’ experiment provide a better estimate of the non-decision time than those from

the interleaved, 100% coherence trials.

Figure supplement 2. Without constraints on the non-decision time and SNR, the models cannot be easily distinguished.
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Thus far, we have primarily drawn conclusions based on how well the data conform to predictions

made by integration and extrema detection, but this approach has its drawbacks. First, it implies a

potentially false dichotomy between the two models. Second, the approach requires us to arbitrarily

determine whether a model’s predictions are good enough, because no reasonable model will ever

perfectly predict all of the idiosyncrasies associated with real data. Finally, it is unclear what to con-

clude when neither model makes accurate predictions. Our results are a case in point: for subjects

1–3, the integration predictions were good but not always perfect; and, in subjects 4–6, the predic-

tions of both models were mediocre. This invites a more nuanced approach.

Integration and extrema detection can be thought of as two ends of a continuum of sequential

sampling models that differ in their degree of leaky integration. Integration posits a time-constant of

infinity (i.e. no leak or perfect integration) and extrema detection posits a time-constant of zero (i.e.

infinite leak). In a leaky integration model, the time-constant is a free parameter that lies between

zero and infinity (Busemeyer and Townsend, 1993; Usher and McClelland, 2001). The time-con-

stant determines the rate at which the decision variable decays to zero with a lack of sensory input—

that is, it determines how much information is lost as new information is acquired. It thus bestows

the model with some flexibility over the relationship between decision-time and choice-accuracy.

Our results give rise to two hypotheses in the context of the leaky integration model: (1) The model

should support negligible information loss for the subjects who were well-explained by perfect inte-

gration. (2) The model should support non-negligible information loss for the subjects who could not

be explained by either perfect integration or extrema detection.

Table 1. Parameters of the integration and extrema detection models (with flat bounds) fit to mean RT data.

DBICs are relative to the fit of the integration model. Positive values indicate that integration produced a better fit/prediction.

Model Integration Extrema detection

Subject S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

k 15.7 13.57 17.53 9.9 21.96 6.69 103.3 55.07 104.87 55.18 130.3 42.64

B 0.87 0.77 0.909 1.25 1.16 0.958 0.0757 0.0727 0.076 0.0786 0.078 0.0766

C0 �0.008 �0.0453 �0.012 �0.006 �0.005 �0.02 �0.006 �0.0448 �0.0121 0.026 0.001 �0.031

tND mean
(empirical)

0.39 0.326 0.394 0.367 0.351 0.42 0.39 0.326 0.394 0.367 0.351 0.42

DBIC:
RT fit

0 0 0 0 0 0 471.36 204.4 202.88 135 494.7 71.74

DBIC:
choice prediction

0 0 0 0 0 0 127.42 90.64 146.38 �31.78 �11.62 121.38

Table 2. Parameters of the integration and extrema detection models with collapsing decision-bounds (see Materials and methods)

fit to full RT distributions.

DBIC values are relative to the fit of the integration model. Positive values indicate that integration produced a better fit.

Model Integration Extrema detection

Subject S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

k 19.79 11.86 21.91 7.97 19.11 5.88 120.2 60.84 170.91 55.38 146.52 36.26

B0 1.0828 0.698 1.159 1.15 1.08 0.98 0.0765 0.0739 0.085 0.0796 0.0791 0.0772

a 0.7 5.0 0.53 14.3 5.24 1.97 47.34 1.2 0.165 0.285 0.55 9.18

d 0.4 8.0 0.33 12.4 12.36 31 2.3 4.0 0.0005 49 49 32

�tnd (empirical) 0.39 0.326 0.394 0.367 0.351 0.42 0.39 0.326 0.394 0.367 0.351 0.42

stnd (empirical) 0.05 0.043 0.036 0.079 0.07 0.068 0.05 0.043 0.036 0.079 0.07 0.069

C0 �0.0103 �0.05 �0.0099 �0.002 �0.0054 0.0139 �0.0126 �0.0746 �0.0107 �0.0035 �0.0064 0.017

DBIC 0 0 0 0 0 0 1,495.1 607.1 801.2 464.0 701.2 889.1
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To obtain our best estimate of the integration time-constant, we fit the leaky integration model

to the FR and VSD data simultaneously, thereby forcing the model to fit both datasets with a com-

mon k and leak parameter, and the decision-bounds were allowed to collapse toward zero over

time. As before, the model was also forced to adopt the empirical estimates of the non-decision

time mean and standard deviation. All other parameters were allowed to take on any value and

were allowed to vary across the two trial-types. With this fitting protocol, we could faithfully recover

the parameters that generated simulated datasets (Figure 7—figure supplement 1).

Figure 7A shows the model’s estimated time-constant for each subject. For subjects 2 and 3, the

time-constants were effectively infinite. As such, the leaky integration model was functionally equiva-

lent to the perfect integration model. Consistent with this conclusion, a model comparison sup-

ported that the addition of a leak parameter was not justified for these subjects (DBIC>� 10;

Figure 7B). The estimated time-constant for subject 1 was shorter than the time-constants for sub-

jects 2 and 3. However, the DBIC indicates that the leak parameter was not strongly justified. Note

the large Bayesian credible intervals for the estimated time-constants (Figure 7A, thick orange lines

for the interquartile range, thin orange lines for the 95% credible interval). This is because the time-

constant becomes less identifiable as its value approaches and exceeds the longest decision times.

The estimated lower bounds for the time-constants are close to the decision times at the

most difficult stimulus conditions, again suggesting that these subjects made decisions by integrat-

ing motion information with little to no information loss.

We found evidence for leaky integration in two of the remaining three subjects. In subjects 4 and

5, the model produced time-constants that were just below 1 s (0.80 s for subject 4, 0.84 s for
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Figure 7. Fits of a leaky integration model. (A) Integration time-constants estimated with a leaky integration

model for each subject (S1–S6). The fits to FR and VSD data were constrained to share a common k parameter.

Thick and thin lines represent 50% and 95% Bayesian credible intervals, respectively, estimated by Variational

Bayesian Monte Carlo (VBMC; Acerbi, 2018). (B) Comparison of the leaky integration and perfect integration

models. Negative DBIC values indicate support for the leaky integration model. The leaky integration model is

supported in S4 and S5 (DBIC<� 10; dashed line). (C) Leaky integration model fits for FR trials from S4 and S5.

Data are the same as in Figure 6. (D) Leaky integration model fits for VSD trials from the same subjects as in (C).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Parameter recovery for the leaky integration model.
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subject 5; Figure 7A) and the addition of the leak parameter substantially improved the quality of

the model fit (Figure 7B). Figure 7C and D (orange curves) shows these fits, which capture the main

features of both datasets. Note, however, that the model still slightly underestimated the sensitivity

of subject 4 for the shortest stimulus durations. Finally, the leaky integration model failed to account

for data from subject 6. The fitted time-constant was indistinguishable from infinity (Figure 7A) and

thus the failure of the perfect integration model (Figure 6, subject 6) could not be accounted for by

leak.

Discussion
We considered three general classes of decision-making strategies—sequential sampling with inte-

gration (e.g. drift diffusion), sequential sampling without integration (e.g. extrema detection), and

no sequential sampling and no integration (e.g. snapshot)—and found that disentangling integration

and non-integration strategies is more difficult than previously appreciated. Simulations of these

models in different task-designs showed that several observations interpreted as conclusive evidence

for integration were also predicted by non-integration strategies. Additionally, the integration model

consistently fit simulated data well, even when these data were generated by non-integration mod-

els. Together, these results demonstrate the ease with which behavioral data could be misattributed

to an integration mechanism.

We are not the first to propose that non-integration mechanisms can explain behavior in percep-

tual decision-making tasks. In fact, the first model that attempted to reconcile accuracy with reaction

time resembles our extrema detection model (Cartwright and Festinger, 1943). Similar non-inte-

gration mechanisms, known as probability summation, have long been used to explain the detection

of static stimuli as a function of their intensity, duration, and spatial properties (e.g. Sachs et al.,

1971; Watson, 1979; Robson and Graham, 1981). A parallel line of research showed that bounded

evidence integration is optimal for decisions based on sequences of independent samples (Bar-

nard, 1946; Wald, 1947; Good, 1979). Such integration models also reconcile accuracy with reac-

tion time (e.g. Stone, 1960; Ratcliff, 1978). Given these insights, one might naturally assume that

subjects integrate evidence when making decisions about stochastic stimuli, which comprise inde-

pendent samples of evidence. This assumption can be problematic, however, if untested. For as we

show here, integration and non-integration models can behave similarly.

In the first part of the paper, we identified several factors that allow non-integration models to

mimic integration. A crucial factor was the freedom of the models to fit the SNR of the momentary

evidence to the data. Non-integration models are highly suboptimal compared to integration and

therefore require higher SNR to produce the same level of performance. They are free to adopt this

relatively large SNR because the true SNR cannot be measured directly. In other words, there is a

trade-off between the SNR of the momentary evidence and the efficiency with which evidence sam-

ples are combined. Integration and non-integration models account for the same data by assuming

different balances between the two. Of course, only one balance between SNR and efficiency holds

in reality for a given dataset, and this is why the models can be disentangled if the SNR is adequately

constrained. We demonstrate that the SNR can be adequately constrained if its estimate is derived

from a separate task-design (see also Drugowitsch et al., 2016).

In FSD and VSD task-designs, we found that non-integration models mimicked integration in part

because of a guessing mechanism. If the stimulus extinguished before an extremum was detected or

a sample was acquired, then the decision was based on a coin-flip. This guessing rule allowed

extrema detection to produce a range of psychophysical kernel shapes in a FSD task and to improve

sensitivity with increasing stimulus duration in a VSD task. An alternative to guessing is to base the

choice on the final sample, and we show that this variant of the model does not mimic integration.

Therefore, it is possible to rule-out this variant based on data that conform to integration, but the

same may not hold for extrema detection with a guessing rule.

In agreement with Ditterich, 2006, we found that extrema detection mimics integration in a FR

task in part because the non-decision time is unconstrained. Given fits to the same dataset, extrema

detection predicts longer non-decision time than integration. This observation is a consequence of

its exponentially distributed decision times and the aforementioned requirement of higher SNR,

both of which require the non-decision time to compensate for the relatively short decision times.

The difference in predicted non-decision time between the two models manifests at strong stimulus
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strengths—that is, conditions that minimize decision time. If these conditions are excluded from

experimental designs, then the models can evade punishment for inaccurate estimates of the non-

decision time.

The results from the first part of the paper illustrate the difficulty of ruling out non-integration

strategies. There are several implications. At the very least, experimenters should not assume sub-

jects integrate evidence just because integration is the optimal strategy. The results also imply that a

given behavioral observation should be adduced as conclusive evidence for an integration strategy

only if it is not reproduced by alternative strategies. Notably, non-integration models mimicked inte-

gration for reasons that were often counterintuitive, which stresses the importance of testing the

predictions of alternative models through simulations (see also Palminteri et al., 2017; Wilson and

Collins, 2019). Similarly, our findings discourage experimenters from drawing strong conclusions

about decision strategy or an underlying neural mechanism based on the quality of a model fit, with-

out first verifying that the model fails to fit data from conceptually opposing mechanisms. The practi-

ces that our results caution against are relatively standard in the field. Indeed, our own group has

used these practices in previous work to support claims about subjects’ decision strategies. It would

be prudent to consider potential alternative strategies when designing experiments in order to

ensure that behavioral data is not misattributed to an integration mechanism.

Such misattribution could lead to a variety of errors when neural data is used to make inferences

about the neural mechanisms of integration. For example, if data generated by a non-integration

strategy were misattributed to an integration strategy, an experimenter might mistake short bursts

of neural activity for a mechanism of integration, or they might conclude that a brain area does not

integrate because its activity does not reflect an integration process. In cases where neural activity is

perturbed, brain areas that are essential to evidence integration might not be identified as causal.

This is not to say that neural activity cannot, in its own right, inform models of the decision process.

Ditterich (2006) used this approach to show that neural responses in the lateral intraparietal area

are most consistent with an integration process that includes a time-variant gain. More broadly, if

neural responses clearly reflect integrated evidence (e.g. Huk and Shadlen, 2005), then it would be

reasonable to presume that the subjects’ decisions were based on integrated evidence.

The misidentification of decision strategy could also be problematic when model fits to behavioral

data are used to make inferences about underlying mechanisms. This approach is widely applied in

mathematical psychology (Ratcliff and McKoon, 2008) and computational psychiatry

(Montague et al., 2012). We showed that the misidentification of a subject’s decision strategy leads

to parameter fits that are systematically misleading. For example, fits of the integration model to

simulated data generated by extrema detection led to an underestimate of both SNR and non-deci-

sion time. Therefore, it is possible that differences in best-fitting model parameters between experi-

mental groups (e.g. patients vs. controls) do not actually reflect a difference in these parameters but

in the strategies deployed by the two groups. A more explicit consideration of alternative strategies

will add to our ability to link specific model components to underlying mechanisms. Indeed, it might

reveal differences between experimental groups or conditions that would have otherwise gone

undetected.

We wish to emphasize that integration models are often useful even in the absence of evidence

for an integration strategy. They can be used as descriptive models of behavioral data. For example,

they allow experimenters to estimate a subject’s sensitivity while controlling for RT or characterize a

subject’s speed-accuracy trade-off. The model’s use in these ways is similar to the use of signal

detection theory models to derive a criterion-free estimate of sensitivity (Green and Swets, 1966).

Furthermore, many studies on decision-making are ambivalent about whether subjects integrated

evidence but can still use integration models to draw conclusions about other components of the

decision process. For example, in Kang et al. (2017), subjects performed a motion discrimination

task and, after viewing the stimulus, adjusted the setting of a clock to indicate the moment they felt

they had reached a decision. The authors used an integration model to conclude that

aspects of these subjective decision times accurately reflected the time at which a decision-bound

was reached. They fit the model to the subjective decision times and the resulting parameters could

accurately predict subjects’ choices. Another germane example is work from Evans et al. (2018),

who used an integration framework to study the neural mechanism of the decision bound in mice

making escape decisions. They identified a synaptic mechanism that produced an all-or-nothing

response in the dorsal periaqueductal grey when it received a critical level of input from the superior
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colliculus, which caused the mice to flee. While our results suggest that neither study produced

definitive behavioral evidence for integration, substituting extrema detection for integration would

not change the studies’ main conclusions.

In the second part of the paper, we used the insights derived from our simulations to design a

version of the RDM discrimination task that constrained the SNR and non-decision time. The con-

straints allowed us to rule-out a non-integration strategy for each subject we tested, which is consis-

tent with the idea that SNR in visual cortex would have to be implausibly high in order for a non-

integration strategy to be viable in a RDM task (Ditterich, 2006). We found strong evidence for

effectively perfect integration in half of our subjects. In these subjects, the predictions of the perfect

integration model were remarkably accurate, even with strong parameter constraints. Data from two

of the remaining three subjects appeared to lie somewhere between the predictions of perfect inte-

gration and no integration, and fits of a leaky integration model were consistent with this observa-

tion. The time-constants estimated by the leaky integration model suggested that these subjects

integrated with only minimal information loss. Surprisingly, no model we tested offered a satisfactory

explanation of the data from subject 6. The failure of the models in this subject nonetheless reinfor-

ces the fact that the models were not guaranteed to succeed in the other subjects.

We accounted for some of the failures of the perfect integration model with a leaky integration

model; however, we suspect some other models that do not posit leaky integration could do so as

well. Examples include models that only integrate strong evidence samples (Cain et al., 2013), com-

peting accumulator models with mutual inhibition but no leak (Usher and McClelland, 2001), and

models that posit noise in the integration process itself (Drugowitsch et al., 2016). The shared fea-

ture of these models and leaky integration is that they involve information loss. We focused on leaky

integration because, for those who seek to understand how information is maintained and manipu-

lated over long time-scales, substantial leakage would be most problematic. With this in mind, the

fact that the ‘leaky’ subjects yielded time-constants on the order of half a second to a second is

encouraging. At the very least, they were integrating information over time-scales that are substan-

tially longer than the time-constants of sensory neurons and the autocorrelation times of the visual

stimulus. Furthermore, the time-constants are likely underestimated. Our estimates of the non-deci-

sion time are biased toward longer times because we assume decision time is negligible in the

speeded decision experiment, and an overestimate of the non-decision time would lead to an under-

estimate of the time-constant.

While the small number of subjects we used prevents us from making sweeping claims, the appar-

ent variability in decision strategy across our subjects underscores the importance of analyzing data

at the level of individuals. Many of our findings would be obfuscated had we not analyzed each sub-

ject separately. Our insights are also relevant to an ongoing debate about whether subjects’ deci-

sions are better explained by an urgency-gating model (Cisek et al., 2009; Thura et al., 2012;

Carland et al., 2015a; Carland et al., 2015b), which posits little to no integration, or a drift-diffusion

model (Winkel et al., 2014; Hawkins et al., 2015; Evans et al., 2017). A subject’s strategy could lie

somewhere between no integration and perfect integration or in a completely different space of

models. A subject may also change their strategy depending on several factors, including the task

structure, the nature of the stimulus, and the subject’s training history (Brown and Heathcote,

2005 ; Evans and Hawkins, 2019; Tsetsos et al., 2012; Glaze et al., 2015; Ossmy et al.,

2013). Further characterization of the factors that affect decision strategy will be an important direc-

tion for future work.

Of course, our approach is not the only one available to rule-out non-integration strategies. For

example, Pinto et al. (2018) tasked mice with counting the number of visual ‘pulses’ that appeared

as the mice ran through a virtual corridor. The authors showed that a snapshot strategy predicted a

linear psychometric function under certain conditions in their task, which did not match the mice’s

behavioral data. Additionally, Waskom and Kiani (2018) were able to rule-out a non-integration

strategy for humans performing a contrast discrimination task. Discrete evidence samples were

drawn from one of two possible distributions, and subjects chose which generating distribution was

most likely. Because the distributions overlapped, there was an upper bound on the performance of

any strategy that utilized only a single sample, and subjects performed better than this upper bound.

This approach could be used in similar task-designs (e.g. Drugowitsch et al., 2016). Finally, as men-

tioned above, Ditterich (2006) showed that the SNR in visual cortex would have to be implausibly

high in order for a non-integration strategy to explain data from a RDM discrimination task. These
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examples and others (e.g. Glickman and Usher, 2019) illustrate that the best approach for ruling-

out non-integration strategies will likely depend on the specifics of the stimulus and the task-design.

Nevertheless, any attempt to differentiate integration from non-integration strategies requires

that the latter be considered in the first place. Here, we demonstrated the importance of such con-

sideration, identified why non-integration strategies can mimic integration, and developed an

approach to rule them out. The general approach should be widely applicable to many evidence

integration tasks, although it will likely require modifications. It explicitly mitigates the factors that

allow non-integration strategies to mimic integration and allow integration models to fit data gener-

ated by alternative mechanisms. By doing so, non-integration strategies can be ruled-out, and the

predictions of evidence integration models can be tested in a regime where they can reasonably fail.

We hope that our insights help lead to more precise descriptions of the processes that underlie deci-

sions and, by extension, cognitive processes that involve decisions. Such descriptions will enhance

our understanding of these processes at the level of neural mechanism.

Materials and methods

Description of the models
We explored four decision-making models. A shared feature of all four models is that they render

decisions from samples of noisy momentary evidence. We model the momentary evidence as ran-

dom values drawn from a Normal distribution with mean � ¼ k C � C0ð Þ and unit variance per sec-

ond, where k is a constant, C is the stimulus strength (e.g. coherence), and C0 is a bias term. We

implement bias as an offset to the momentary evidence because the method approximates the nor-

mative solution under conditions in which a range of stimulus strengths are interleaved, such that

decision time confers information about stimulus strength (see Hanks et al., 2011). Note that each

model receives its own set of parameter values. Each strategy differs in how it uses momentary evi-

dence to form a decision.

Integration
We formalized an integration strategy with a drift-diffusion model. The model posits that samples of

momentary evidence are perfectly integrated over time. The expectation of the momentary evidence

distribution is termed the drift rate, and its standard deviation is termed the diffusion coefficient.

The decision can be terminated in two ways: (i) The integrated evidence reaches an upper or lower

bound (�B), whose sign determines the choice; (ii) The stream of evidence is extinguished, in which

case the sign of the integrated evidence at that time determines the choice. Note that only (i)

applies in a FR task-design because the stimulus never extinguishes before a decision-bound is

reached.

To estimate the predicted proportion of positive (rightward) choices as a function of stimulus

strength and duration in a VSD task, we used Chang and Cooper’s finite difference method (1970)

to numerically solve the Fokker-Planck equation associated with the drift-diffusion process. We

derive the probability density of the integrated evidence (x) as a function of time (t), using a Dt of 0.5

ms. We assume that x ¼ 0 at t ¼ 0 (i.e., the probability density function is given by a delta function,

p x; t ¼ 0ð Þ ¼ d 0ð Þ). At each time step, we remove (and keep track of) the probability density that is

absorbed at either bound. The proportion of positive (rightward) choices for each stimulus duration

is therefore equal to the density at x>0 at the corresponding time point. We fit the model parame-

ters (k; B;C0) to VSD data by maximizing the likelihood of observing each choice given the model

parameters, the signed stimulus strength, and the stimulus duration. Unless otherwise stated, we

used Bayesian adaptive direct search (BADS; Acerbi and Ji, 2017) to optimize the model parame-

ters. All model fits were confirmed using multiple sets of starting parameters for the optimization.

Unless stated otherwise, when fitting VSD data from the ’constrained’ RDM task (see below; e.g. Fig-

ure 6), instead of fitting the k parameter, we used the k parameter estimated from fits of an elabo-

rated, collapsing bound model to FR data (see below).

For the FR task, we used two variants of the model. The first is more parsimonious, and assumes

that the decision bounds are flat (as above). This variant of the model provides analytical equations

for the predicted proportion of positive choices and mean RT:
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Pþ ¼ 1þ e�2k C�C0ð ÞB
h i�1

(1)

tR ¼ B

k C�C0ð Þ tanh k C�C0ð ÞB½ �þ tND (2)

where tND is the mean non-decision time, which summarizes sensory and motor delays. Equation 2

allowed us to fit the model’s parameters to the mean RTs, which we then used to predict the psy-

chometric function with Equation 1. Note that Equation 2 explains the mean RT only when the sign

of the choice matches the sign of the drift rate (for nonzero stimulus strengths). To account for this,

we identified trials to be included in the calculation of mean RTs by first finding the point of subjec-

tive equality (PSE), given by a logistic function fit to choices. We then only included trials whose

choice matched the sign of the stimulus strength, adjusted by the PSE. The PSE was not taken into

account when fitting the C0 parameter. The parameters in Equation 2 (k; B;C0; tND) were fit by maxi-

mizing the log-likelihood of the mean RTs given the model parameters, assuming Gaussian noise

with standard deviation equal to the standard error of the mean RTs. Optimization was performed

using MATLAB’s fmincon function.

We also used a more elaborate variant of the model that allowed the decision-bound to collapse

toward zero over time in order to explain full, choice-conditioned RT distributions. In principle, the

elaborated model should provide a more precise estimate of k because it takes into account all the

data instead of just the mean RTs. The model also explains features of the data that are not

explained by the flat-bounds model (e.g. longer RTs on error trials). In the elaborated model, the

bounds remained symmetric around zero but were a logistic function of time:

B tð Þ ¼�B0 1þ ea t�dð Þ
� ��1

(3)

where a is constrained to be nonnegative. The predicted decision time distribution for each stimulus

strength and choice was derived by computing the probability density of the integrated evidence

that exceeded each decision bound. We convolved these decision time distributions with a Gaussian

non-decision time distribution with mean �tnd and standard deviation stnd in order to generate the

predicted RT distributions. The model parameters (k;B0;a;d;C0;�tnd;stnd) were fit by maximizing the

log-likelihood of the observed RT on each trial given the model parameters, the stimulus strength,

and the choice.

Extrema detection
In the extrema detection model, each independent sample of momentary evidence is compared to a

positive and negative detection threshold or bound (�B). As with integration, the decision can be

terminated in two ways: (i) A sample of momentary evidence exceeds �B, in which case the decision

is terminated and the choice is determined by the sign of �B. (ii) The stream of evidence is extin-

guished. In the latter case, we implemented two different rules for determining the choice. The main

rule we implemented posits that the choice is randomly determined with equal probability for each

option. We believe this ’guess’ rule is most appropriate because the essence of the model is that evi-

dence is ignored if it does not exceed a detection threshold. We also explored a rule in which the

choice is determined by the sign of the last sample of evidence acquired before the stimulus extin-

guished, which we termed a ’last sample’ rule (Figure 3—figure supplement 1B). Note that extrema

detection and integration had the same set of free parameters and the procedures for fitting the

two models were identical.

The behavior of the model is primarily governed by the probability of exceeding �B on each sam-

ple. These probabilities are described by,

pþB ¼
1

2
erfc

B��Dt
ffiffiffiffiffiffiffi

2Dt
p

� �

; (4)

p�B ¼
1

2
erfc

Bþ�Dt
ffiffiffiffiffiffiffi

2Dt
p

� �

(5)
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where erfc is the complementary error function. The equations represent the density of the momen-

tary evidence distribution that exists beyond �B. We assumed Dt¼ 0:5 ms and adopted the same

variance per time-step as in the integration model. The probability of a positive choice, conditional

on an extremum being detected, is therefore,

P þchoicejEð Þ ¼ pþB

pþBþ p�B

; (6)

where E signifies an extremum was detected. Note that we use uppercase P to represent probabili-

ties associated with trial outcomes and lowercase p to represent probabilities associated with single

samples of evidence. The probability of a positive choice, conditional on the stimulus extinguishing

before an extremum is detected, depends on the choice rule. For the guess rule this probability is

0.5. For the last sample rule it is the probability that the sample was greater than zero and did not

exceed �B:

Pguess þchoicej:Eð Þ ¼ 1

2
; (7)

Plast sample þchoicej:Eð Þ ¼
R B

0
Mdx

R B

�B
Mdx

: (8)

where M is the momentary evidence distribution. Note that none of the equations above depend on

the passage of time (i.e., the number of samples). However, the cumulative probability of detecting

an extremum does increase with the number of samples and is described by a cumulative geometric

distribution:

PE ¼ 1� 1� p�Bð ÞN (9)

where N is the number of samples (N ¼ t=Dtd e). The fact that Equation 9 depends on the number of

samples, as opposed to time, is potentially important. It means that the cumulative probability of

detecting an extremum depends not only on p�B, but also Dt. We used a Dt¼ 0:5 ms in order to

match that used in the integration model, and the results were unchanged when we used Dt¼ 1 ms.

However, the behavior of the model could change with changes to the sampling rate. Combining

Equation 6 through 9 gives us the probability of a positive choice as a function of stimulus duration

in a VSD experiment:

P þchoicejtð Þ ¼ PEP þchoicejEð Þþ 1�PEð ÞP þchoicej:Eð Þ: (10)

In a FR experiment, the decision can only be terminated if an extremum is detected. Therefore,

the predicted proportion of positive choices is given by Equation 6. The predicted mean RT, in sec-

onds, is described by,

tR ¼ Dt
1

p�B

þ tND: (11)

Similar to the procedure for fitting the integration model, Equation 11 was used to fit mean RT

data and the resulting model parameters were plugged into Equation 6 to generate a predicted

choice function.

As with the integration model, we used an elaborated model with collapsing decision bounds to

explain the full, choice-conditioned RT distributions. We used Equation 3 to parameterize the col-

lapsing bounds. The collapsing bounds cause the probability of detecting an extremum on each

sample to increase with time. The probability of the decision terminating after N samples (i.e. the

decision time distribution), regardless of choice, is described by,

PN ¼ p�B Nð Þ
n¼1

Y

N�1

1� p�B nð Þ
� �

(12)

where p�B nð Þ is the probability of exceeding a decision-bound on sample n. Intuitively, the cumulative

product represents the probability that an extremum is not detected after N� 1 samples. Note that
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Equation 12 simplifies to the geometric distribution when the decision-bounds are flat. The decision

time density function conditional on choice is the product of the unconditioned decision time density

function and the probability that a decision at each time-point will result in a positive (or negative)

choice. These density functions are then convolved with a truncated Gaussian non-decision time

probability density function to produce the predicted RT distributions (the truncation ensures that

non-decision times are always positive).

Snapshot
In the snapshot model, only a single sample of momentary evidence is acquired on each trial. We do

not consider mechanisms that would determine when the sample is acquired. We instead assume

that the time at which the sample is acquired is a predetermined random variable and is indepen-

dent of the stimulus strength. The distribution that describes this random variable can be chosen

arbitrarily. For simplicity, the sampling times were assumed to be uniformly distributed in the FSD

task. We used an exponential distribution for the sampling times in the VSD task, although several

other distributions produced similar results. If the sample is acquired before the stimulus extin-

guishes, then the choice is determined by the sample’s sign. Otherwise, the choice is randomly

assigned with equal probability for each option. The probability of a positive choice when a sample

is acquired is described by,

P þchoicejSð Þ ¼ 1

2
erfc

�
ffiffiffi

2
p

� �

: (13)

The overall probability of a positive choice as a function of viewing duration is then,

P þchoicejtð Þ ¼ PSP þchoicejSð Þþ 1

2
1�PSð Þ (14)

where PS is the probability of acquiring a sample. It is a function of viewing duration and depends

on the distribution of sampling times. While Equation 14 resembles what is described for extrema

detection (Equation 10), there is a crucial difference: unlike extrema detection, the probability that

a choice is based on evidence is independent of the stimulus strength. In a FR task, the probability

of a positive choice is governed by Equation 13. The predicted RT distribution is simply the distribu-

tion of sampling times convolved with the non-decision time distribution, and it is independent of

the stimulus strength.

Leaky integration
The leaky integration model is a simple extension of the (perfect) integration model. The model pos-

its that the rate of change of the decision variable depends on both the momentary evidence and its

current value, the latter of which causes it to decay exponentially or ’leak’ toward zero if input is

withdrawn. The decay’s half-life is determined by a single parameter, which is termed the integration

time-constant, t . The shorter the time-constant the more the decision variable ’leaks.’ Perfect inte-

gration and extrema detection can be thought of as special cases of the leaky integration model, in

which the time-constant is infinite and zero, respectively. The decision variable, x, is modeled as an

Ornstein-Uhlenbeck (O-U) process, such that,

dx¼ �lxþ�ð Þdtþ �
ffiffiffiffi

dt
p

(15)

where l¼ t

�1 and � is the standard Wiener process.

We developed a method to derive the probability density function of the integrated evidence for

the leaky integration model. As for the perfect integration model, we assume that x ¼ 0 for t ¼ 0 (i.e.

probability density function of the integrated evidence is given by a delta function,

p x; t ¼ 0ð Þ ¼ d 0ð Þ). First, we propagate the probability density function of the integrated evidence,

p x; tð Þ, for one small time step (Dt ¼ 0:5 ms). We use Chang and Cooper’s implicit integration method

(Chang and Cooper, 1970; Kiani and Shadlen, 2009), assuming perfect integration from t to t þ Dt

(i.e., l ¼ 0). We then add the influence of the leak, through a linear transformation that maps the

probability of the integrated evidence being x at time t þ Dt, to a new value of integrated evidence,

x0, where x0 ¼ xe�Dt=l. This shrinks the probability density function toward zero in proportion to the
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leak parameter, l. We iterate the two-step process until the motion stimulus is turned off or until the

probability mass that has not been absorbed at either bound becomes negligibly small. As

described for the integration model, at each time step we remove (and keep track of) the probability

mass that is absorbed at either bound.

We estimated the posterior of the model parameters in order to determine the range of time-

constants that best explain each subject’s data (Figure 7A). Numerically calculating the posterior is

computationally expensive. Instead, we calculated approximate posterior distributions of our model

parameters with Variational Bayesian Monte Carlo (VBMC; Acerbi, 2018), which uses variational

inference and active-sampling Bayesian quadrature to approximate the posterior distributions. We

used highly conservative priors over the parameters when estimating the posteriors and changes to

the priors had negligible effects within a large range.

We also performed a parameter recovery analysis to verify that our fitting procedure and the

VBMC method accurately estimated ground-truth parameters used to generate data from the leaky

integration model. We simulated the constrained RDM task to produce nine datasets, each of which

were generated with a unique combination of k, B, and t (see Table 3). Each simulation contained

~3000 FR trials and 3000 VSD trials. We found that the approximate posteriors of the parameters,

obtained through VBMC, accurately reflect these parameters (Figure 7—figure supplement 1).

Model simulations
We simulated the integration, extrema detection, and snapshot models to compare the predictions

they made in different task-designs. Each trial had a randomly chosen stimulus strength that

remained constant throughout the trial’s duration. We used stimulus strengths that mimicked those

commonly used in a RDM discrimination task: ±.512, ±.256, ±.128, ±.064, ±.032, and 0. This allowed

us to calibrate our model parameters such that the simulated data resembled real data from RDM

tasks.

In the simulations of FSD experiments, each trial contained a transient stimulus pulse, which we

used to calculate a psychophysical kernel for each dataset. The pulse added or subtracted 0.1 units

of stimulus strength for 100 ms, thereby shifting the mean of the momentary evidence distribution

for that duration. After the 100 ms pulse, the stimulus strength returned to its original value. The

sign of the pulse was random and the timing of its onset was uniformly distributed in steps of 100

ms starting at t ¼ 0. The psychophysical kernel is described by the relationship between the time of

the pulse and its effect on choice across all trials, which we estimated with a logistic regression such

that

Pþ ¼ 1þ e�Xb
� ��1

; (16)

Table 3. Generating parameters used for the parameter recovery analysis (Figure 7—figure

supplement 1).

Each row represents the set of three parameters used to simulate data with the leaky integration

model.

Model parameters

Simulation k B t

1 15 0.5 0.1

2 14.63 0.55 0.15

3 14.25 0.59 0.23

4 13.88 0.65 0.36

5 13.5 0.71 0.55

6 13.13 0.77 0.84

7 12.75 0.84 1.28

8 12.38 0.92 1.96

9 12 1 3
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where X is a design matrix. The design matrix included a column for each pulse-onset time, which

took the form of a signed indicator variable (Xpulse 2{-1, 0, 1}). We also included a column for the tri-

al’s stimulus strength, although results were similar if this was not included. Each row of the design

matrix therefore summarizes the stimulus strength and the pulse-onset time for a given trial. The

ordinate in Figure 2B is the value of b associated with each pulse-onset time.

The simulations of VSD experiments were identical to the FSD simulations, except there were no

pulses and the stimulus duration on each trial was randomly chosen from a list of 12 possible, loga-

rithmically-spaced durations between 0.07 s and 1.0 s. Each simulation therefore yielded 12 psycho-

metric functions—one for each stimulus duration. To calculate a measure of sensitivity for each

stimulus duration, we fit each psychometric function with a logistic function and used the fitted slope

parameter to summarize sensitivity.

In the FR simulations, the stimulus remained on until a decision bound was reached. We did not

simulate the snapshot model in a FR task. For the model comparisons in Figure 4—figure supple-

ment 2, we generated 600 FR datasets, half of which were generated by integration and the other

half of which were generated by extrema detection. We varied the number of simulated trials among

10, 100, and 1000 trials per stimulus condition, such that there were 100 datasets per model per trial

count. For each model, we pseudorandomly chose 100 sets of generating parameters within a range

of plausible parameter values (Integration: 5<k<25; 0:6<1:2; 0:3<�tnd<0:4; 0:02<stnd<0:08; Extrema

detection: 50<k<215; 0:07<0:08; 0:46<�tnd<0:56; 0:09<stnd<0:11). The same 100 sets of generating

parameters were used across all three trial groups.

For the graphs in Figure 5, we simulated each model in a FR design and a VSD design using the

same k parameter for the two designs. The number of simulated trials in each design was similar to

that collected for the human subjects (~2000 total FR trials; ~3000 total VSD trials). The FR simulation

also included stimulus strengths of ±0.99 with the stimulus strengths listed above.

Random dot motion task
We explored the decision strategies of human subjects with a ‘constrained’ random-dot-motion

(RDM) discrimination task. The subjects were required to make a binary choice about the direction

of motion of randomly moving dots. The RDM movies were generated using methods described pre-

viously (Roitman and Shadlen, 2002). Three interleaved sets of dots were presented on successive

video frames (75 Hz refresh rate). Each dot was redrawn three video frames later at a random loca-

tion within the stimulus aperture or at a location consistent with the direction of motion; the motion

coherence is the probability of the latter occurring, and it remained constant throughout the dura-

tion of the trial. Note that even though the coherence does not fluctuate within a trial, the effective

motion strength (e.g. motion energy) at each time point does fluctuate due to the stochastic nature

of the stimulus (see Zylberberg et al., 2016). The stimulus aperture subtended 5˚ of visual angle,

the dot density was 16.7 dots/deg2/s, and the size of the coherent dot-displacement was consistent

with apparent motion of 5 deg/s. Stimuli were presented on a CRT monitor with the Psychophysics

toolbox (Brainard, 1997). Subjects’ eye positions were monitored with a video tracking system (Eye-

link 1000; SR Research, Ottawa, Canada).

Six subjects (five male and one female) performed the task. One subject (S3) is an author on this

paper. Another subject (S1) had previous experience with RDM stimuli but was naive to the purpose

of the experiment. The remaining four subjects were naive to the purpose of the experiment and did

not have previous experience with RDM stimuli. Each of these four subjects received at least one

training session (~1000 trials) before beginning the main experiment to achieve familiarity with the

task and to ensure adequate and stable task performance.

The main experiment consisted of two trial-types, VSD and FR, which were presented in blocks of

150 and 100 trials, respectively. Each subject performed ~4800 trials in total across 4-6 sessions,

yielding ~3000 VSD trials (S1: 2946 trials; S2: 3007; S3: 2656; S4: 3086; S5: 3095; S6: 3069) and

~1800 FR trials (S1: 1833 trials; S2: 1866; S3: 1814; S4: 1766; S5: 1831; S6: 1914). Subjects initiated a

trial by fixating on a centrally located fixation point (0.33˚ diameter), the color of which indicated the

trial-type (red for VSD trials, blue for FR trials). Two choice targets then appeared on the horizontal

meridian at 9˚ eccentricity, one corresponding to leftward motion and one corresponding to right-

ward motion. After 0.1 to 1 s (sampled from a truncated exponential distribution with t ¼ 0:3 sec),

the RDM stimulus appeared, centered over the fixation point. In VSD trials, subjects were required

to maintain fixation throughout the stimulus presentation epoch. Once the stimulus extinguished,
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subjects reported their choice via an eye movement to the corresponding choice-target. Fixation

breaks before this point resulted in an aborted trial. In order to ensure that subjects could not pre-

dict the time of stimulus offset, the stimulus duration on each trial was randomly drawn from a trun-

cated exponential distribution (0.07-1.3 s, t ¼ 0:4 sec). To account for the fact that the first three

video frames contain effectively 0% coherent motion (see above), we subtracted 40 ms from the

stimulus durations when modeling the VSD data (Figure 6B; Figure 7D). Doing so generally led to

better model predictions; our conclusions are unchanged if we do not subtract the 40 ms. We

assume that this 40 ms duration is accounted for by the non-decision time in FR trials. In FR trials,

subjects were free to indicate their choice at any point after stimulus onset and RT was defined as

the time spanning the stimulus onset and the indication of the choice. Additionally, ~7% of FR trials

contained 100% coherent motion. Subjects received auditory feedback about their decision on every

trial, regardless of trial-type, and errors resulted in a timeout of 1 s. Choices on 0% coherence trials

were assigned as correct with probability 0.5.

At the end of their final session, subjects also performed a block of 300 to 400 FR trials,

comprising only 100% coherent motion. Subjects were instructed to respond as fast as possible

while maintaining perfect performance. This supplemental experiment was designed to reduce deci-

sion times as much as possible. If decision times were negligible, the resulting RTs would approxi-

mate each subject’s non-decision time distribution. We used the mean and standard deviation of

this distribution as the non-decision time parameters when fitting the models to data from the main

experiment (see above). In practice, the decisions presumably take a very short, but non-negligible,

amount of time. Thus, this ‘empirical’ non-decision time distribution probably overestimates the

mean of the non-decision time, albeit slightly. Note that an overestimate of the non-decision time

would induce an underestimate of the integration time-constant. As such, its use is conservative with

respect to a claim that a subject is integrating over prolonged timescales.

Statistical analysis
We quantified the quality of a model fit using the Bayesian information criterion (BIC), which takes

into account the complexity of the model. The BIC is defined as

BIC¼ k � ln nð Þ� 2L̂ (17)

where n is the number of observations, k is the number of free parameters, and L̂ is the log-likeli-

hood of the data given the best-fitting model parameters. To compare the fits of two models, we

report the difference of the BICs. Note that because integration and extrema detection have the

same number of parameters, their DBIC is equivalent to the difference of the deviance of the mod-

els. We treated ‘pure’ model predictions (e.g., predicting the choice-data from mean RT fits), as

model fits with zero free parameters.

To evaluate the slope of a psychometric function and a reasonable upper-limit on the quality of

the model-predicted psychometric functions, we fit the choice-data with a logistic function, in which

the proportion of rightward choices is given by

Pright ¼ 1þ e� b0þb1Cð Þ
h i�1

(18)

where b0 determines the left-right bias and b1 determines the slope of the psychometric function.

This function represents an upper limit under the assumption that choices are governed by a logistic

function of coherence and binomial noise. To test whether the model prediction is significantly worse

than this upper limit, we used a bootstrap analysis. For each subject, we generated 10,000 boot-

strapped choice-datasets and fit each bootstrapped dataset with the logistic function above. We

then compared the resulting distribution of log-likelihood values with the log-likelihood of the model

prediction. The quality of the prediction was deemed significantly worse from that of the logistic fit

if at least 95% of the bootstrapped log-likelihoods were greater than the log-likelihood produced by

the model prediction.
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