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Abstract

Cytochrome P450 (P450) 2E1 is the major P450 enzyme involved in ethanol metabolism. That 

role is shared with two other enzymes that oxidize ethanol, alcohol dehydrogenase and catalase. 

P450 2E1 is also involved in the bioactivation of a number of low molecular weight cancer 

suspects, as validated in vivo in mouse models where cancers could be attenuated by deletion of 

Cyp2e1. P450 2E1 does not have a role in global production of reactive oxygen species but 

localized roles are possible, e.g. in mitochondria. The structures, conformations, and catalytic 

mechanisms of P450 2E1 have some unusual features among P450s. The concentration of hepatic 

P450 varies ≥ 10-fold among humans, possibly in part due to single nucleotide variants. The level 

of P450 2E1 may have relevance in the rates of oxidation of drugs, particularly acetaminophen and 

anesthetics.
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1. Introduction to cytochrome P450 enzymes

Cytochrome P450 (P450, CYP) enzymes are responsible for ~ 95% of the oxidation and 

reduction of chemicals, based on all literature citations [1]. These enzymes were first studied 

because they are the main catalysts involved in the metabolism of drugs, steroids, fat-soluble 

vitamins, chemical carcinogens, industrial chemicals, and other entities [2]. In humans there 

are 57 P450, or CYP, genes, but the more than 380,000 P450 genes are found throughout 

nature and are responsible for many biosynthetic reactions [3, 4].

A major area of interest regarding human P450s is the relationship to disease. One major 

issue is single nucleotide variants in the population that link to lack of function and lead to 
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maladies. Classic examples are seen in endocrinology due to defects in steroid metabolism 

[5]. Another area of interest is nearly the opposite, in a sense, where drugs are used to inhibit 

a P450 in certain medical conditions, e.g. blocking P450 19A1 (steroid aromatase) to lower 

estrogen levels in breast cancer [6, 7].

What has been more difficult is to define the contributions of human P450s in cases where 

the roles may be less obvious, e.g. chemical carcinogenesis [8]. Although studies with 

experimental animals were quite definitive in associating cancer with P450 expression [9] 

and these findings have been extended in very elegant matter with transgenic animals [10, 

11], application to problems in human medicine has been less straightforward. It is in this 

latter category that P450 2E1 fits.

2. Background on P450 and ethanol oxidation

Historically most of the interest in ethanol oxidation involved alcohol and aldehyde 

dehydrogenases [12-14]. Catalase can also oxidize ethanol [15].

In 1965 Orme-Johnson and Ziegler [16] demonstrated the NADPH-dependent oxidation of 

ethanol and methanol in rat, rabbit, and hog microsomes. Interestingly, the system was not 

inhibited by carbon monoxide and no activity was seen with longer-chain alcohols. Similar 

activity was also reported by Lieber and DeCarli [17], who also found that the activity was 

enhanced by feeding ethanol to rats. The work in the initial report was expanded in 1970 

[18] and the activity was found to be inhibited by carbon monoxide.

A role for P450 in oxidation was difficult to accept, in light of the general nature of the 

known larger and more hydrophobic substrates. However, Mezey et al. [19] reported that a 

partially purified rat liver P450 preparation could oxidize ethanol to acetaldehyde. In 1978 

Miwa et al. [20] could demonstrate ethanol oxidation by highly purified rat and rabbit liver 

P450 preparations, demonstrating a lack of both alcohol dehydrogenase and catalase in their 

systems.

Coon’s laboratory isolated a P450 enzyme from ethanol-treated rabbits (3a, now known as 

2E1) that oxidized ethanol [21]. P450 2E1 (then termed P450j) was also purified and 

characterized from rat and human liver [22]. In 1986 Gonzalez’s group [23] cloned the rat 

and human cDNAs for P450 2E1 and later characterized the gene [24].

Subsequent work by Gonzalez and others revealed the complexity of mechanisms involved 

in the regulation of P450 2E1 [25]. The in vivo activity is difficult to study because ethanol 

is both an inducer and an inhibitor of the enzyme. P450 2E1 is quite different in its 

regulatory mechanisms from many other major P450 enzymes involved in the oxidation of 

xenobiotics, which are dominated largely by nuclear receptor activation mechanisms. 

Transcriptional regulation is involved, at least in part [26]. There is also a role of ethanol in 

stabilization of the protein and a role of the proteasome. The difficulties in studying 

regulation are exemplified by the induction with placental lactogen and through the 

phosphoinositol 3-kinase pathway [27]: CYP2E1-humanized mice did not exhibit enhanced 

P450 2E1 expression during pregnancy due to interspecies differences in placental lactogen 

physiology.
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A significant development in the field was the generation of Cyp2e1−/− knockout mice by 

the Gonzalez laboratory, which have proven to very useful in evaluation of in vivo roles of 

the enzyme, at least in mice. These have proven to be valuable in the assessment of the role 

of mouse P450 2e1 and human P450 2E1 in the metabolism of drugs and potentially toxic 

chemicals [11, 28-31]. Further, “humanized” P450 2E1 mice (devoid of mouse P450 2e1, 

but expressing human P450 2E1) have been very useful [32, 33]. A biomarker of P450 2e1 

(2-piperidone) has been identified using these animals (although it is not known if this is 

useful in humans) [34]. There are still some caveats in interpretation of results with these 

animals though, e.g. P450 2E1-humanized mice showed acute proximal renal tubule injury 

(as did wild-type control mice) but did not show hepatic lipid accumulation with high doses 

of perchloroethylene [33].

3. Metabolism of drugs by P450 2E1

Probably because of its preference for small molecules, P450 2E1 does not contribute to the 

metabolism of many drugs. One group of drugs where P450 2E1 is a major factor is 

anesthetics (Figure 1). P450 2E1 is a major factor in the disposition of halothane, isoflurane, 

sevoflurane, enflurane, and desflurane [35-39].

Another low molecular weight drug that P450 2E1 is involved in the metabolism of is 

acetaminophen. In mice, P450 2e1 is a major factor in toxicity, as shown with transgenic 

animals [29, 30]. Of interest is a report in which very obese humans were shown to have 

elevated levels of acetaminophen-derived cysteine conjugates, ascribed to P450 2E1 

oxidation, as a result of elevated P450 2E1 levels [40].

Another issue with anesthetics is with halothane, a substrate for P450 2E1 (Figure 1). A 

large fraction of patients with halothane-induced hepatitis have autoantibodies that recognize 

P450 2E1 [41, 42]. These antibodies are also found in anesthesiologists, presumably due to 

exposure (to halothane?), but even in the absence of injury [43]. The role of the antibodies in 

the etiology remains unclear, as has been the case with other drugs whose use is associated 

with autoantibodies [44].

4. P450 2E1 and carcinogen metabolism

Early work by Wrighton et al. [22] and in Yang’s laboratory [45] showed the involvement of 

what is now known as P450 2E1 in the metabolic activation of N,N-dimethylnitrosamine and 

other carcinogenic nitrosamines, the oxidation of which had been difficult to identify 

catalysts for [46]. The toxicology literature had numerous reports of the effects of ethanol 

and disulfiram (Antabuse®) on the metabolism and carcinogenicity of various chemicals 

(e.g., ethylene dibromide [47]), which had been difficult to explain. P450 2E1 was 

demonstrated to be involved in the metabolism of a variety of low molecular weight 

chemicals, many of which are cancer suspects, including not only the smaller alkyl 

nitrosamines but also vinyl monomers, alkyl halides, and others (Figure 2) [48-50].

An interesting case is urethane, or ethyl carbamate. Work in the Millers’ laboratory had 

suggested that vinyl carbamate might be formed and then converted to an epoxide, which 

could modify DNA [51], but it was difficult to detect vinyl carbamate. Subsequently our 
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laboratory was able to demonstrate that P450 2E1 could slowly desaturate ethyl carbamate 

and then the resulting vinyl carbamate was rapidly oxidized by the same enzyme to the 

epoxide, which reacts with DNA to form etheno adducts (Figure 3) [52]. In mice the 

expression of P450 2e1 is involved in urethane-induced lung tumors [53].

Ethanol treatment has also been shown to increase the levels of etheno adducts ~ 2-fold in 

mice treated with high chronic doses of ethanol, presumably due to P450 2e1 induction 

[54-56].

The significance of P450 2E1 in carcinogen metabolism has been demonstrated with 

knockout mouse models. For instance, Cyp2e1−/− mice were not susceptible to benzene 

toxicity or genotoxicity [28]. It is also possible to interpret the effects of P450 2E1 

inhibitors. For instance, disulfiram increased the carcinogenicity of ethylene dibromide by 

blocking the detoxication and thus making more of the compound available for bioactivation 

by a glutathione conjugation pathway [57]. In a similar way, knocking out Cyp2e1 in mice 

diverted the pathway for trichloroethylene from oxidation to conjugation [33]. Dietary 

ethanol enhanced the levels for O6-methyldeoxyguanosine adducts in rats treated with the 

carcinogen N,N-dimethylnitrosamine [54], presumably due to P450 2E1 induction.

5. Reactive oxygen species (ROS)

The literature is replete with discussion of ROS production due to P450 2E1. The vast 

majority of this has been developed in vitro with liver microsomes [58, 59] and cultured 

cells [60]. Many of the commonly used ROS assays are not validated, e.g. in vivo 
malondialdehye assays [61] and dichlorofluorescein fluorescence [62]. In the ROS field, the 

most appropriate “gold standard” for ROS is F2-isoprostane production, which can be 

measured both in vitro and in vivo [63, 64].

We questioned whether P450 2E1 (2e1 in mice) was really so highly uncoupled and could 

produce large scale levels of ROS. Treatment of animals with ethanol is complicated in that 

it can be both an inducer and inhibitor (vide supra). Accordingly, we treated rats with the 

P450 2E1 inducer isoniazid and did not see an increase in F2-isoprostane levels [65]. 

Subsequent work showed that Cyp2e1−/− mice had very similar levels of liver, brain, and 

urinary isoprostanes as the wild-type animals [66]. P450 2E1 does not appear to increase 

global levels of ROS, and any increases due to ethanol treatment are not related to P450 2E1 

induction. Although purified P450 2E1 is not well-coupled to NADPH consumption, neither 

are several other P450s that we and others have examined [67-69]. Others have suggested 

that ROS production may be coupled to the production of CH3CHO· radicals [70, 71].

Although P450 2E1 does not appear to be involved in large changes in global ROS, the 

results do not rule out the possibility of localized ROS production. In this regard, mutation 

of the N-terminal sequence of rat P450 2E1 or protein kinase A-mediated phosphorylation of 

Ser-129 enhanced mitochondrial translocation of the protein due to enhanced affinity for 

binding to the HSP70 chaperone protein [72]. Hepatic mitochondria isolated from ethanol-

treated rats showed enhanced isoprostane levels after eight weeks, but microsomes did not 

[73]. The relevance of the enhanced mitochondrial ROS production may be seen in the 
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distribution of mitochondrial versus microsomal localization of P450 2E1 in human liver 

samples, i.e. in some individuals a large fraction of P450 2E1 was localized in mitochondria 

[74]. The ROS may be the result of poor (mitochondrial) P450 2E1 coupling with the 

alternate electron transfer accessory protein adrenodoxin.

6. Structures of P450 2E1

Some X-ray crystal structures of P450 2E1 have been published by Scott and associates 

[75-77]. These include both a small ligand and a larger one, a fatty acid.

The existence of multiple conformations of the enzyme raises questions about the origin of 

these. Two general models can explain the results. In a conformational selection model an 

equilibrium exists between different conformations, in the absence of ligands, and one of 

these binds the ligand [78]. Alternatively, in a true induced fit model there is a single 

conformation of the unbound enzyme, and the initial binding of the ligand to the enzyme 

induces a conformation change that changes the enzyme into a more efficient catalytic state 

(Figure 4) [79, 80]. Several human P450s have now been shown to operate primarily through 

conformational selection modes [81, 82], but kinetic studies with P450 2E1 and its substrate 

hexyl isonicotinate could not distinguish between the conformational selection and induced 

fit models for P450 2E1 [82].

7. Catalytic mechanism

The catalytic mechanism involves the usual steps of substrate binding, reduction of ferric 

iron to ferrous, O2 binding, introduction of a second electron into the iron-oxygen complex, 

transformation of the iron-oxygen complex to Compound I (FeO3+), abstraction of a 

hydrogen atom, oxygen rebound, and product release (Figure 5) [83, 84].

There are two anomalies regarding catalytic mechanisms of P450 2E1. The first is a role for 

cytochrome b5 (b5), which seems to be the case in most reactions [85-89]. In contrast to 

several other P450s, apo-b5 (devoid of heme) is ineffective in stimulating (chlorzoxazone 6-

hydroxylation catalyzed by) P450 2E1 [89] and the conclusion is that electron transfer to the 

Fe2+O2 complex is done by b5.

Another anomaly is the kinetic deuterium isotope effect on C-H bond-breaking. We were 

lead to pursue this research area because of microsomal results on the oxidation of N,N-

dimethylnitrosamine showing a kinetic deuterium isotope effect on Km and not Vmax [90], 

plus the newer knowledge that P450 2E1 was a major P450 enzyme involved in that reaction 

[45]. We initiated studies with human P450 2E1 and the oxidation of ethanol, finding the 

same pattern of a strong kinetic isotope effect on Km but not kcat [87]. The basis of this 

effect was attributed to the “burst kinetics,” i.e. a rate-limiting step following product 

formation, which results in expression of the kinetic deuterium isotope effect in the Km [87]. 

Pre-steady-state kinetic measurements showed the isotope effect on C-H bond-breaking [87]. 

Accordingly, consideration of the relevant expression shows that Km is not an independent 

parameter [91].

Guengerich Page 5

Chem Biol Interact. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The kinetics of P450 2E1, with a rate-limiting step, after product formation, produce some 

kinetics that can be considered unusual. With a simplified system

E + S
k‐1

k1
ES

k‐2

k2
EP

k‐3

k3
E + P

where S is the substrate and P the product,

kcat =
k2k3

k2 + k3

[87, 92] and

Km =
k3(k−1 + k2)
k1(k2 + k3)

If k3 > k5 then these reduce to

kcat ≅ k3

and

Km ≅
k3k−1
k1k2

As discussed elsewhere [87, 93], this analysis has a number of implications for kinetic 

deuterium isotope effects.

The kinetics is also relevant to inhibition. For instance, consider a model reaction (Figure 6), 

simulated in KinTek software [94]. A system was set up with the following rate constants

E + S
102 s‐1

107 M‐1 s‐1
ES 50 s‐1

EP 1 s‐1
E + P

and

E + I
5 s‐1

107 M‐1 s‐1
EI

where E is P450 2E1, S is the substrate, P is the product, and I is an inhibitor so that the 

designed Kd for S is 10 μM and the Ki (Kd for I) is 5 μM. The fits (Figure 6) give kcat = 0.02 

s−1. As shown in Figure 6 the actual Kd values for S and I are 10 μM and 0.5 μM, 

respectively, as set up in the model. The Km value for S is 0.41 μM (Figure 6C) and the 

value of Ki calculated using a classic competitive inhibition model is 0.056 μM. Thus, due to 
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the kinetic nature of the system, the Km and Ki values are much lower than the actual 

affinities (i.e., dissociation constants) for S and I.

8. Single nucleotide variants (SNVs)

The number of reported SNVs for the CYP2E1 gene is relatively small, with only 19 

reported in www.pharmvar.org/gene/CYP2E1 (Table 1). (Note: the term SNV is used instead 

of single nucleotide polymorphism, which by definition is a variant found at a frequency of 

≥1% in a population.) Of these, there are only four with distinct amino acid sequence 

changes (CYP2E1.1 and R76H, V389I, and V179I). Of the SNVs, the specific catalytic 

activity (chlorzoxazone 6-hydroxylation) was similar to CYP2E1.1 but the level of 

expression in COS-7 cells was 40% that for CYP2E1.1, which is not a large change [95].

Whether the non-coding region changes have effects on expression levels or not is unknown. 

In a review in 2015, Daly [8] considered a *5 (rs2031920) variant (“RasI”) and its 

relationship to lung cancer, although the results seem to be equivocal [96-98]. A decreased 

risk was seen with the SNV in a meta analysis of 15 studies but only in Asians [98], and no 

mechanism is proposed. Hakenewereth et al. [99] identified two minor alleles (rs38138675, 
rs8192772) that had odds ratios of 1.6-2.0 for decreased head and neck cancer survival, but 

these are also non-coding region differences. These were not among the eight CYP2E1 loci 

identified in a more recent genome-wide association study (for oral/pharyngeal cancer) by 

the same author [100].

A PubMed search for CYP2E1 polymorphisms and diseases yielded 493 hits. Included 

among the study topics were alcoholism, systolic disfunction, coronary artery lesions, 

ischemic stroke, liver function, pre-term birth, semen quality, hepatitis, gout, oral 

leukoplakia, lupus, pancreatitis, Parkinson’s disease, non-alcoholic fatty liver disease, 

hypertension, oral fibrosis, leprosy, tuberculosis, schizophrenia, endometriosis, chronic 

obstructive pulmonary disease, oral cleft, cirrhosis, gastritis, amyotrophic lateral sclerosis, 

and various cancers including bladder, lung, gastric, Hodgkin’s and non-Hodgkin’s 

lymphoma, cervical, leukemia, head and neck, stomach, prostate, ovarian, breast, liver, and 

pancreatic. As pointed out by Daly [8], there may prove to be some associations with 

alcoholic liver disease and nasopharyngeal and lung cancer, but overall the associations are 

still not very striking. It is possible that stronger associations may be seen in future studies.

9. Conclusions and Future Directions

More than fifty years after the first evidence that a microsomal oxidation system might be 

involved in ethanol metabolism, what have we learned? We definitely know that some P450s 

can oxidize ethanol to acetaldehyde, the major one being P450 2E1. P450 2E1 appears to be 

one of the more invariant P450s across species [101], but it does not have a critical role in 

physiology as judged by the mouse Cyp2e1−/− phenotype [29]. P450 2E1 can contribute to 

in vivo ethanol metabolism, although this role is shared with alcohol dehydrogenase and 

possibly other systems. We know that the structure of P450 2E1 is such that it can explain 

the preference of this P450 in oxidizing small molecules [48, 75], but the enzyme can also 

change conformations and expand its active site to accommodate larger molecules [76, 82]. 
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P450 2E1 can oxidize acetaldehyde to acetic acid [88, 102, 103], and the kinetics of this 

process are also unusual [88]. In our experience, the appearance of a rate-limiting step after 

product formation [87, 88] is still unusual among P450s and is not explained by product 

affinity in the case of acetaldehyde [104].

Although localized production of ROS can be attributed to P450 2E1, its contribution to 

systemic ROS cannot, at least in rodents [66]. P450 2E1 clearly contributes to the 

metabolism of many cancer suspects, including vinyl monomers, halogenated hydrocarbons, 

and dialkylnitrosamines [45, 48, 105]. Epidemiological studies have not revealed strong 

associations between SNVs and cancer or any other diseases to date, but it is possible that 

analysis of subsets of the population exposed to known pro-toxicants (e.g., vinyl chloride) 

might be more revealing if enough individuals could be identified. One issue is that the 

number of known SNVs is small and knowledge of their effects on enzyme function is 

limited. The regulation of expression—and inhibition—are complex in animal models [25]. 

The concentration of human P450 2E1 does vary considerably (≥ 10-fold) [106-108]. It is 

possible that a phenotypic analysis of P450 2E1 (function) (e.g., chlorzoxazone 

phenotyping) [109] might be more revealing in the analysis of disease states with P450 2E1.
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Highlights:

• P450 2E1 contributes to ethanol metabolism.

• P450 2E1 also has a role in the oxidation of some drugs and chemical 

carcinogens.

• P450 2E1 does not cause global oxidative stress but it can be local.

• The kinetic mechanism is unusual and leads to some apparent anomalies.

• Single nucleotide variations exist but have not been implicated in diseases 

much.
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Figure 1. 
Anesthetic substrates for P450 2E1.
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Figure 2. 
Chemical cancer suspect substrates for P450 2E1 [48, 50].
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Figure 3. 
Activation of ethyl carbamate (urethane) by P450 2E1 [51-53].
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Figure 4. 
Thermodynamic box for complex substrate binding possibilities. The free energy for the 

conversion of E to E’S is identical for the conformational selection and induced fit routes 

[81].
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Figure 5. 
P450 catalytic cycle with P450 2E1 features.
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Figure 6. 
Simulated plots for a reaction with a rate-limiting step following product formation. The 

model used in KinTek Explorer 8.0 was

E + S
102 s‐1

107 M‐1 s‐1
ES 50 s‐1

EP 1 s‐1
E + P

E + I
5 s‐1

107 M‐1 s‐1
EI

and the S concentrations used were 1, 2, 4, 8, 15, 30, 100, and 200 μM, with E = 0.1 μM and 

the time indicated in seconds. Rates of product formation increased with the substrate 

concentration. A, traces of P formation versus time without I. B, traces of product formation 

versus time in the presence of 5 μM I. C, rates of product formation in the absence of I. D, 

rates of product formation in the presence of 5 μM I. The Km in the absence of I was 0.41 

μM (Part C) and the Km, apparent in the presence of 5 μM I was 4.4 μM, and using the 

standard equation for competitive inhibition

v =
kcat S

Km 1 + I
Ki + S
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the Ki was calculated to be 0.056 μM. These values may be compared to the actual Kd values 

for S (10 μM) and I ((0.5 μM) from the model.
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Table 1.

CYP2E1 alleles (www.pharmvar.org/gene/CYP2E1) (accessed 11 December 2019)

Allele Protein Nucleotide changes,
Gene

Effect Enzyme activity

CYP2E1*1A CYP2E1.1 None In vivo In vitro

CYP2E1*1B CYP2E1.1 9896C>G Normal Normal

CYP2E1*1C CYP2E1.1 6 repeats in the 5’ flanking region

CYP2E1*1Cx2 CYP2E1.1

CYP2E1*1D CYP2E1.1 8 repeats in the 5’ flanking region Increased activity after 
alcohol exposure and in 
obese subjects

CYP2E1*2 CYP2E1.2 1132G>A R76H Reduced

CYP2E1*3 CYP2E1.3 10023G>A V389I Normal

CYP2E1*4 CYP2E1.4 4768G>A V179I Normal

CYP2E1*5A CYP2E1.1 −1293G>C; −1053C>T (c1>c2); 7632T>A

CYP2E1*5B CYP2E1.1 −1293G>C; −1053C>T (c1>c2)

CYP2E1*6 CYP2E1.1 7632T>A

CYP2E1*7A CYP2E1.1 −333T>A

CYP2E1*7B CYP2E1.1 −71G>T; −eeeT>A

CYP2E1*7C CYP2E1.1 −333T>A; −352A>G

Additional SNVs, where the haplotype has not yet been determined

6431C>A

9630T>G

1031C>T; 1199G>A; 1316C>T; 4451C>G; 4486G>T; 
4529C>T; 4696G>A; 4845T>C; 4904T>C; 5625G>A; 
6317C>T; 9745C>T; 9987C>G; 11024C>G; 11276T>C; 
11356A>C

11112A>T H457L
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