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Dissociable neural correlates of uncertainty
underlie different exploration strategies

Momchil S. Tomov2™ Van Q. Truong® 2, Rohan A. Hundia? & Samuel J. Gershman?

Most real-world decisions involve a delicate balance between exploring unfamiliar alter-
natives and committing to the best known option. Previous work has shown that humans rely
on different forms of uncertainty to negotiate this "explore-exploit” trade-off, yet the neural
basis of the underlying computations remains unclear. Using fMRI (n=31), we find that
relative uncertainty is represented in right rostrolateral prefrontal cortex and drives directed
exploration, while total uncertainty is represented in right dorsolateral prefrontal cortex and
drives random exploration. The decision value signal combining relative and total uncertainty
to compute choice is reflected in motor cortex activity. The variance of this signal scales with
total uncertainty, consistent with a sampling mechanism for random exploration. Overall,
these results are consistent with a hybrid computational architecture in which different
uncertainty computations are performed separately and then combined by downstream
decision circuits to compute choice.
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or every decision that we make, we have to choose between

the best option that we know so far (exploitation), or a less

familiar option that could be even better (exploration). This
“explore-exploit” dilemma appears at all levels of decision mak-
ing, ranging from the mundane (Do I go to my favorite restau-
rant, or try a new one?) to the momentous (Do I marry my
current partner, or try a new one?). Despite its ubiquity in
everyday life, little is known about how the brain handles the
exploration-exploitation trade-off. Intuitively, either extreme is
undesirable: an agent that solely exploits will never adapt to
changes in the environment (or even learn which options are
good in the first place), while an agent that solely explores will
never reap the fruits of that exploration. Yet striking the perfect
balance is computationally intractable beyond the simplest
examples, and hence humans and animals must adopt various
heuristics! 3.

Earlier research suggested that people choose options in pro-
portion to their expected values®?, a strategy known as softmax
exploration that is closely related to other psychological phe-
nomena such as probability matching (for a detailed review, see
Schulz and Gershman®). Later studies showed that people explore
in a more sophisticated manner, using uncertainty to guide their
choices towards more promising options”-8. These strategies are
more adaptive in nonstationary environments and come in two
distinct flavors: directed and random exploration strategies.

Directed exploration strategies direct the agent’s choices
toward uncertain options, which is equivalent to adding an
uncertainty bonus to their subjective values. For example, for
your next meal, you might forego your favorite restaurant for a
new one that just opened down the street, and you might even go
there several times until you are certain it is no better than your
favorite. Thus while softmax exploration is sensitive to the rela-
tive value of each option, preferring options with higher payoffs,
directed exploration is additionally sensitive to the relative
uncertainty of each option, preferring options with more uncer-
tainty as they hold greater potential for gain. Directed exploration
is closely related to the phenomenon of risk-seeking®!9 and has
strong empirical support!!-13,

Previous work®!%1> has shown that directed exploration in
humans is well captured by the upper confidence bound (UCB)
algorithm!®, in which the uncertainty bonus is the one-sided
confidence interval of the expected value:

a, = argmax(Q, (k) + U, (k)] 1)

where g, is the action chosen at time #, Q(k) is the expected
reward of action k at time ¢, and U,(k) is the upper confidence
bound of the reward that plays the role of an uncertainty bonus.
In a Bayesian variant of UCB!7, Q,(k) corresponds to the pos-
terior mean and U(k) is proportional to the posterior standard
deviation o,(k). Returning to the restaurant example, even if both
restaurants have the same expected value (Q/new)= Q,(old)),
UCB would initially prefer the new one since it has greater
uncertainty (U new) > Uy(old)).

Random exploration strategies introduce randomness into
choice behavior, causing the agent to sometimes explore less
favorable options. For example, when you move to a new
neighborhood, you might initially pick restaurants at random
until you learn which ones are good. While earlier studies favored
value-based random exploration strategies such as softmax
exploration, later work®14 has shown that random exploration in
people is additionally sensitive to the total uncertainty of the
available options, increasing choice stochasticity when option
values are more uncertain. This can cause choice variability to
track payoff variability, a phenomenon sometimes referred to as
the payoff variability effect!8-20,

One prominent instantiation of random exploration in rein-
forcement learning is Thompson sampling?!, which samples
values randomly from the posterior value distribution of each
action and then chooses greedily with respect to the sampled
values:

ét(k) ~ p(Q,(k)) ()
a, = argmax Q,(k), (3)

where p(-) is the posterior value distribution and Q,(k) is the
sampled value for arm k at time ¢. Returning to the neighborhood
example, the familiar restaurants in your old neighborhood have
narrow value distributions around their expected values (low total
uncertainty). This will cause Thompson sampling to consistently
draw samples Q, (k) that are close to their expected values, which
will often result in choosing the same restaurant, namely the one
with the highest expected value. In contrast, the unfamiliar res-
taurants in the new neighborhood have wide value distributions
(high total uncertainty), which will result in significant variation
in the Thompson samples Q,(k) and a corresponding variation in
the chosen restaurant.

Directed and random exploration strategies confer separate
ecological advantages, which has led researchers in reinforcement
learning to develop algorithms that use a hybrid of UCB and
Thompson sampling?%23, Correspondingly, recent evidence sug-
gests that people also employ a combination of directed and
random exploration”8. A study by Gershman!4 used a two-armed
bandit task to show that human choices are consistent with a
particular hybrid of UCB and Thompson sampling. Furthermore,
the study showed that different uncertainty computations
underlie each exploration strategy, with the relative uncertainty
between the two options driving directed exploration, and the
total uncertainty of the two options driving random exploration.
This led us to hypothesize the existence of dissociable neural
implementations of both strategies in the brain. At least three
lines of evidence support this claim. First, dopamine genes with
anatomically distinct expression profiles are differentially asso-
ciated with directed and random exploration!®. Second, tran-
scranial magnetic stimulation of right rostrolateral prefrontal
cortex (RLPFC) affects directed, but not random, exploration?4,
Third, directed and random exploration have different develop-
mental trajectories?’.

In the present study, we use functional MRI to probe the neural
underpinnings of the uncertainty computations that influence
directed and random exploration. Subjects perform a two-armed
bandit task in which each arm was either “safe”, meaning it
delivers the same reward during the whole block, or “risky”,
meaning it delivers variable rewards. This allows us to separate
the effects of relative and total uncertainty and examine how their
neural correlates influence directed and random exploration, in
accordance with the theoretical principles outlined above. We
find that relative uncertainty is reflected in right RLPFC, and total
uncertainty is reflected in right dorsolateral prefrontal cortex
(DLPFC), replicating findings reported by Badre et al.26. The
neural signal in right RLPFC predicts cross-trial variability in
directed but not random exploration, whereas the neural signal in
right DLPFC predicts cross-trial variability in random but not
directed exploration. We also find that the linear combination of
relative and total uncertainty with value is reflected in motor
cortex, suggesting that these upstream estimates are integrated by
motor circuits in order to compute the categorical decision. By
linking activity in those regions with human choices via a hybrid
UCB/Thompson sampling model, our work provides new insight
into the distinct uncertainty computations performed by the
brain and their role in guiding behavior.
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Fig. 1 Experimental Design and Predictions. a Trial structure. Subjects choose between two options, each labeled as either safe (S) or risky (R). After they
make a choice, they receive feedback in the form of points. Option labels remain constant during the block. b Reward structure. Risky options deliver
rewards drawn from a Gaussian distribution whose mean remains constant during the block. Safe options deliver the same reward during the block. The
means of both options are resampled from the zero-mean Gaussian at the start of each block. ¢ Directed exploration (UCB) predicts a bias towards the
uncertain option, which shifts the choice probability function in the opposite directions for RS and SR trials. d Random exploration (Thompson sampling)
predicts more randomness when uncertainty is high, which reduces the slope of the choice probability function for RR compared to SS trials.

Results

Relative and total uncertainty guide directed and random
exploration. We scanned 31 human subjects (17 female, ages
18-35) using functional MRI while they performed a two-armed
bandit task in which subjects are informed about the riskiness of
each option!4. On each trial, subjects saw the labels of the two
options, each of which could be either "safe” (S) or "risky” (R;
Fig. 1a). A safe option always delivered the same reward for the
duration of the block, while a risky option delivered Gaussian-
distributed rewards around a mean that remained fixed for the
duration of the block (Fig. 1b). We denote the trial types by the
pair of option labels (e.g., on "RS” trials, option 1 is risky and
option 2 is safe). Trial types and average rewards remained fixed
within blocks and varied randomly across blocks. Subjects were
explicitly informed of the statistics of the task and performed four
practice blocks before entering the scanner.

Importantly, this task design allowed us to independently
measure the effect of different types of uncertainty on subject
choices. Directed and random exploration predict different effects
across different block conditions, which can be illustrated by
considering the probability of choosing option 1, P(choose 1), as a
function of the expected value difference for the given block,
p(1) — u(2) (the choice function; Fig. 1c, d).

RS and SR trials manipulate relative uncertainty (greater for
the option 1 on RS trials and greater for option 2 on SR trials)
while controlling for total uncertainty (identical across RS and SR
trials). A strategy that is insensitive to relative uncertainty such as
softmax exploration would be indifferent between the two options

(P(choose 1) = 0.5) when they have equal values (u(1) — u(2) =
0). In contrast, UCB predicts a bias towards the risky option,
preferring option 1 on RS trials and option 2 on SR trials, even
when the expected value difference might dictate otherwise. This
would manifest as an opposite intercept shift in the choice
probability function of RS and SR trials, such that P(choose 1) >
0.5 when p(1) — u(2) =0 on RS trials and P(choose 1) < 0.5 when
u(1) — u(2) = 0 on SR trials (Fig. 1c).

In contrast, RR and SS trials manipulate total uncertainty (high
on RR trials and low on SS trials) while controlling for relative
uncertainty (identical across RR and SS trials). A strategy that is
insensitive to total uncertainty such as UCB would predict the
same choice function for both trial types. In contrast, Thompson
sampling predicts more stochastic choices when there is more
uncertainty, resulting in more random choices (P(choose 1) closer
to 0.5) even when the relative expected value strongly favors one
option (u(1) —u(2) far from 0). This would manifest as a
shallower slope of the choice probability function of RR
compared to SS trials (Fig. 1d).

Overall, subjects identified the better option in each block (ie.,
the option k with the greater expected reward p(k)) relatively
quickly, with average performance plateauing by the middle of each
block (Supplementary Fig. 1). Importantly, in accordance with the
theory, we found that manipulating relative uncertainty (RS vs. SR)
shifted the intercept of the choice probability function (Fig. 2a,
Supplementary Fig. 2): the intercept for RS trials was significantly
greater than the intercept for SR trials (F(1, 9711) =21.0, p=
0.000005). Moreover, the intercept for RS trials was significantly
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Fig. 2 Probit regression results. a Intercept and b slope of choice
probability function fit for each condition using maximum likelihood
estimation. Error bars are cross-subject standard errors.

greater than 0 (F(1, 9711) = 10.8, p = 0.001), while the intercept for
SR trials was significantly less than 0 (F(1, 9711) =179, p=
0.00002). There was only a small effect of total uncertainty on the
intercept (RR vs. SS, F(1, 9711) = 4.1, p = 0.04). This indicates that,
regardless of relative expected value, subjects showed a bias towards
the risky option, consistent with UCB.

Conversely, manipulating total uncertainty (RR vs. SS) altered
the slope of the choice probability function (Fig. 2b, Supplemen-
tary Fig. 2): the slope for RR trials is smaller than the slope for SS
trials (F(1, 9711) = 3.4, p = 0.07). While the effect is small due to
the small sample size, it is in the right direction and is consistent
with previous replications of this experiment!41°, There was no
effect of relative uncertainty (RS vs. SR) on the slope (F(1, 9711)
=0.06, p = 0.8). This indicates that when both options were risky,
subjects were less sensitive to their relative reward advantage,
consistent with Thompson sampling.

To examine how relative and total uncertainty influence
directed and random exploration on a trial-by-trial basis, we
modeled subject choices using a probit regression model!:

P(a, = 1lw) = ®(w, V, + w,RU, + w3V, /TU,), (4)

where @(-) is the standard Gaussian cumulative distribution
function and the regressors are the following model-derived trial-
by-trial posterior estimates:

e Value difference, V, = Q1) — Q,(2).
e Relative uncertainty, RU; = 0,(1) — 0,(2).

e Total uncertainty, TU, = 1/02(1) + d%(2).

here Q,(k) corresponds to the posterior expected value of option k
(Eq. (6)) and oy(k) is the posterior standard deviation around that
expectation (Eq. (7)), proportional to the uncertainty bonus in
UCB. Note that these are trial-by-trial estimates based on the
posterior quantities computed by the ideal observer model.
Gershman® showed that, despite its apparent simplicity, this is
not a reduced form model but rather the exact analytical form of
the most parsimonious hybrid of UCB and Thompson sampling
that reduces to pure UCB when w;=0, to pure Thompson
sampling when w, =0, and to pure softmax exploration when
wy,=w3=0. Thus the hybrid model balances exploitation
(governed by w;) with directed (w,) and random (w;) exploration
simultaneously for each choice, without the need to dynamically
select one strategy over the other (whether and how the brain
might perform this meta-decision is beyond the scope of our
present work). If subjects use both UCB and Thompson
sampling, the model predicts that all three regressors will have
a significant effect on choices (w; >0, w, >0, w;>0).
Correspondingly, the maximum likelihood estimates of all three
fixed effects coefficients were significantly greater than zero:

wy =0.166 £ 0.016 (#(9716) = 10.34, p < 1072%; mean + s.e.m., two-
tailed #-test), w,=0.175%0.021 (£(9716) =8.17, p<10~1°), and
w3 = 0.005 + 0.001 (#9716) =4.47, p<10~>). Model comparisons
revealed that the UCB/Thompson hybrid model fits subject choices
better than UCB or Thompson sampling alone, which in turn fit
choices better than softmax alone (Supplementary Table 1). Bayesian
model comparison strongly favored the hybrid model over
alternative models (protected exceedance probability = 127).

Furthermore, running these models generatively with the
corresponding fitted parameters on the same bandits as the
subjects revealed significant differences in model performance
(Supplementary Fig. 3, F(3, 1236) =291.58, p < 10720, one-way
ANOVA). The UCB/Thompson hybrid outperformed UCB and
Thompson sampling alone (UCB vs. hybrid, p < 1078; Thompson
vs. hybrid, p < 1078, pairwise multiple comparison tests), which
in turn outperformed softmax exploration (softmax vs. UCB, p <
10~3; softmax vs. Thompson, p < 10~8). Similar results replicated
across a range of coefficients (Supplementary Fig. 4), signifying
the distinct and complementary ecological advantages of UCB
and Thompson sampling. Thus relying on both UCB (w, > 0) and
Thompson sampling (w3 >0) should yield better overall perfor-
mance. In line with this prediction, we found better performance
among subjects whose choices are more sensitive to RU, (greater
w,), consistent with greater reliance on UCB (Supplementary
Fig. 5B, r(29) =0.47, p = 0.008, Pearson correlation). Similarly,
we found better performance among subjects whose choices are
more sensitive to V,/TU, (greater w;), consistent with greater
reliance on Thompson sampling (Supplementary Fig. 5C, r(29) =
0.53, p=10.002). Finaly, note that even though optimal explora-
tion is intractable in general, the hybrid model computes choices
in constant time by simply computing Eq. (4). Taken together,
these results replicate and expand upon previous findings!4,
highlighting the superiority of the UCB/Thompson hybrid as a
descriptive as well as normative model of uncertainty-guided
exploration. Thus humans do and ought to employ both directed
and random exploration, driven by relative and total uncertainty,
respectively.

Neural correlates of relative and total uncertainty. Next, we
asked whether relative and total uncertainty are represented in
distinct anatomical loci. We performed an unbiased whole-brain
univariate analysis using a general linear model (GLM 1) with
model-derived trial-by-trial posterior estimates of the quantities
used in computing the decision (Eq (4)): absolute relative
uncertainty (JRU|), total uncertainty (TU,), absolute value dif-
ference (|V,]), and absolute value difference scaled by total
uncertainty (|V,|/TU,) as non-orthogonalized impulse regressors
at trial onset (see Methods section). We report whole-brain ¢-
maps after thresholding single voxels at p <0.001 (uncorrected)
and applying cluster family wise error (FWE) correction at sig-
nificance level o = 0.05.

For relative uncertainty, we found a large negative bilateral
occipital cluster that extended dorsally into inferior parietal
cortex and primary motor cortex, and ventrally into inferior
temporal cortex (Supplementary Fig. 7A, Supplementary Table 3).
For total uncertainty, we found bilateral positive clusters in the
inferior parietal lobe, DLPFC, anterior insula, inferior temporal
lobe, midcingulate cortex, superior posterior thalamus, and
premotor cortex (Supplementary Fig.7B, Supplementary Table 4).
We did not find any clusters for |V, or [V,|/TU,.

Based on previous studies?426, we expected to find a positive
cluster for relative uncertainty in right RLPFC. While we did
observe such a cluster in the uncorrected contrast (Fig. 3a), it did
not survive FWE correction. We pursued this hypothesis further
using a priori ROIs from Badre et al.2% who reported a positive
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Fig. 3 Right RLPFC tracks relative but not total uncertainty. a \Whole-
brain |[RU| contrast from GLM 1. Single voxels were thresholded at p <
0.001. Multiple comparisons correction was not applied (corrected version
is shown in Supplementary Fig. 7A). The color scale represents t-values
across subjects. The circled ROl in right RLPFC (MNI [36 56 — 8]) from
Badre et al.26 was used in the subsequent confirmatory analysis (10-mm
sphere around the peak voxel). b Neural regression coefficients (betas)
from GLM 1 for the parametric modulators [RUy| (Biry)) and TU; (Bru) at
trial onset, averaged across voxels in the ROI. Error bars are cross-subject
standard errors. Comparisons were made using Student's t-tests. ~"p < 0.01,
ns: not significant. Source data are provided as a Source Data file.
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Fig. 4 Right DLPFC tracks total but not relative uncertainty. a \Whole-
brain TU; contrast from GLM 1. Single voxels were thresholded at p < 0.001.
Multiple comparisons correction was not applied (corrected version is
shown in Supplementary Fig. 7B). The color scale represents t-values
across subjects. The circled ROl in right DLPFC (MNI [38 30 341]) from
Badre et al.26 was used in the subsequent confirmatory analysis (10 mm
sphere around the peak voxel). b Neural regression coefficients (betas)
from GLM 1 for the parametric modulators [RUy| (Bjry)) and TU; (fryu) at
trial onset. Error bars are cross-subject standard errors. Comparisons were
made using Student's t-tests. ~p < 0.01, ns: not significant. Source data are
provided as a Source Data file.

effect of relative uncertainty in right RLPFC (MNI [36 56 — 8])
and of total uncertainty in right DLPFC (MNI [38 30 34]). In
accordance with their results, in right RLPFC we found a significant
effect of relative uncertainty (Fig. 3b; #(30) = 3.24, p = 0.003, two-
tailed t-test) but not of total uncertainty (#(30) = —0.55, p = 0.58).
The significance of this difference was confirmed by the contrast
between the two regressors (£(30) =2.96, p = 0.006, paired ¢-test).
Conversely, in right DLPFC there was a significant effect of total
uncertainty (Fig. 4b; #(30) =3.36, p=0.002) but not of relative
uncertainty (#(30) = 0.71, p = 0.48), although the contrast between
the two did not reach significance (#(30) = 1.74, p =0.09). These
results replicate Badre et al.2% findings and suggest that relative and
total uncertainty are represented in right RLPFC and right DLPFC,
respectively.

Subjective estimates of relative and total uncertainty predict
choices. If right RLPFC and right DLPFC encode relative and
total uncertainty, respectively, then we should be able to use their
activations to decode trial-by-trial subjective estimates of RU, and

TU, In particular, on any given trial, a subject’s estimate of
relative and total uncertainty might differ from the ideal observer
estimates RU; and TU;, stipulated by the hybrid model (Eq. (4)).
This could occur for a number of reasons, such as neural noise,
inattention, or a suboptimal learning rate. Importantly, any
deviation from the ideal observer estimates would result in a
corresponding deviation of the subject’s choices from the model
predictions. Therefore if we augment the hybrid model to include
the neurally decoded subjective estimates of relative and total

uncertainty (denoted by i.@ and f.U\t, respectively), then we
should arrive at more accurate predictions of subject choices (see
Methods section).

Indeed, this is what we found. Including the decoded trial-by-
trial RU, (Eq. (12)) from right RLPFC (MNI [36 56 —8])
significantly improved predictions of subject choices (Table 1;

BICs: 6407 vs. 6410). Importantly, decoding trial-by-trial TU, from

right RLPFC and augmenting the model with V,/ T/LT, (Eq. (13))
did not improve choice predictions (BICs: 6421 vs. 6410).
Similarly, augmenting the hybrid model with V,/TU, (Eq. (13))

when TU, was decoded from right DLPFC (MNI [38 30 34])
significantly improved predictions of subject choices (Table 1;

BICs: 6359 vs. 6410). Conversely, augmenting the model with I{G{
(Eq. (12)) decoded from right DLPFC did not improve choice
predictions (BICs: 6419 vs. 6410). Together, these results show
that variability in the neural representations of uncertainty in the
corresponding regions predicts choices, consistent with the idea
that those representations are used in a downstream decision
computation. A

We additionally augmented the model with both RU, from

right RLPFC and V,/TU,, with TU, from right DLPFC (Eq. (14),
Table 1). This improved choice predictions beyond the improve-

ment of including I{@ alone (BICs: 6359 vs. 6406). It also

resulted in better choice fits than including V,/ "ﬁ?t alone (Eq.
(13)), which is reflected in the lower AIC (6273 vs. 6287) and
deviance (6249 vs. 6266), even though the more stringent BIC
criterion is comparable (6359 vs. 6359). This suggests that the two
uncertainty computations provide complementary yet not
entirely independent contributions to choices.

Neural correlates of downstream decision value computation.
We next sought to identify the downstream decision circuits that
combine the relative and total uncertainty estimates to compute
choice. Following the rationale of the UCB/Thompson hybrid
model, we assume that the most parsimonious way to compute
decisions is to linearly combine the uncertainty estimates with the
value estimate, as in Eq. (4). We therefore employed a similar
GLM to GLM 1 (GLM 2, Supplementary Table 2) with model-
derived trial-by-trial estimates of the decision value (DV) as the
only parametric modulator at trial onset. We quantified decision
value as the linear combination of the terms in Eq. (4), weighted
by the corresponding subject-specific random effects coefficients
w from the probit regression:

DV, = w,V, + w,RU, + w,V,/TU,. (5)

As before, we took the absolute decision value [DV/| for purposes
of identifiability. As previously, we thresholded single voxels at
P <0.001(uncorrected) and applied cluster FWE correction at
significance level « = 0.05. This revealed a single negative cluster
in left primary motor cortex (peak MNI [—38 —8 62], Fig. 5a,
Supplementary Table 5).

We defined an ROI as a 10-mm sphere around the peak voxel,
which we refer to as left M1 in subsequent confirmatory analyses.
Note that this activation is not simply reflecting motor responses,
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Table 1 Model comparison with neurally decoded regressors.

Model Regressors AIC BIC LL Deviance
Baseline

UCB/Thompson hybrid with intercept 1+V + RU + V/TU 6352.75 6410.00 — 3168.37 6336.75
(Eq. (4)

RU and TU from right RLPFC -

Baseline augmented with RU (Eq. (12)) 1+ V+RU+ V/TU+RU 6334.97 6406.54 — 3157.48 6314.97
Baseline augmented with TU (Eq. (13)) 1+ V+RU+ V/TU + V/TU 6350.00 642157 — 3165.00 6330.00
RU and TU from right DLPFC e

Baseline augmented with RU (Eq. (12)) 1+ V+RU+V/TU+RU__ 6347.28 6418.85 — 3163.64 6327.28
Baseline augmented with TU (Eq. (13)) 1+ V+RU+ V/TU + V/TU 6286.96 6358.53 — 3133.48 6266.96
RU from right RLPFC and TU from right DLPFC N

Baseline augmented with RU and TU 14+ V+RU+ V/TU + RU + V/ﬂ\J 627314 6359.03 — 3124.57 6249.14
(Eq. (142

DV from left M1 . .

Baseline augmented with DV (Eq. (15)) 14+ V+RU+ V/TU + DV 6336.27 6407.84 — 3158.13 6316.27
Model fits after augmenting the UCB/Thompson hybrid (Eq. (4)) with estimates of relative uncertainty, total uncertainty, and decision value, decoded from brain activity. Lower AIC, BIC, and deviance
:%?iia?:;t?;fgfhation criterion, BIC: Bayesian information criterion, LL: maximized log likelihood.
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Fig. 5 Primary motor cortex tracks decision value. a \Whole-brain |DV;| contrast from GLM 2. Single voxels were thresholded at p < 0.001 and cluster FWE
correction was applied at significance level @ = 0.05. The ROl in left primary motor cortex (left M1; peak MNI [ — 38 — 8 62]) was used in the subsequent
confirmatory analysis (10 mm sphere around the peak voxel). b Cross-subject Pearson correlation between the BIC in left M1, quantifying the extent to
which neural activity in that region is captured by GLM 2 (lower BIC indicates better fit), and average performance. ¢ Cross-subject Pearson correlation
between the BIC in left M1 and model log likelihood, quantifying the extent to which the subject's choices are consistent with the UCB/Thompson hybrid

model. r: Pearson correlation coefficient.

since those are captured by a chosen action regressor (Supple-
mentary Table 2). Another possible confound is reaction time
(RT). When controlling for RT, motor cortex activations become
unrelated to |[DV,| (GLM 2A in Supplementary Information).
This could be explained by a sequential sampling implementation
of our model (see Discussion), according to which RT would
depend strongly on DV. Consistent with this interpretation,
model comparison revealed that left M1 activity is best explained
by a combination of DV and RT, rather than DV or RT alone (see
Supplementary Information).

Subjective estimate of decision value predicts within-subject
and cross-subject choice variability. If left M1 encodes the
decision value, then we should be able to use its activation to
decode trial-by-trial subjective estimates of DV, similarly to how
we were able to extract subjective estimates of RU, and TU,. In
particular, on any given trial, a subject’s estimate of the decision
value might differ from the linear combination of the ideal
observer estimates (Eq. (5)). Importantly, any such deviations
would result in corresponding deviations from the model-
predicted choices. Following the same logic as before, we aug-
mented the hybrid model to include a linearly decoded trial-by-

trial estimate of the decision value (denoted by DV ) from left M1
(Eq. (15)). This improved predictions of subject choices (Table 1,

BICs: 6408 vs. 6410), consistent with the idea that this region
computes the linear combination of relative and total uncertainty
with value, which in turn is used to compute choice.

In order to further validate the ROI, we performed a cross-
subject correlation between the extent to which GLM 2 captures
neural activity in left M1 (quantified by the BIC; see Methods
section) and subject performance (quantified by the proportion of
trials on which the subject chose the better option). We reasoned
that some subjects will perform computations that are more
similar to our model than other subjects. If our model is a
plausible approximation of the underlying computations, then it
should better capture neural activity in the decision value ROI for
those subjects, resulting in lower BICs. Furthermore, those
subjects should also exhibit better performance, in line with the
normative principles of our model (Supplementary Figs. 3, 4, and
5; Supplementary Table 1). This prediction was substantiated: we
found a significant negative correlation between BIC and
performance (Fig. 5b, r(29) = —0.44, p =0.01, Pearson correla-
tion), indicating that subjects whose brain activity matches the
model also tend to perform better. We found a similar correlation
between BIC and model log likelihood (Fig. 5¢, r(29) = —0.37,
p=0.04), which quantifies how well the subject’s behavior is
captured by the UCB/Thompson hybrid model (Eq. (4)).
Together, these results build upon our previous findings and
suggest that left M1 combines the subjective estimate of relative
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and total uncertainty from right RLPFC and right DLPFC,
respectively, with the subjective value estimate, in order to
compute choice.

Variability in the decision value signal scales with total
uncertainty. The lack of any main effect for |V,|/TU, in GLM 1
could be explained by a mechanistic account according to which,
instead of directly implementing our closed-form probit model
(Eq. (4)), the brain is drawing and comparing samples from the
posterior value distributions. This corresponds exactly to
Thompson sampling and would produce the exact same behavior
as the analytical model. However, it makes different neural pre-
dictions, namely that: (1) there would be no explicit coding of V,/
TU,, and (2) the variance of the decision value would scale with
(squared) total uncertainty. The latter is true because the variance
of the Thompson sample for arm k on trial ¢ is 07(k), and hence
the variance of the sample difference is 0?(1) + 0%(2) = TU?.
Thus while we cannot infer the drawn samples on any particular
trial, we can check whether the unexplained variance around the
mean decision value signal in left M1 is correlated with TU?.

To test this hypothesis, we correlated the residual variance of
the GLM 2 fits in the decision value ROI (Fig. 5a; left M1, peak
MNI [—38 —8 62]) with TUf. We found a positive correlation (¢
(30) =2.06, p=0.05, two-tailed t-test across subjects of the
within-subject Fisher z-transformed Pearson correlation coeffi-
cients), consistent with the idea that total uncertainty affects
choices via a sampling mechanism that is implemented in motor
cortex.

Discussion

Balancing exploration and exploitation lies at the heart of deci-
sion making, and understanding the neural circuitry that
underlies different forms of exploration is central to under-
standing how the brain makes choices in the real world. Here we
show that human choices are consistent with a particular hybrid
of directed and random exploration strategies, driven respectively
by the relative and total uncertainty of the options. This dis-
sociation between the two uncertainty computations predicted by
the model was reified as an anatomical dissociation between their
neural correlates. Our GLM results confirm the previously iden-
tified role of right RLPFC and right DLPFC in encoding relative
and total uncertainty, respectively2°. Crucially, our work further
elaborates the functional role of those regions by providing a
normative account of how both uncertainty estimates are used by
the brain to make choices, with relative uncertainty driving
directed exploration and total uncertainty driving random
exploration. This account was validated by our decoding analysis
and decision value GLM, which suggest that the two uncertainty
estimates are combined with the value estimate in downstream
motor cortex, which ultimately performs the categorical decision
computation.

While our study replicates the results reported by Badre et al.26,
it goes beyond their work in several important ways. First, our
task design explicitly manipulates uncertainty - the main quantity
of interest — across the different task conditions, whereas the task
design in Badre et al.2® is focused on manipulating expected
value. Second, relative and total uncertainty are manipulated
independently in our task design: relative uncertainty differs
across RS and SR trials, while total uncertainty remains fixed, on
average; the converse holds for SS and RR trials. Orthogonalizing
relative and total uncertainty in this way allows us to directly
assess their differential contribution to choices (Supplementary
Fig. 2). Third, the exploration strategies employed by our model
are rooted in normative principles developed in the machine
learning literature!®21, with theoretical performance guarantees

which were confirmed by our simulations (Supplementary Figs. 3
and 4). In particular, the separate contributions of relative and
total uncertainty to choices are derived directly from UCB and
Thompson sampling, implementing directed and random
exploration, respectively. Fourth, this allows us to link relative
and total uncertainty and their neural correlates directly to sub-
ject behavior and interpret the results in light of the corre-
sponding exploration strategies.

Previous studies have also found a signature of exploration in
RLPFC, also referred to as frontopolar cortex®26:28:29 however,
with the exception of Badre et al.2%, these studies did not disen-
tangle different exploration strategies or examine their relation to
uncertainty. More pertinent to our study, Zajkowski, Kossut, and
Wilson24 reported that inhibiting right RLPFC reduces directed
but not random exploration. This is consistent with our finding
that activity in right RLPFC tracks the subjective estimate of
relative uncertainty which underlies the directed exploration
component of choices in our model. Disrupting activity in right
RLPFC can thus be understood as introducing noise into or
reducing the subjective estimate of relative uncertainty, resulting
in choices that are less consistent with directed exploration.

One important contribution of our work is to elucidate the role
of the total uncertainty signal from right DLPFC in decision
making. Previous studies have shown that DLPFC is sensitive to
uncertainty3? and that perturbing DLPFC can affect decision-
making under uncertainty3!-33, Most closely related to our study,
Knoch et al.3! showed that suppressing right DLPFC (but not left
DLPFC) with repetitive transcranial magnetic stimulation leads to
risk-seeking behavior, resulting in more choices of the suboptimal
“risky” option over the better “safe” option. Conversely, Fecteau
et al.33 showed that stimulating right DLPFC with transcranial
direct current stimulation reduces risk-seeking behavior. One way
to interpret these findings in light of our framework is that,
similarly to the Zajkowski, Kossut, and Wilson2* study, sup-
pressing right DLPFC reduces random exploration, which
diminishes sensitivity to the value difference (Eq. (4), third term)
while allowing directed exploration to dominate choices (Eq. (4),
second term), leading to apparently risk-seeking behavior. Sti-
mulating right DLPFC would then have the opposite effect,
increasing random exploration and thereby increasing sensitivity
to the value difference between the two options, leading to an
increased preference for the safe option.

Our definition of uncertainty as the posterior standard devia-
tion of the mean (sometimes referred to as estimation uncer-
tainty, parameter uncertainty, or ambiguity) is different from the
expected uncertainty due to the unpredictability of the reward
from the risky option on any particular trial (sometimes referred
to as irreducible uncertainty or risk; 34). These two forms of
uncertainty are generally related, and in particular in our study,
estimation uncertainty is higher, on average, for risky arms due to
the variability of their rewards, which makes it difficult to esti-
mate the mean exactly. However, they are traditionally associated
with opposite behaviors: risk-aversion predicts that people would
prefer the safe over the risky option3>, while uncertainty-guided
exploration predicts a preference for the risky option, all else
equal (Fig. 1c). While we did not seek to explicitly disentangle risk
from estimation uncertainty in our study, our behavioral (Fig. 2a
and Supplementary Fig. 2) and neural (Fig. 3) results are con-
sistent with the latter interpretation.

Our finding that decision value is reflected in motor cortex
might seem somewhat at odds with previous neuroimaging stu-
dies of value coding, which is often localized to ventromedial
prefrontal cortexlVmPFC36 orbitofrontal cortex®’, or the intra-
parietal sulcus®®, However, most of these studies consider the
values of the available options (Q,) or the difference between
them (V,), without taking into account the uncertainty of those
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quantities. This suggests that the values encoded in those regions
are divorced from any uncertainty-related information, which
would render them insufficient to drive uncertainty-guided
exploratory behavior on their own. Uncertainty would have to
be computed elsewhere and then integrated with these value
signals by downstream decision circuits closer to motor output.
QOur results do not contradict these studies (in fact, we observe
traces of value coding in vmPFC in our data as well; see Sup-
plementary Fig. 9C and Supplementary Information) but instead
point to the possibility that the value signal is computed sepa-
rately and combined with the uncertainty signals from RLPFC
and DLPFC downstream by motor cortex, which ultimately
computes choice.

One mechanism by which this could occur is suggested by
sequential sampling models, which posit that the decision value
DV, drives a noisy accumulator to a decision bound, at which
point a decision is made!®. This is consistent with Gershman’s!*
analysis of reaction time patterns on the same task as ours. It is
also consistent with studies reporting neural signatures of evi-
dence accumulation during perceptual as well as value-based
judgments in human motor cortex3*-43. It is worth noting that
for our right-handed subjects, left motor cortex is the final cor-
tical area implementing the motor choice. One potential avenue
for future studies would be to investigate whether the decision
value area will shift if subjects respond using a different modality,
such as their left hand, or using eye movements. This would be
consistent with previous studies that have identified effector-
specific value coding in human cortex38.

One prediction following from the sequential sampling inter-
pretation is that motor cortex should be more active for more
challenging choices (i.e. when DV, is close to zero), since the
evidence accumulation process would take longer to reach the
decision threshold. Indeed, this is consistent with our result, and
reconciles the apparently perplexing negative direction of the
effect: [DV,| can be understood as reflecting decision confidence,
since a large [DV/| indicates that one option is significantly pre-
ferable to the other, making it highly likely that it would be
chosen, whereas a small |DV/,| indicates that the two options are
comparable, making choices more stochastic (Eq. (4) and (5)).
Since we found that motor cortex is negatively correlated with
IDV,|, this means that it is negatively correlated with decision
confidence, or equivalently, that it is positively correlated with
decision uncertainty. In other words, motor cortex is more active
for more challenging choices, as predicted by the sequential
sampling framework.

Another puzzling aspect of our results that merits further
investigation is the lack of any signal corresponding to V,/TU,.
This suggests that the division might be performed by circuits
downstream from right DLPFC, such as motor cortex. Alter-
natively, it could be that, true to Thompson sampling, the brain is
generating samples from the posterior value distributions and
comparing them to make decisions. In that case, what we are
seeing in motor cortex could be the average of those samples,
consistent with the analytical form of the UCB/Thompson hybrid
(Eq. (4)) which is derived precisely by averaging over all possible
samples®. A sampling mechanism could thus explain both the
negative sign of the [DV/| effect in motor cortex, as well as the
absence of V/TU, in the BOLD signal. Such a sampling
mechanism also predicts that the variance of the decision value
signal should scale with (squared) total uncertainty, which is
precisely what we found. Overall, our data suggest that random
exploration might be implemented by a sampling mechanism
which directly enters the drawn samples into the decision value
computation in motor cortex.

The neural and behavioral dissociation between relative and
total uncertainty found in our study points to potential avenues

for future research that could establish a double dissociation
between the corresponding brain regions. Temporarily disrupting
activity in right RLPFC should affect directed exploration
(reducing w, in Eq. (4)), while leaving random exploration
intact (not changing w; in Eq. (4)). Conversely, disrupting right
DLPFC should affect random but not directed exploration.
This would expand upon the RLPFC results of Zajkowski, Kossut,
and Wilson?# by establishing a causal role for both regions in
the corresponding uncertainty computations and exploration
strategies.

In summary, we show that humans tackle the exploration-
exploitation trade-off using a combination of directed and ran-
dom exploration strategies driven by neurally dissociable uncer-
tainty computations. Relative uncertainty was correlated with
activity in right RLPFC and influenced directed exploration, while
total uncertainty was correlated with activity in right DLPFC and
influenced random exploration. Subjective trial-by-trial estimates
decoded from both regions predicted subject responding, while
motor cortex reflected the combined uncertainty and value sig-
nals necessary to compute choice. Our results are thus consistent
with a hybrid computational architecture in which relative and
total uncertainty are computed separately in right RLPFC and
right DLPFC, respectively, and then integrated with value in
motor cortex to ultimately perform the categorical decision
computation via a sampling mechanism.

Methods

Subjects. We recruited 31 subjects (17 female) from the Cambridge community.
All subjects were healthy, ages 18-35, right-handed, with normal or corrected
vision, and no neuropsychiatric pre-conditions. Subjects were paid $50.00 for their
participation plus a bonus based on their performance. The bonus was the number
of points from a random trial paid in dollars (negative points were rounded up to
1). All subjects received written consent and the study was approved by the
Harvard Institutional Review Board.

Experimental design and statistical analysis. We used the two-armed bandit
task described in Gershman!4. On each block, subjects played a new pair of bandits
for 10 trials. Each subject played 32 blocks, with 4 blocks in each scanner run (for a
total of 8 runs per subject). On each trial, subjects chose an arm and received
reward feedback (points delivered by the chosen arm). Subjects were told to pick
the better arm in each trial. To incentivize good performance, subjects were told
that at the end of the experiment, a trial will be drawn randomly and they will
receive the number of points in dollars, with negative rewards rounded up to 1.
While eliminating the possibility of losses may appear to have altered the incentive
structure of the task, subjects nevertheless preferred the better option across all task
conditions (Supplementary Fig. 1A), in accordance with previous replications of
the experiment®14,

On each block, the mean reward p(k) for each arm k was drawn randomly from
a Gaussian with mean 0 and variance 72(k) = 100. Arms on each block were
designated as "risky” (R) or "safe” (S), with all four block conditions (RS, SR, RR,
and SS) counterbalanced and randomly shuffled within each run (i.e., each run had
one of each block condition in a random order). A safe arm delivered the same
reward p(S) on each trial during the block. A risky arm delivered rewards sampled
randomly from a Gaussian with mean y(R) and variance 72(R) = 16. The type of
each arm was indicated to subjects by the letter R or S above the corresponding
box. In order to make it easier for subjects to distinguish between the arms within
and across blocks, each box was filled with a random color that remained constant
throughout the blocks and changed between blocks. The color was not informative
of rewards.

Subjects were given the following written instructions.

In this task, you have a choice between two slot machines, represented by
colored boxes. When you choose one of the slot machines, you will win or
lose points. One slot machine is always better than the other, but choosing
the same slot machine will not always give you the same points. Your goal is
to choose the slot machine that you think will give you the most points.
Sometimes the machines are “safe” (always delivering the same points), and
sometimes the machines are “risky” (delivering variable points). Before you
make a choice, you will get information about each machine: “S” indicates
SAFE, “R” indicates RISKY. The “safe” or “risky” status does not tell you
how rewarding a machine is. A risky machine could deliver more or less
points on average than a safe machine. You cannot predict how good a
machine is simply based on whether it is considered safe or risky. Some
boxes will deliver negative points. In those situations, you should select the

8 | (2020)11:2371] https://doi.org/10.1038/s41467-020-15766-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

one that is least negative. In the MRI scanner, you will play 32 games, each
with a different pair of slot machines. Each game will consist of 10 trials.
Before we begin the actual experiment, you will play a few practice games.
Choose the left slot machine by pressing with your index finger and the
right slot machine by pressing with your middle finger. You will have
2 seconds to make a choice. To encourage you to do your best, at the end of
the MRI experiment, a random trial will be chosen and you will be paid the
number of points you won on that trial in dollars. You want to do as best as
possible every time you make a choice!

The event sequence within a trial is shown in Fig. 1a. At trial onset, subjects saw
two boxes representing the two arms and chose one of them by pressing with their
index finger or their middle finger on a response button box. The chosen arm was
highlighted and, after a random inter-stimulus interval (ISI), they received reward
feedback as the number of points they earned from that arm. No feedback was
provided for the unchosen arm. Feedback remained on the screen for 1s, followed
by a random inter-trial interval (ITI) and the next trial. A white fixation cross was
displayed during the ITL If subjects failed to respond within 2s, they were not
given feedback and after the ISI, they directly entered the ITI with a red fixation
cross. Otherwise, the residual difference between 2 s and their reaction time was
added to the following ITI. Each block was preceded by a 6-s inter-block-interval,
during which subjects saw a sign, “New game is starting,” for 3 s, followed by a 3-s
fixation cross. A 10-s fixation cross was added to the beginning and end of each run
to allow for scanner stabilization and hemodynamic lag, respectively. ISIs and ITIs
were pregenerated by drawing uniformly from the ranges 1-3 s and 5-7s,
respectively. Additionally, ISIs and ITIs in each run were uniformly scaled such
that the total run duration is exactly 484 s, which is the expected run length
assuming an average ISI (2 s) and an average ITI (6 s). This accounted for small
deviations from the expected run duration and allowed us to acquire 242 whole-
brain volumes during each run (TR =2 s). The experiment was implemented using
the PsychoPy toolbox*4.

Belief updating model. Following Gershman!4, we assumed subjects approximate
an ideal Bayesian observer that tracks the expected value and uncertainty for each
arm. Since rewards in our task are Gaussian-distributed, these correspond to the
posterior mean Q,(k) and variance ¢?(k) of each arm k, which can be updated
recursively on each trial ¢ using the Kalman filtering equations:

Qt+1(at) = Qt(“t) + ‘Xr[rt - Qt(“r)] (6)
U?Jrl(at) = U%(at) - ato-%(at)7 (7)

where a, is the chosen arm, r, is the received reward, and the learning rate «, is
given by:

_ o7 (a,) ] (8)

We initialized the values with the prior means, Q,(k) = 0 for all k, and variances
with the prior variances, o2 (k) = 72(k). Subjects were informed of those priors and
performed 4 practice blocks (40 trials) before entering the scanner to familiarize
themselves with the task structure. Kalman filtering is the Bayes-optimal algorithm
for updating the values and uncertainties given the task structure and has been
previously shown to account well for human choices in bandit tasks®®1245. In
order to prevent degeneracy of the Kalman update for safe arms, we used 73(S) =
0.00001 instead of zero, which is equivalent to assuming a negligible amount of
noise even for safe arms. Notice that in this case, the learning rate is &, ~ 1 and as
soon as the safe arm k is sampled, the posterior mean and variance are updated to
Q¢11(k) = u(k) and Uf(k) ~ 0, respectively.

Choice probability analysis. We fit the coefficients w of the hybrid model (Eq. (4))
using mixed-effects maximum likelihood estimation (fitglme in MATLAB, with
FitMethod =Laplace,CovariancePattern=diagonal, and
EBMethod = TrustRegion2D) using all non-timeout trials (i.e., all
trials on which the subject made a choice within 2 s of trial onset). In Wilkinson
notation®, the model specification was: Choice ~ V+RU + VoverTU+
(V+RU+VoverTU| SubjectID).

We confirmed the parameter recovery capabilities of our approach by running
the hybrid model genaratively on the same bandits as the subjects?’. We drew the
weights in each simulation according to w ~ A/(0, 10x I) and repeated the process
1000 times. We found a strong correlation between the generated and the
recovered weights (Supplementary Fig. 6A; r>0.99, p < 10~8 for all weights) and
no correlation between the recovered weights (Supplementary Fig. 6B; r < 0.03, p >
0.3 for all pairs), thus validating our approach. We fit the lesioned models in
Supplementary Table 1 in the same way.

To generate Supplementary Fig. 4, we similarly ran the model generatively, but
this time using a grid of 16 evenly spaced values between 0 and 1 for each
coefficient. For every setting of the coefficients w, we computed performance as the
proportion of times the better option was chosen, averaged across simulated
subjects, averaged across 10 separate iterations. We preferred this metric over total
reward as it yields more comparable results across different bandit pairs. To

generate Supplementary Fig. 3, we similarly ran the model generatively, but this
time using the fitted coefficients.

In addition to the hybrid model, we also fit a model of choices as a function of
experimental condition to obtain the slope and intercept of the choice probability
function:

Pa, = 1|w) =<I><szjlntj+14/"2n[th>, (9)
j

where j is the experimental condition (RS, SR, RR, or SS), and ;= 1 if trial ¢ is
assigned to condition j, and 0 otherwise. In Wilkinson notation, the model
specification was: Choice ~ condition+condition :
V+(condition+condition : V| SubjectID). We plotted
the w; terms as the intercepts and the w, terms as the slopes.

For Bayesian model comparison, we fit w separately for each subject using fixed
effects maximum likelihood estimation (Choice ~V 4+ RU + VoverTU)
in order to obtain a separate BIC for each subject. We approximated the log model
evidence for each subject as — 0.5*BIC and used it to compute the protected
exceedance probability for each model, which is the probability that the model is
most prevalent in the population?”.

fMRI data acquisition. We followed the same protocol as described previously*s.
Scanning was carried out on a 3T Siemens Magnetom Prisma MRI scanner with
the vendor 32-channel head coil (Siemens Healthcare, Erlangen, Germany) at the
Harvard University Center for Brain Science Neuroimaging. A T1-weighted high-
resolution multi-echo magnetization-prepared rapid-acquisition gradient echo
(ME-MPRAGE) anatomical scan* of the whole brain was acquired for each
subject prior to any functional scanning (176 sagittal slices, voxel size = 1.0 x 1.0 x
1.0 mm, TR = 2530 ms, TE =1.69-7.27 ms, TI = 1100 ms, flip angle = 7°, FOV =
256 mm). Functional images were acquired using a T2*-weighted echo-planar
imaging (EPI) pulse sequence that employed multiband RF pulses and Simulta-
neous Multi-Slice (SMS) acquisition®?-32. In total, eight functional runs were
collected for each subject, with each run corresponding to four task blocks, one in
each condition (84 interleaved axial-oblique slices per whole-brain volume, voxel
size = 1.5 x 1.5 x 1.5 mm, TR = 2000 ms, TE = 30 ms, flip angle = 80°, in-plane
acceleration (GRAPPA) factor = 2, multi-band acceleration factor = 3, FOV =
204 mm). The initial 5 TRs (10's) were discarded as the scanner stabilized. Func-
tional slices were oriented to a 25° tilt towards coronal from AC-PC alignment. The
SMS-EPI acquisitions used the CMRR-MB pulse sequence from the University of
Minnesota.

All 31 scanned subjects were included in the analysis. We excluded runs with
excessive motion (>2 mm translational motion or >2° rotational motion). Four
subjects had a single excluded run and two additional subjects had two
excluded runs.

fMRI preprocessing. As in our previous work?, functional images were pre-
processed and analyzed using SPM12 (Wellcome Department of Imaging Neu-
roscience, London, UK). Each functional scan was realigned to correct for small
movements between scans, producing an aligned set of images and a mean image
for each subject. The high-resolution T1-weighted ME-MPRAGE images were then
co-registered to the mean realigned images and the gray matter was segmented out
and normalized to the gray matter of a standard Montreal Neurological Institute
(MNI) reference brain. The functional images were then normalized to the MNI
template (resampled voxel size 2 mm isotropic), spatially smoothed with a 8-mm
full-width at half-maximum (FWHM) Gaussian kernel, high-pass filtered at 1/
128 Hz, and corrected for temporal autocorrelations using a first-order
autoregressive model.

Univariate analysis. Our hypothesis was that different brain regions perform the
two kinds of uncertainty computations (relative and total uncertainty), which in
turn drive the two corresponding exploration strategies (directed exploration,
operationalized as UCB, and random exploration, operationalized as Thompson
sampling). We therefore defined a general linear model (GLM 1, Supplementary
Table 2) with model-based trial-by-trial posterior estimates of absolute relative
uncertainty, |[RU,|, total uncertainty, TU,, absolute value difference, |V, and
absolute value difference scaled by total uncertainty, |V,|/TU,, as parametric
modulators for an impulse regressor at trial onset (trial_onset). All quantities were
the same model-derived ideal observer trial by trial estimates which we used to
model choices (Eq. (4)). For ease of notation, we sometimes refer to those para-
metric modulators as RU, TU, V, and V/TU, respectively. Following®®, we used
|RU,| instead of RU, to account for our arbitrary choice of arm 1 and arm 2 (note
that TU, is always positive). We used the absolute value difference |V/| for the same
reason.

The trial_onset regressor was only included on trials on which the subject
responded within 2 s of trial onset (i.e., non-timeout trials). We included a separate
regressor at trial onset for trials on which the subject timed out (i.e., failed to
respond within 2 s of trial onset) that was not parametrically modulated
(trial_onset_timeout), since failure to respond could be indicative of failure to
perform the necessary uncertainty computations. In order to control for any
motor-related activity that might be captured by those regressors due to the
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hemodynamic lag, we also included a separate trial onset regressor on trials on
which the subject chose arm 1 (trial_onset_chose_1). Finally, to account for
response-related activity and feedback-related activity, we included regressors at
reaction time (button_press) and feedback onset (feedback_onset), respectively. All
regressors were impulse regressors (duration = 0 s) convolved with the canonical
hemodynamic response function (HRF). The parametric modulators were not
orthogonalized3. As is standard in SPM, there was a separate version of each
regressor for every scanner run. Additionally, there were six motion regressors and
an intercept regressor.

For group-level whole-brain analyses, we performed t-contrasts with single
voxels thresholded at p < 0.001 and cluster family-wise error (FWE) correction
applied at « = 0.05, reported in Supplementary Fig. 7 and Supplementary Tables 3
and 4. Uncorrected contrasts are shown in Figs. 3 and 4. We labeled clusters based
on peak voxel labels from the deterministic Automated Anatomical Labeling
(AAL2) atlas®». For clusters whose peak voxels were not labeled successfully by
AAL2, we consulted the SPM Anatomy Toolbox® and the CMA Harvard-Oxford
atlas®”. We report up to 3 peaks per cluster, with a minimum peak separation of 20
voxels. All voxel coordinates are reported in Montreal Neurological Institute
(MNI) space.

Since the positive cluster for |RU,| in right RLPFC did not survive FWE
correction, we resorted to using a priori ROIs from a study by Badre et al.2 for our
subsequent analysis. Even though in their study subjects performed the different
task and the authors used a different model, we believe the underlying uncertainty
computations are equivalent to those in our study and hence likely to involve the
same neural circuits. We defined the ROIs as spheres of radius 10-mm around the
peak voxels for the corresponding contrasts reported by Badre et al.2%: right RLPFC
for relative uncertainty (MNI [36 56 —8]) and right DLPFC for total uncertainty
(MNI [38 30 34]).

To compute the main effect in a given ROI, we averaged the neural coefficients
(betas) within a sphere of radius 10-mm centered at the peak voxel of the ROI for
each subject, and then performed a two-tailed t-test against 0 across subjects. To
compute a contrast in a given ROI, we performed a paired two-tailed ¢-test across
subjects between the betas for one regressor (e.g. |[RU,|) and the betas for the other
regressor (e.g. |TU,|), again averaged within a 10-mm-radius sphere.

We used the same methods for the decision value GLM (GLM 2, Supplementary
Table 2) as with GLM 1.

Decoding. If the brain regions reported by Badre et al.2¢ encode subjective trial-by-
trial estimates of relative and total uncertainty, as our GLM 1 results suggest, and if
those estimates dictate choices, as our UCB/Thompson hybrid model predicts, then
we should be able to read out those subjective estimates and use them to improve
the model predictions of subject choices. This can be achieved by "inverting” the
GLM and solving for |RU,| and TU, based on the neural data y, the beta coefficients
B, and the design matrix X. Using ridge regression to prevent overfitting, the
subjective estimate for relative uncertainty for a given voxel on trial t can be
computed as:

RU| = [y,— > X.B | Bro/ By +1) (10)

X, #|RU|

where y, is the neural signal on trial ¢, X,; is the value of regressor i on trial ¢, f; is
the corresponding beta coefficient computed by SPM, fjry is the beta coefficient
for |RU|, and A is the ridge regularization constant (voxel indices were omitted to
keep the notation uncluttered). The sum is taken over all regressors i other than
|RU]. To account for the hemodynamic lag, we approximated the neural activity at
time t as the raw BOLD signal at time ¢ + 5 s, which corresponds to the peak of the
canonical HRF in SPM (spm_hrf). Since the beta coefficients were already fit by
SPM, we could not perform cross-validation to choose A and so we arbitrarily set
A=1

To obtain a signed estimate for relative uncertainty, we flipped the sign based
on the model-based RU:

o (11)
—[RU,| ifRU,<0

Note that our goal is to test whether we can improve our choice predictions,
given that we already know the model-based RU,, so this does not introduce bias

—  [IRG,| ifRU>=0
RU, =

into the analysis. Finally, we averaged I{Gt across all voxels within the given ROI (a
10-mm sphere around the peak voxel) to obtain a single trial-by-trial subjective
estimate ITII for that ROL We used the same method to obtain a trial-by-trial
subjective estimate of total uncertainty, ”1{17[

To check if the neurally-derived I([I predicts choices, we augmented the probit
regression model of choice in Eq. (4) to:

P(a, = 1lw) = ©(wy +w, V, + w,RU, + w3V, /TU, + W4@[)' (12)
In Wilkinson notation, the model specification was: Choice ™ 1 + V + RU +
VoverTU + decodedRU+ (1 +V+ RU+ VoverTU + decodedRU |
SubjectID).
Notice that we additionally included an intercept term wo. While this departs
from the proper analytical form of the UCB/Thompson hybrid (Eq. (4)), we

noticed that including an intercept term alone is sufficient to improve choice
predictions (data not shown), indicating that some subjects had a bias for one arm
over the other. We therefore chose to include an intercept to guard against false
positives, which could occur, for example, if we decode low-frequency noise which
adopts the role of a de facto intercept.

We then fit the model in the same way as the probit regression model in Eq. (4),
using mixed effects maximum-likelihood estimation (fitglme), with the difference
that we omitted trials from runs that were excluded from the fMRI analysis. For
baseline comparison, we also re-fitted the original model (Eq. (4)) with an intercept
and without the excluded runs (hence the difference between the UCB/Thompson
hybrid fits in Table 1 and Supplementary Table 1).

Similarly, we defined an augemented model for T/LTt:

P(a, = 1|w) = ®(wy +w,V, + w,RU, + w,V,/TU, + w,V,/TU,),  (13)
Note that this analysis cannot be circular since it evaluates the ROIs based on
behavior, which was not used to define GLM 1°3, In particular, all regressors and
parametric modulators in GLM 1 were defined purely based on model-derived ideal
observer quantities; we only take into account subjects’ choices when fitting the weights
w (Eq. (4)), which were not used to define the GLM 1. Furthermore, since all model-
derived regressors are also included in all augmented models of choice (Eqs. (12), (13),
and (14)), any additional choice information contributed by the neurally decoded
regressors is necessarily above and beyond what was already included in GLM 1.
Finally, we entered both subjective estimates from the corresponding ROIs into
the same augmented model:

Pa, = 1|lw) = ®(wy + w, V, + w,RU; + w;V,/TU, + W4@t + WSVt/ﬁjt)!
(14)
We similarly constructed an augmented model with the decoded decision value,
]5_\7t, from GLM 2, after adjusting the sign similarly to Eq. (11):

P(a, = 1|lw) = O(wy + w, V, + w,RU, + w;V,/TU, + w,DV,),  (15)

Residual variance analysis. To show that the variance of the decision value signal
scales with total uncertainty, we extracted the residuals of the GLM 2 fits from the

|DV,| ROI (Fig. 5; left M1, peak MNI [—38 —8 62]), averaged within a 10-mm sphere
around the peak voxel. As with the decoding analysis, we accounted for the hemo-

dynamic lag by taking the residuals 5 s after trial onset to correspond to the residual
activations on the given trial. We then performed a Pearson correlation between the
square of the residuals (the residual variance) and TU? across trials for each subject.
Finally, to aggregate across subjects, we Fisher z-transformed the resulting correlation
coefficients and performed a two-tailed one sample f-test against zero.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All behavioral data are available at https://github.com/tomov/Exploration-fMRI-Task.
The raw fMRI data is available upon request. The source data underlying Figs. 3b and 4b
are provided as a Source Data file. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability

All analyses were conducted in MATLAB using SPM 12 and our custom fMRI analysis
pipeline built on top of it, which is available at https://github.com/sjgershm/ccnl-fmri. All
analysis code is available at https://github.com/tomov/Exploration-Data-Analysis.
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