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Introduction
Cities in the United States have announced initiatives to 
become more sustainable, healthy, resilient, livable, and envi-
ronmentally friendly.1,2 However, assessing these outcomes has 
been challenging, as metrics to define the outcomes and their 
interrelationships are limited.3-5 This is due, in part, to the fine-
scale data needed to study these factors and interactions. 
Studying these fine scales is challenging because of personnel 
limitations, data and instrumentation barriers, and high costs.5 
Nonetheless, cities are evolving, and it is helpful to understand 
these relationships to achieve desired goals.

A potentially important set of relationships involves local 
air quality, neighborhood-scale infrastructure, and subjective 
well-being (SWB). Air quality, typically characterized by air 
pollutant concentrations, has both chronic and acute health 
responses.6-9 Neighborhood infrastructure is related to the 

services, accessibilities, and social capital provided at the 
neighborhood level10 and can impact both air quality and 
well-being.11,12 Subjective well-being is defined as an individ-
ual’s cognitive and affective evaluation of his or her life.13,14 
Thus, relating air quality with neighborhood infrastructure 
parameters and person’s SWB may help city planners identify 
strategies and infrastructure that can lead to improved public 
health and well-being. In addition, neighborhood-level analy-
sis can help city planners to identify disparities across neigh-
borhoods and identify neighborhoods at higher risks for low 
emotional well-being (EWB). Cognitive well-being relates to 
what an individual thinks about his or her life and is often 
associated with long-term well-being while affective SWB, or 
EWB, refers to what an individual feels about his or her life. 
Emotional well-being is more sensitive to short-term environ-
ment changes15; hence, this study considered EWB. Typical 
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studies of EWB track a range of positive and negative emo-
tions such as happiness, anger, aggression, pleasure, fatigue, 
stress, and sadness.16,17

Emotional well-being has often been associated with health 
as the 2 influence each other; better health often leads to higher 
EWB and vice versa.18 High EWB involves frequent pleasant 
emotions, infrequent unpleasant emotion, the net of which is 
one measure of EWB called net affect; high well-being also 
includes cognitive aspects, that is, high levels of life satisfac-
tion/evaluation. Poor health, separation (encompassing widow-
hood, divorce, or separation), unemployment, and lack of social 
contact are factors of strong, negative associations to EWB.19 
Intra-personal personality traits can also influence subjective 
self-assessments of well-being. In addition, neighborhood-
level infrastructure has also been shown to impact health and 
EWB.20-22 Access to convenient and affordable transportation 
enables participation in activities that can improve life, includ-
ing gainful employment, improved education, and social inter-
actions.23,24 Exposure to poor air quality, particularly PM2.5, has 
been found to be one of the largest factors leading to disease 
burden globally, as it has both chronic and acute adverse health 
outcomes.6-9 In addition, PM2.5 affects visibility, which is an 
additional socioeconomic burden that influences EWB.25

Traditionally, air pollution has been measured using expen-
sive, bulky, and sparsely located monitors.26 New techniques to 
generate fine-scale measurements have been developed and 
studied in recent years, including the use of low-cost sensing 
technologies.27 Low-cost sensors (LCSs) have advantages as 
they are cheaper and smaller, providing widespread spatial 
coverage that has not been viable in the past, and are easier to 
transport and operate than regulatory or research-grade 
instruments. However, evaluation of their performance is 
inconsistent.27-31 City-scale modeling of air pollutants is often 
done using dispersion models, but the modeled concentrations 
do not always agree with observations, due in part to emission 
uncertainties, omission of complex atmospheric chemistry, 
and no default depositional loss mechanisms in the model. 
Much of the local gradients of pollution concentrations, par-
ticularly NOx (a combustion byproduct), are driven by on-road 
mobile sources in cities,32 so fine-scale dispersion simulations 
from on-road mobile sources can provide additional under-
standing of neighborhood air pollution levels and their impacts 
on EWB.

Historically, EWB was measured using retrospective self-
reports, in which participants would reflect on certain past 
events and attempt to recall their feelings. The results from 
these studies were accordingly limited due to recall bias. 
Following self-reporting, the next advancement in measuring 
EWB was with experience sampling methods (ESMs). 
Experience sampling methods involve repeated sampling of 
subjects’ behaviors in real time in natural environments.33 
Experience sampling methods assess specific events in subjects’ 
lives or assess subjects at periodic intervals by random time 

sampling.34 While ESMs allow for advancements of studying 
EWB, they do not offer continuous measurements of it.

The day reconstruction method (DRM) asks the respondent 
to reconstruct the entire sequence of daily activities and emo-
tional experiences during each activity, which offers a more 
comprehensive measurement of EWB than ESMs and captures 
more completely the time-variant nature of EWB.35 Recent 
mobile technology advancements, including smartphone appli-
cations, allow for opportunities to collect EWB data near real 
time (survey subjects often fill the responses throughout the 
day and not necessarily following each event, so their real-time 
EWB emotions may not be fully captured) using the DRM 
approach.36,37 Smartphone-enabled DRM approaches allow for 
comprehensive data acquisition throughout the day as opposed 
to single snapshots. Using smart phones for the surveys provides 
additional benefits including (1) accurate location identification 
using the Global Positioning System (GPS),38 (2) additional 
characterization of activity attributes using smartphone built-in 
sensors for user inputs (eg, transportation mode, companion-
ship/event partnerships), and (3) for information on the tempo-
ral sequence of activities and experiences.39-42

Recent studies have addressed environmental justice and air 
pollution exposure based on socioeconomic status (SES) and 
have generally found that poor and racial minority communities 
are disproportionately affected with lower air quality.43-46 And 
while the linkages between air pollution and health risks (mor-
tality and morbidity) is known,7,47 linkages to EWB are just 
emerging. Some studies48-50 have noted correlations with nega-
tive emotions, such as feelings of sadness/depression, but such 
studies have not evaluated a full range of EWB outcomes and 
their variation within cities in the United States. This first-of-
its-kind study explored the relationship between air quality 
(measured using LCS sensors and simulated with a mobile-
source dispersion model) with EWB (assessed using a novel 
phone application) and neighborhood infrastructure (assessed 
from census-level data) in Minneapolis, MN, using a combina-
tion of low-cost air pollution sensors, air quality modeling, and 
dynamic well-being sampling using a phone-based application.

Methods
This study examined the relationship between ambient air 
quality with neighborhood infrastructure and individual’s 
emotional well-being (EWB) using concurrent air quality 
measurements, mobile source modeling of a traffic-related air 
pollutant (TRAP), and individual’s EWB assessments in 6 
neighborhoods of varying infrastructure parameters in 
Minneapolis, MN.

Neighborhood selection

The study’s 6 Minneapolis neighborhoods included Phillips, 
Near North, Brooklyn Center, St. Anthony Park, Blaine, and 
Prospect Park (Table 1 and SI Figure 1). Infrastructure quality 
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was assumed to be correlated with median household income 
(with income class breaks designated from literature on income 
and health-based disparities),51 access to light rail (access defined 
as the neighborhood either containing a light rail station or one 
block away from at least 2 light rail stations), and urban or sub-
urban (urban defined as inside the city boundaries of Minneapolis 
and St. Paul, MN, and suburban considered outside the bounda-
ries; Table 1 and SI Figure 1). Because the intensity of the data 
collected limits the size of the panel to be studied, only 6 neigh-
borhoods were used in this study; however, these 6 neighbor-
hoods still allowed for studying combinations of the infrastructure 
criteria. The study period was from October 2016 to April 2017.

Air pollution measurements and modeling

This study focuses on PM2.5 and NO2 air quality as these pol-
lutants show more heterogeneity than a secondary pollutant 
like ozone and both are found to contribute significantly to the 
overall health burden.6,52,53 There are 9 regulatory PM2.5 moni-
tors in the study domain and 4 are defined to capture pollutant 
concentrations representative of neighborhoods54 (SI Table 1). 
However, the neighborhoods housed by 3 of these 4 monitors 
did not meet our other neighborhood criteria, so to measure 
suitable neighborhood PM2.5 levels we use low-cost air quality 
sensors that were deployed and evaluated during a number of 
previous studies.55-58 In this study, the monitors were deployed 
in the backyards of residents’ homes. The selection criteria for 
the homes included no close-proximity (within 10 s of meters) 
sources (eg, fire pit, back alleyways for cars/parking, lawn mow-
ing; the study was conducted from October to April, limiting 
lawn mowing and similar activities), no nearby construction 
(also limited by the choice of study period), and being at least 
one house away from a street intersection. Differences in PM2.5 
concentrations will exist on the neighborhood scale and within 
neighborhood microenvironments (eg, on the driveway vs a 
remote spot over the lawn) in US cities;59-61 the location of the 

LCSs in this analysis should be treated as representative neigh-
borhood background levels. The monitors were zip-tied to 
fences or posts approximately at the inhalation height, ~1.5 m 
off the ground (SI Figure 2). The LCS measured PM1/PM2.5/
PM10 using a Plantower PMS3003 with no upstream drier  
(SI Figure 3 for schematic) and relative humidity (RH) and 
temperature with a Sensiron SHT 15 (Figure 1).

The sensors were calibrated using a co-location approach 
with an EPA Near-Road (monitoring) Network (NRN) site in 
Minneapolis (Minneapolis—Near Road I-35/I-94). The LCS 
were co-located with a dry PM2.5 measurement (Beta 
Attenuation Monitor [BAM]) at the NRN site. Initial PM2.5 
calibration (using the manufacturer reported PM2.5 output) 
results showed a piecewise continuous response that split at 
~10 µg m−3, which has been observed in other studies.62 A RH 
correction to the sensor PM2.5 data (level 2A correction)63 was 
employed,58 which provided an estimate of dry PM2.5 from the 
LCSs. Calibrations lasted 2 days and were conducted every 
2 weeks during the study period to account for any drifts that 
occur. A linear fit was then used to calibrate the LCSs with the 
reference site measurements. The sensors’ calibration data were 
then applied to the neighborhood sampling data by time-
weighted averaging. The sampling frequency used in these 
samples was minute data; however, to be consistent with the 
NRN monitor data, levels were averaged hourly. A recent eval-
uation of the Plantower PMS3003 with a BAM in a US city 

Table 1. Neighborhoods used in this study, including neighborhood infrastructure characteristics, study-average observed PM2.5 concentrations 
(95% confidence interval) from low-cost sensors (LCS), and R-Line-simulated on-road mobile-source NOx concentrations (95% confidence interval).

NEIGHBORHOOD URBAN 
STATUS

LOW-
INCOME 
STATUS

RAIL 
ACCESS

DISTANCE 
TO 
CENTRAL 
CITY (MI.)

POPULATION 
DENSITY 
(PEOPLE/
ACRE)

MEDIAN 
HOUSEHOLD 
INCOME  
(US$/HH)

LOW-COST 
SENSOR 
PM2.5 (µG M−3)

R-LINE NOx 
(PPB)

Prospect Park x x 3.5 6.0 75 800 7.8 (7.5-8.2) 8.2 (7.8-8.6)

St. Anthony Park x 4.4 5.2 79 800 7.5 (7.2-7.7) 8.0 (7.7-8.4)

Phillips x x x 1.8 20.8 32 200 7.5 (7.2-7.9) 8.2 (7.8-8.6)

Brooklyn Center x 7.4 6.1 56 300 7.6 (7.2-7.9) 6.4 (6.1-6.7)

Near North x x 2.5 12.5 36 200 7.5 (7.1-7.8) 7.4 (7.1-7.7)

Blaine 15.3 5.1 90 400 6.4 (6.2-6.7) 3.8 (3.6-4.0)

The PM2.5 concentrations were only considered for hours where observations existed in all 6 neighborhoods. See SI Figure 1 for a detailed spatial map of the study 
neighborhoods and SI Table 5 for entire sampling average concentrations.

Figure 1. Air quality and meteorological sensing system.
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showed the BAM to have a high noise-to-signal ratio at low 
concentrations,58 similar to levels that would be observed in 
Minneapolis; future work with the Plantower sensors may con-
sider longer averaging times during the calibrations to smooth 
out the noise. Uncertainty was assessed from the slope and 
intercept uncertainty from the co-location calibration. 
Uncertainties were propagated through the sampling period 
for each hour’s pollutant measurement.

While LCS can provide additional monitoring, they still do 
not provide comprehensive spatial coverage, so R-Line64 was 
used to simulate on-road mobile source NOx impacts for the 
same hours that the EWB assessments were conducted. 
Modeling of mobile-source impacts on PM2.5 was not used 
because PM2.5 impacts from on-road mobile sources are under-
stood to be low,65,66 leading to issues with relying on R-Line 
results. Mobile sources contribute to 18% of primary PM2.5 
emissions in Minneapolis (https://www.pca.state.mn.us/air/
statewide-and-county-air-emissions). While NOx was the only 
TRAP modeled here, those levels and spatial patterns would be 
indicative of exposure to other TRAP emissions, as well.

R-Line uses a similar approach to AERMOD, the EPA 
recommended regulatory dispersion model. R-Line is formu-
lated specifically to address line (vs point or area) sources. In 
addition, R-Line has updated plume spread (σy and σz) param-
eterizations, specific for near-surface dispersion.64,67 National 
land cover data from the multi-resolution land characteristic 
(MRLC) consortium were used in AERSURFACE to gener-
ate monthly surface properties in Minneapolis to estimate the 
Bowen ratio, surface roughness length, and albedo. This, in 
combination with surface data from the Minneapolis airport 
and upper air data from nearby Chanhassen, MN (WMO# 
72649), was then processed in AERMET to generate meteoro-
logical fields, including hourly boundary layer heights.

On-road mobile source emission estimates were generated 
using annual average daily traffic (AADT) counts from the 
Minnesota Department of Transportation (MNDOT; http://
www.dot.state.mn.us/traffic/data/data-products.html) in com-
bination with representative emission factors used in the EPA 
National Emission Inventory (NEI). The AADT counts for 
each road link were from 2017 counts or from the most recent 
estimates on each road if 2017 data did not exist. Fleet compo-
sition data were available for 1040 links in Minneapolis. A 
weighted average by vehicle type and vehicle count was then 
used to estimate the fleet composition for the remaining road 
links used in the simulations (N~34 459). Diurnal and day-of-
the-week trends measured in Minneapolis68 were used along-
side the AADT data to develop hourly vehicle counts for each 
link. Emission factors used to convert activity data to emissions 
were from the NEI and were a function of vehicle type, season 
(gasoline formulation), temperature, and RH. A 380 m (E-W) 
× 500 m (N-S) resolution receptor network spanning 46 km 
(E-W) × 60 km (N-S) was used in R-Line.

The R-Line simulations gave hourly on-road mobile source 
NOx estimates, and concentrations were determined for each of 

the study neighborhoods. R-Line modeling has been found to 
lead to unrealistically high simulated pollutant values, which 
may be attributed to the model itself, that is, due to no default 
loss mechanisms or an overestimation of modeled emissions,69,70 
both of which led to approaches to calibrate simulated values.71 
Here, 24 correction factors were generated, one for each hour of 
the day. The correction was developed from linear fits between 
the R-Line simulation results for each hour of the day and an 
estimate of the true on-road mobile source impact from obser-
vations, (ie, the difference between the I-35/I-94 NRN moni-
toring site [AQS Site ID# 27-053-0962] and a background, 
regulatory EPA site observation [AQS Site IDs# 27-003-
1002]). The correction approach resulted in the reduction of the 
model’s initial, high-simulated concentrations (see SI Section 1 
for more details on the correction methodology).

Emotional well-being assessments

Emotional well-being assessments were recorded using 
Daynamica™,36 a smart phone application available on 
Android phones (SI Figure 4). Neighborhood residents took 
entry and egress surveys for demographic and personal charac-
teristics. Survey respondents were not informed of the ongoing 
air pollution study. Residents of the 6 homes in which the 
LCSs were housed did not participate in the EWB assess-
ments. Daynamica™ scaled EWB on a scale from 1 (not at all) 
to 7 (strongly), and 5 emotions were assessed: happiness, sad-
ness, stress, pain, and tiredness.36 The net affect, defined as the 
positive category (happiness) less the average of the 4 negative 
ones (sadness, stress, pain, and tiredness), was also assessed. 
This was the same approach that has been used in other studies 
to determine the U-index, an oft-applied misery index (ie, a 
measure of time that people spend in an unpleasant state).72

The application tracked the users’ movements for a period 
of 7 consecutive days. Next, users would subsequently identify 
the activity completed and when it occurred and then respond 
to a series of EWB questions. There were 371 users, and 26 313 
responses were gained from all users (see SI Section 2 for more 
details on the respondent selection criteria and respondent 
demographic and SES background). More detailed assessment 
of the EWB results can be found in Fan et al.37 Oftentimes, the 
event to which the EWB recording was associated lasted over 
multiple hours. The midpoint of the start time and end time 
was used as the hour of the EWB recording for analysis. 
Because multiple responses existed in a given hour from a sin-
gle person or from a person in the same neighborhood, the 
EWB assessment results in the same hour were averaged.

Linking air quality with neighborhood 
infrastructure and EWB

We analyzed the relationships between the EWB assessments 
with the neighborhood PM2.5 measurements (home-based 
LCS exposure), the R-Line NOx model results evaluated at the 

https://www.pca.state.mn.us/air/statewide-and-county-air-emissions
https://www.pca.state.mn.us/air/statewide-and-county-air-emissions
http://www.dot.state.mn.us/traffic/data/data-products.html
http://www.dot.state.mn.us/traffic/data/data-products.html
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same location where the PM2.5 measurements existed (home-
based R-Line exposure), and the R-Line NOx model results at 
the location of the EWB respondent’s activity (in situ R-Line 
exposure). Only the hours that included both an EWB neigh-
borhood response and LCS PM2.5 measurement or R-Line 
NOx result were used in the analysis. Neighborhood averages 
for hours when the PM2.5 observation/NOx simulation and 
EWB response all existed were determined. The uncertainty 
for the R-Line simulations was not estimated (which was con-
sistent with other R-Line studies).65,71 The average EWB was 
reported with one standard deviation of all measurements. 
Tests for statistical significance (SI Section 3) on the regres-
sions comparing LCS home-based PM2.5, R-Line home-based 
NOx exposures, and R-Line in situ NOx exposures with EWB 
were performed. In each of these assessments, the exposures 
may occur in an indoor environment, but each of the assess-
ments presented here is for ambient pollution concentrations. 
We use ambient concentrations, which is consistent with the 
approach used by the Global Burden of Disease (GBD) when 
assessing global mortality from air pollution exposure,73 for the 
conducted comparisons. Indoor concentration to outdoor con-
centration ratios that have large uncertainties due to a multi-
tude of factors including ventilation rates and infiltration rates 
have been assessed in US cities previously, but recent literature 
finds large pollution concentration differences even among 
indoor microenvironments.74 Coupled with no detailed loca-
tion of the respondents when indoors, we use ambient exposure 
estimates, consistent with the methods outlined by the GBD, 
for the analyses presented here.

The extent to which high-pollution events, including a 
2-day lag period, affected EWB was also explored. We include 
the 2-day lag period as it is a lag time that is used in epidemiol-
ogy studies involving air pollution exposure impacts with 
health outcomes.75 Here, high-pollution events were consid-
ered as the top 10% of PM2.5 observations or NOx simulations 
for each of the neighborhoods, independently, or the top 10% 
of overall in situ NOx concentrations where an EWB response 
existed. We also wanted to explore the EWB outcomes of 
National Ambient Air Quality Standard (NAAQS) exceed-
ance events, but there were no exceedances of the 24-hour 
average PM2.5 standard during the study period. There were 4 
simulated hours that exceeded the 100 ppb NAAQS hourly 
NO2 standard, but considering the inherent uncertainty of the 
simulations, the findings are not included in the main text (see 
SI Section 4).

Results and Discussion
Low-cost sensor PM2.5 performance and 
neighborhood concentrations

The RH-corrected, ambient LCS PM2.5 observations resulted 
in a linear relationship between the LCS data and regulatory 
instrument (BAM) at the NRN site, and Pearson correlation 
coefficients were consistently between 0.8 and 0.9 (see SI 

Figure 5 for a sample co-location calibration result and SI 
Table 2 for calibration fits for the entire study period). Elevated 
PM2.5 levels were observed at the beginning of the study 
period in October/November and toward the end of the study 
period in April. Minnesota Pollution Control Agency 
(MPCA) sites within the study domain showed similarly 
elevated levels during the same hours (SI Figure 6). High con-
centrations are typically driven by meteorology (eg, low inver-
sion heights, low wind speeds) though they also reflect 
increased emission events (eg, rush-hour traffic and residential 
wood burning, a common approach to home heating through-
out Minneapolis).76 The calibrated LCS observations were 
compared against the reference measurements for the entire 
study domain, and rough agreement was found between the 
neighborhood levels and the reference sites (R2 = 0.30-0.61; 
SI Figures 6 and 7 and SI Table 4).

The LCS measurements showed similar average PM2.5 
concentrations in 5 of the 6 neighborhoods, with Blaine (the 
middle-income, suburban neighborhood) being statistically 
significantly (α = 0.05) cleaner than each of the other 5 neigh-
borhoods. Here, concentrations were compared only when 
observational data existed for all 6 neighborhoods. The high-
est observed average PM2.5 concentration was in Prospect 
Park (the middle-income, urban with access to light rail 
neighborhood), but there was no statistical difference between 
the mean PM2.5 in Prospect Park and each of the other neigh-
borhoods except Blaine (Table 1). Although Brooklyn Center 
is a suburban neighborhood, it showed similar measured levels 
as the urban neighborhoods. Brooklyn Center is just outside 
the Minneapolis city boundary (SI Figure 1) and would thus 
be subject to similar urban emissions. The neighborhood 
PM2.5 observations followed similar time series (SI Figure 6), 
which further supports that much of the particulate pollution 
in the area was from regional sources and/or driven by mete-
orological factors. The results suggest that there were no 
noticeable rail access impacts on PM2.5 levels. It is understood 
that current-day PM2.5 emissions from mobile-sources are 
generally low; the displacement of vehicles from riders choos-
ing light-rail over personal vehicles will not affect local PM2.5 
levels. In addition, public transportation only accounts for 
13% of Minneapolis’ commute modeshare,77 of which 68% is 
by bus commute and 29% by the light rail.78 The light-rail 
system does not displace a large fraction of personal use 
vehicles.

R-Line on-road mobile source NOx modeling 
calibration results and simulated concentrations

The re-scaling of on-road mobile source NOx contributions 
resulted in improved agreement between the simulated mobile-
source impact and the true mobile-source impact evaluated at 
the NRN site (SI Section 1). As expected, the modeled on-road 
mobile source impacts closely followed the major roadways in 
Minneapolis (Figure 2). A small NOx concentration difference 
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was found between urban neighborhoods with access to light 
rail (Phillips and Prospect Park) and neighborhoods without 
such access (Near North and St. Anthony Park). Access to light 
rail was expected to reduce mobile-source NOx impacts con-
sidering the proximity of alternative-fuel transportation modes, 
that is, electric light rail. However, this can be offset by increased 
traffic arriving at the light-rail stations or because these 4 study 
neighborhoods were centrally located and thus subject to high 
vehicle counts along common routes. Phillips, Prospect Park, 
St. Anthony Park, and Near North (the urban neighborhoods) 
had the highest average simulated NOx impacts with higher 
simulated NOx concentrations than the 2 suburban neighbor-
hoods (Brooklyn Center and Blaine; Table 1). This is due to 
the higher vehicle counts in the urban areas.

Linking LCS PM2.5 and EWB

The findings in Minneapolis for the LCS PM2.5 were nega-
tively correlated (ie, a higher PM2.5 concentration led to a lower 
EWB score) with happiness and positively correlated (ie, a 
higher PM2.5 concentration led to a lower EWB score) with all 
of the negative emotions, including tiredness, stress, sadness, 
and pain (Figure 3). A negative correlation was also found for 
the net affect (sum of the 5 EWB indicators) assessment. There 
were 2806 hourly EWB responses used in comparison with 
home-based PM2.5 observations (see Table 2 for neighborhood 
breakdown). None of the relationships were found to be statis-
tically significant (α = 0.05), which may in part be explained 
because among most of the neighborhoods, the difference 
between PM2.5 concentrations was not significantly (α = 0.05) 
different (Table 1). In addition, this assessment was conducted 
using home-based PM2.5 exposures, which had limitations, as 
the respondents’ PM2.5 exposure pathways are not fully cap-
tured throughout the day.

Linking R-Line NOx (home-based and in situ 
exposures) and EWB

Stress, sadness, and pain were positively correlated with simu-
lated neighborhood on-road mobile-source NOx levels, while 
tiredness and happiness were negatively associated with home-
based NOx concentrations (Figure 3). Net affect was also nega-
tively associated with mobile-source NOx concentrations 
(home-based exposure). For the in situ on-road mobile-source 
NOx exposures, we found tiredness, sadness, and net affect to 
be positively associated with simulated NOx concentrations 
and happiness, stress, and pain to be negatively associated. 
Happiness and net affect were expected to be EWB indicators 
negatively correlated with mobile-source NOx concentrations. 
There were 4732 and 5126 hourly EWB responses used in 
comparisons with home-based and in situ NOx simulations, 
respectively (see Table 2 for neighborhood breakdown).

All of the regression relationships between NOx and EWB, 
for both home-based and in situ exposures were near zero, sug-
gesting that the influence of mobile source pollution had little 
impact on immediate EWB (Figure 3). Although the majority of 
anthropogenic NOx emissions (~59%)32 come from on-road 
mobile sources in the United States, on-road mobile-source NOx 
emissions have reduced ~80% as the Clean Air Act was passed in 
1970,66 resulting in relatively low average concentrations in the 6 
study neighborhoods and at the locations where the associated 
activity for the EWB response took place (Table 1 and Figure 3). 
The range of average NOx concentrations was 3.8-8.2 ppb in the 
6 study neighborhoods, far below the annual NO2 NAAQS 
standard of 53 ppb. Thus, the average NOx levels might not have 
been high enough for its effects on EWB to be observed, and 
further, NO2 has little impact on visibility at such low levels.79

Other factors that can influence the findings presented have 
not been controlled for in the analysis. The respondent took 
the survey at various times during the day (they could take the 
questionnaire right after completing an activity or hours after 
the activity), which could bias results. Confounding variables 
that could have major impacts on EWB assessments against a 
single indicator using this dataset are discussed further in Fan 
et al.37 Briefly, EWB is a function of many factors in addition 
to air quality, including personality, age, sex, ethnicity, compan-
ionship, employment, and health. Recent work using the same 
survey data to carry out individual-level analyses has shown 
that general happiness and life satisfaction of a person predicts 
EWB during various activities. For example, Fan et al37 used 
the same survey data and found that an individual’s general 
happiness is associated with the individual’s emotional experi-
ences during daily trips. Ambrose and colleagues (https://www.
sciencedirect.com/science/article/pii/S0169204619307297, 
2020—accepted) used the same survey data and found that 
high levels of life satisfaction and optimism (personality traits) 
are associated with emotional experiences during gardening 
activities. This article aims to examine the air quality and  
EWB connection at the neighborhood level. Controlling for 

Figure 2. Average on-road mobile-source NOx impacts simulated using 

R-Line for Minneapolis, MN, from October 2016 to April 2017. The blue 

dots indicate locations of neighborhoods where concurrent air quality 

measurements and emotional well-being (EWB) assessments were 

performed. The red star is the location of the University of Minnesota.

https://www.sciencedirect.com/science/article/pii/S0169204619307297
https://www.sciencedirect.com/science/article/pii/S0169204619307297
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individual attributes is out of the scope of the comparisons pre-
sented here. Future work should explore the effects of air qual-
ity on EWB at the individual level and the use of the sampling 
approach applied here can provide a fine time-series relating 
EWB to air quality, for example, at the hourly level. Furthermore, 

the EWB outcomes were not mutually exclusive of one another, 
that is, if someone is feeling pain, it is possible they feel stressed, 
too. This inter-relationship among the indicators was difficult 
to quantify and can influence results. Also, we have not included 
any correction or re-scaling of the data due to personality or 

Figure 3. (Continued)
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Table 2. The number of emotional well-being (EWB) responses that aligned with an air quality (low-cost sensor PM2.5, home-based R-Line on-road 
mobile-source NOx, or in situ R-Line on-road mobile-source NOx) data point during the same hour for each of the 6 study neighborhoods.

NEIGHBORHOOD LCS PM2.5 
COMPARISON

HOME-BASED R-LINE MOBILE 
SOURCE NOx COMPARISON

IN SITU R-LINE MOBILE 
SOURCE NOx COMPARISON

Phillips 102 271 406

Near North 612 858 897

Prospect Park 520 833 861

St. Anthony Park 677 1172 1297

Blaine 496 805 778

Brooklyn Center 399 793 887

Total 2806 4732 5126

Figure 3. (Left column) Average neighborhood low-cost sensor (LCS) PM2.5, (middle column) R-Line mobile-source NOx home-based exposure, and 

(right column) R-Line mobile-source NOx in situ exposure against concurrent emotional well-being (EWB) measurement (n = 5126) for (a-c) happiness, 

(d-f) tiredness, (g-i) stress, (j-l) sadness, (m-o) pain, and (p-r) net affect. A higher EWB score means “more” emotion (eg, a higher EWB happiness score 

means happier). None of the relationships were statistically significant (α = 0.05).

other demographic (eg, age, sex, ethnicity) effects. The rela-
tionships found in this manuscript should be interpreted with 
caution considering the high uncertainty associated with the 
variability in the air pollutant concentrations, uncontrolled fac-
tors of estimating personal EWB, and potential time lags in the 
response of EWB to air quality.

High-pollution events and EWB impacts
No noticeable trends were found when exploring the top 10% of 
neighborhood PM2.5 concentrations, home-based mobile-source 

NOx levels, or in situ mobile-source NOx levels, including a 
2-day lag, on any of the EWB outcomes (Tables 3, 4, and 5, and 
SI Figure 7). The PM2.5 finding was likely due to the little differ-
ence between PM2.5 concentrations in the top 10% of hours with 
the remaining concentrations (SI Table 5), while the NOx find-
ing could be explained from the low mobile-source NOx to 
EWB relationship. There were no noticeable trends of EWB 
impacts from high NOx or PM2.5 events in the 6 neighborhoods 
with respect to access to light rail, income levels, or urban versus 
suburban.
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Conclusions
This exploratory research used a novel approach to character-
ize the relationships between air quality with EWB and 
neighborhood infrastructure. This study integrates low-cost 
sensing for PM2.5 and R-Line modeling for mobile-source 
NOx with a novel phone application for near real-time EWB 
assessments. From the observational data in 6 neighborhoods 
of varying SES and light-rail access, poorer neighborhoods 
tended to have higher PM2.5 concentrations than their mid-
SES counterparts in Minneapolis, MN, raising environmental 

justice concerns. Simulated NOx levels from on-road mobile 
sources were significantly (α = 0.05) higher in the urban 
neighborhoods than the suburban ones, which was expected, 
considering higher average traffic counts in the urban neigh-
borhoods. There was little influence of light rail access on 
neighborhood air quality (for both measured PM2.5 and mod-
eled mobile-source NOx). When compared to concurrent 
EWB assessments from neighborhood respondents, neigh-
borhood PM2.5 had a negative response (ie, a higher PM2.5 
concentration resulted in a lower EWB outcome) for 

Table 3. Average difference between EWB indicators for the top 10% of PM2.5 hourly concentrations (including a 2-day lag) and the 90% cleanest 
hours in each neighborhood.

EWB INDICATOR PHILLIPS NEAR NORTH PROSPECT PARK ST. ANTHONY PARK BLAINE BROOKLYN CENTER

Happiness −0.95* −4.2 × 10−2 −0.18 −0.51* 1.2 × 10−2 0.15

Tiredness 0.21 0.49* 1.0* −0.23* −0.16 −6.6 × 10−2

Stress 0.18 0.26 0.65* −2.3 × 10−2 −0.16* 1.3 × 10−2

Sadness 0.11 0.12 0.41* −7.3 × 10−2 −3.6 × 10−2 −1.9 × 10−2*

Pain 0.33* −3.8 × 10−2 0.34* −0.13 0.35* −7.3 × 10−3

Net affect −1.23* −0.13 −0.69* −0.34* −0.19 0.13

Abbreviation: EWB, emotional well-being.
See SI Table 6 for the cutoff concentrations. Positive values indicate that the top 10% EWB average value was higher than the bottom 90% value (ie, a positive score 
means the EWB outcome was higher in the high PM2.5 days).
The asterisk (*) indicates the difference is statistically significant (α = 0.05).

Table 4. Average difference between EWB indicators for the top 10% of mobile-source NOx hourly concentrations (including a 2-day lag) and the 
90% cleanest hours in each neighborhood.

EWB INDICATOR PHILLIPS NEAR NORTH PROSPECT PARK ST. ANTHONY 
PARK

BLAINE BROOKLYN 
CENTER

Happiness 0.16 −0.28* −0.25* −0.36* −0.14 0.37*

Tiredness −0.18 0.35* 0.20* −1.6 × 10−2 −0.16 −0.20

Stress −0.37* 0.30* 7.3 × 10−2 −1.6 × 10−2 −6.0 × 10−2 7.9 × 10−2

Sadness −0.12 0.59* 8.9 × 10−2 −7.6 × 10−2 −9.8 × 10−2 0.13*

Pain −0.32* 0.23* −0.16* −0.42* 1.8 × 10−2 −0.10

Net affect 0.64* −0.41* −0.21* −0.23* −0.23 0.26

Abbreviation: EWB, emotional well-being.
See SI Table 6 for the cutoff concentrations. Positive values indicate the top 10% EWB average value was higher than the bottom 90% value (ie, a positive score means 
the EWB outcome was higher in the high NOx days).
The asterisk (*) indicates the difference is statistically significant (α = 0.05).

Table 5. Average difference between EWB indicators for the top 10% of in situ mobile-source NOx hourly concentrations (concentrations > 19.6 ppb; 
including a 2-day lag) and the 90% cleanest hours in each neighborhood.

EWB INDICATOR HAPPINESS TIREDNESS STRESS SADNESS PAIN NET AFFECT

−0.24* −0.13* −0.19* −6.7 × 10−2 1.5 × 10−2 −0.11

Abbreviation: EWB, emotional well-being.
Positive values indicate the top 10% EWB average value was higher than the bottom 90% value (ie, a positive score means the EWB outcome was higher in the high 
NOx days).
The asterisk (*) indicates the difference is statistically significant (α = 0.05).
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happiness and net affect, but a positive response (ie, a higher 
PM2.5 concentration resulted in a higher EWB outcome) for 
tiredness, stress, sadness, and pain. None of the air pollution 
relationships were found to be statistically significant (α = 0.05) 
with EWB, and though from a relatively small sample size 
associated with this exploratory research, these results are sug-
gestive of more measureable affects given larger sample sizes 
or greater pollutant variability. Both mobile-source and in situ 
NOx had a minimal and near-zero regression relationship with 
all EWB indicators, which may have been a result of reduc-
tions in mobile source emissions as well as increased exposure 
measurement error versus having observed levels.

Future work linking air quality to EWB should consider 
personal pollution exposures with on-body monitors and con-
sider personality, age, sex, ethnicity, companionship, employ-
ment, and health to better characterize environment impacts 
(ie, air quality) on EWB. The findings from this work and the 
novel methods introduced here may be used for policy direc-
tives specifically in Minneapolis and in other cities with similar 
neighborhood characteristics. Local interventions (eg, cleaner 
heating practices in the winter seasons), particularly in lower 
SES communities, may offer air quality improvements, which 
from the results presented here may results in improved well-
being. More detailed assessments on the emission sources and 
activities will be needed to directly intervene in cities, but the 
methods presented here can be applied in other cities. The 
findings from this study are only applicable to relatively clean 
environments with similar infrastructure characteristics, but 
the relationship between air quality with neighborhood infra-
structure and EWB may have more pronounced effects in 
developing countries (eg, Asian, African, and South American 
countries) where PM2.5 levels can vary be 100s of µg m−3 within 
the same day. Such studies would offer a unique opportunity to 
assess the relationship between air quality, infrastructure, and 
well-being.
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