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Key Points

� Survival after
transplantation for
NMDs is excellent
beyond the first 2
years post-HCT.

� Cumulative incidence
of SNs is low;
however, there is an
increased risk in
those with FA or
marrow failure.

We examined the risk of subsequent neoplasms (SNs) and late mortality in children and

adolescents undergoing allogeneic hematopoietic cell transplantation (HCT) for

nonmalignant diseases (NMDs). We included 6028 patients (median age, 6 years;

interquartile range, 1-11; range, ,1 to 20) from the Center for International Blood and

Marrow Transplant Research (1995-2012) registry. Standardized mortality ratios (SMRs)

in 2-year survivors and standardized incidence ratios (SIRs) were calculated to compare

mortality and SN rates with expected rates in the general population. Median follow-up

of survivors was 7.8 years. Diagnoses included severe aplastic anemia (SAA; 24%), Fan-

coni anemia (FA; 10%), other marrow failure (6%), hemoglobinopathy (15%), immunode-

ficiency (23%), and metabolic/leukodystrophy syndrome (22%). Ten-year survival was

93% (95% confidence interval [95% CI], 92% to 94%; SMR, 4.2; 95% CI, 3.7-4.8). Seventy-

one patients developed SNs (1.2%). Incidence was highest in FA (5.5%), SAA (1.1%), and

other marrow failure syndromes (1.7%); for other NMDs, incidence was ,1%. Hemato-

logic (27%), oropharyngeal (25%), and skin cancers (13%) were most common. Leukemia

risk was highest in the first 5 years posttransplantation; oropharyngeal, skin, liver, and

thyroid tumors primarily occurred after 5 years. Despite a low number of SNs, patients

had an 11-fold increased SN risk (SIR, 11; 95% CI, 8.9-13.9) compared with the general

population. We report excellent long-term survival and low SN incidence in an interna-

tional cohort of children undergoing HCT for NMDs. The risk of SN development was

highest in patients with FA and marrow failure syndromes, highlighting the need for

long-term posttransplantation surveillance in this population.

Introduction

Allogeneic hematopoietic cell transplantation is a curative treatment
option for pediatric and adolescent patients with nonmalignant dis-
eases (NMDs). Despite continued advances in the field of HCT and
an increasing number of long-term survivors, treatment-related mortal-
ity and late effects remain a challenge. A significant cause of morbid-
ity after HCT is the development of subsequent neoplasms (SNs).1

Among children receiving transplants for primary malignancies, expo-
sure to cytotoxic therapy or radiation during initial cancer treatment
followed by myeloablative conditioning before HCT increases the like-
lihood of SN posttransplantation. (HCT). Presumably, children and
adolescents receiving transplants for NMDs are at lower risk for SNs
than might be expected in children undergoing HCT for malignant
diseases. However, although a majority of these patients are not
exposed to prior chemotherapy or radiation, graft-versus-host disease
(GVHD), immunosuppressive therapy, and genetic predisposition may
also increase the risk of SN posttransplantation.

Numerous studies have described SN incidence in children and
adolescents undergoing HCT for the treatment of primary malignan-
cies2; however, few have examined SN risk in those undergoing
transplantation for NMDs.3 Given the increasing use of HCT for chil-
dren with NMDs, data regarding these long-term outcomes are of
high importance. A recent report from the National Institutes of
Health Hematopoietic Cell Transplantation Late Effects Initiative
highlighted gaps in the current literature regarding SNs after HCT.1

Authors cited a need for longitudinal studies and for comparison of
SN risk after HCT with the risk of new malignancies in the general
population.4

The objectives of this study were to examine the incidence of post-
transplantation SNs and report the risk of death after 2 years in an
international cohort of pediatric and adolescent patients with bone
marrow failure disorders, hemoglobinopathies, immunodeficiency
syndromes, inborn errors of metabolism, and leukodystrophies. We
specifically examined whether patients had an increased risk of
developing a new malignancy at any time point and an increased
risk of late mortality compared with the general population of age-
and sex-matched controls. Here we report contemporary data on a
diverse patient population to both inform decision making and con-
tribute to consensus guidelines about posttransplantation follow-up
surveillance in children and adolescents receiving transplants for
NMDs.5

Patients and methods

Data source

The Center for International Blood and Marrow Transplant Research
(CIBMTR), a research collaboration between the Medical College of
Wisconsin and the National Marrow Donor Program, collects data
from .450 transplantation centers worldwide. Participating centers
contribute data about individual patients, their exposures, and their
outcomes. Transplant essential data are collected on all patients
and include information on demographics, primary disease, trans-
plantation characteristics, and posttransplantation outcomes (includ-
ing SNs, relapse, survival, and cause of death). Observational
studies conducted by the CIBMTR are performed in compliance
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with all applicable federal regulations pertaining to the protection of
human research participants.

Study cohort

The study cohorts included in analyses of survival and SNs are pre-
sented in Figure 1. Children and adolescents undergoing first HCT
for treatment of Fanconi anemia (FA), severe aplastic anemia (SAA),
other marrow failure disorders, sickle cell disease (SCD), thalasse-
mia, primary immunodeficiency syndromes (PIDs), histiocytic disor-
ders, or inborn errors of metabolism or leukodystrophy with data
reported to the CIBMTR were eligible for inclusion. A total of 6028
patients age ,21 years who underwent transplantation between
1995 and 2012 met inclusion criteria (Figure 1).

For analysis of late mortality and long-term survival, patients who
died (n51524; 25%) or who were lost to follow-up before 2 years
(n5251; 5%) were excluded. For analysis of SNs, incidence of
SNs for each NMD group was determined from the time of trans-
plantation to the time of event. Patients without information on SNs
and those who had an SN diagnosis date that preceded the date of
HCT were excluded. An additional 48 patients were excluded from
calculation of SN standardized incidence ratios (SIRs) because gen-
eral population cancer rates were not available for their countries
of origin; these included patients from South Africa (n533),
Venezuela (n57), Mexico (n57), and Croatia (n51).

Posttransplantation lymphoproliferative disorder (PTLD) was not
included as an SN. The final population for SIR analysis of SNs
included 5933 patients (Figure 1).

Statistical analyses

The primary objectives of this study were to report the incidence of
late mortality (defined as death in patients surviving at least 2 years
posttransplantation) and the risk of SNs in children and adolescents
receiving transplants for NMDs and assess whether those risks
were increased relative to the general population of age- and sex-
matched controls. Overall survival (OS) was calculated from 2 years
after the date of transplantation until the date of death (or last con-
tact for those who remained alive). Survival probabilities were esti-
mated by the Kaplan-Meier method. Standardized mortality ratios
(SMRs) with 95% confidence intervals (CIs) were used to compare
observed mortality in the study population with expected mortality in
the general population of age- and sex-matched controls in each
country. Expected mortality was calculated from standardized actu-
arial tables in National Vital Statistics Reports6 and the Human Mor-
tality Database.

In total, 86 pathology reports were requested from CIBMTR sites. Of
these, 15 were removed because of misclassification of SNs. After
review, 71 SN events were eligible for inclusion, 55 of which had
enough accompanying information to be assigned an International

Figure 1. Cohort selection.
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Statistical Classification of Diseases and Related Health Problems,
10th edition (ICD-10), code. For analysis of SN incidence relative to
the general population, the number of person-years at risk was calcu-
lated from the date of HCT until the date of last contact, SN diagno-
sis, or death. Incidence rates for all invasive cancers in the general
population were obtained from selected registries worldwide.7-9 The
risk of new malignancy in the study cohort was compared with that in
the general population using in the method of Breslow et al,12 as
described in previous CIBMTR studies.10-12 To compute expected
numbers of cancers in the population, age, sex, calendar year, and
region-specific incidence rates for all invasive solid cancers combined
and for cancers of specific anatomic sites individually were applied to
the appropriate person-years at risk.

All reported cases of SNs (with or without pathologic confirmation)
that occurred after the date of HCT were treated as events (n571).
Observed/expected ratios, also called SIRs, were calculated for each
NMD group, and the exact Poisson distribution was used to calculate
95% CIs.10 For tumor site–specific SIR calculations, only cases to
which we were able to assign an ICD-10 code were included
(n555). A significance level a of 5% was used throughout.

Finally, multivariable Cox proportional hazards regression analyses
were used to identify risk factors for SN development across the full
patient cohort and in patients with FA or SAA and are presented as
hazard ratios (HRs) with 95% CIs. Variables included in multivariable
analyses were based on past research and known risk factors for
SNs posttransplantation from prior studies. Models were adjusted for
age, donor and stem cell source, myeloablative conditioning (vs
reduced intensity or nonmyeloablative), receipt of total-body irradiation
(TBI), and diagnosis of chronic GVHD. All analyses were performed
with SAS software (version 9.4; SAS Institute, Cary, NC).

Results

Patient, disease, and transplantation characteristics

A summary of patient, disease, and transplantation characteristics is
presented in Table 1. Median age at HCT was 6 years (interquartile

Table 1. Patient and transplantation characteristics (N 5 6028)

Characteristic n (%)

Follow-up of survivors, y

Median 7.8

IQR 5-11.1

Range ,1 to 20

Age at transplantation, y

Median 6

IQR 1-11

Range ,1 to 20

Sex

Male 3610 (60)

Female 2418 (40)

Region of transplantation center

United States 3290 (55)

Canada 195 (3)

Europe 816 (13)

India and Asia 307 (5)

Middle East and Africa 697 (12)

Central and South America 463 (8)

Australia and New Zealand 251 (4)

Other 9 (,1)

Year of transplantation

1995-1999 1763 (29)

2000-2004 1803 (30)

2005-2009 1977 (33)

2010-2012 485 (8)

Primary disease category

Bone marrow failure disorder 2405 (40)

SAA 1456 (24)

FA 598 (10)

Other marrow failure 351 (6)

Hemoglobinopathy 874 (15)

Thalassemia 574 (10)

SCD 300 (5)

Immunodeficiency syndrome 1415 (23)

SCID 583 (10)

Non-SCID PID 807 (13)

Histiocytic disorder 469 (8)

Metabolic disease, leukodystrophy, other 1334 (22)

Metabolic disorder 476 (8)

Leukodystrophy 227 (4)

Osteopetrosis 150 (2)

Autoimmune disease 25 (,1)

Other 12 (,1)

Conditioning regimen

None 141 (2)

TBI 1 Cy 6 other 894 (15)

TBI 1 other 117 (2)

Bu 1 Cy 2720 (45)

Table 1. (continued)

Characteristic n (%)

Bu 1 other (not Cy) 309 (5)

Cy 1 other (no Bu) 1239 (21)

Fludarabine 1 other 493 (8)

Other 115 (2)

Graft type

Bone marrow 3922 (65)

Peripheral blood 553 (9)

Cord blood 1553 (26)

Donor

HLA-identical sibling 2298 (38)

Other related 482 (8)

Unrelated 1695 (28)

Cord blood 1553 (26)

Bu, busulfan; Cy, cyclophosphamide; SCID, severe combined immunodeficiency.
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range [IQR], 1-11; range, ,1 to 20), and median follow-up was 7.8
years (IQR, 5.0-11.1; range, ,1 to 20); 22% of the cohort had at
least 10 years of follow-up. Forty percent of the cohort had congeni-
tal or acquired bone marrow failure disorders, including FA (10%)
and SAA (24%). Patients with hemoglobinopathies comprised 15%
of the cohort (SCD, 5%; thalassemia, 10%). Twenty-three percent
of patients had either SCID or non-SCID PIDs, and 22% had inborn
errors of metabolism, leukodystrophy, or osteopetrosis. A majority of
patients received myeloablative conditioning (63%); however, only
17% of these regimens included TBI. A total of 71% of patients
received antithymocyte globulin either as pretransplantation condi-
tioning or as part of GVHD prophylaxis. Most patients received
bone marrow as a stem cell source (65%). HLA-identical sibling
(38%) or unrelated donors (17%) were most common (Table 1).

OS and relative mortality among 2-year survivors

A total of 4214 patients (70%) with at least 2 years of follow-up
were included in analysis of late mortality; 1524 (25%) died before
2 years, and 251 (4%) were excluded because of incomplete data
at 2 years posttransplantation. Of the 25% of patients who died
before 2 years, the primary causes of death were organ failure
(23%) and infection (22%), followed by pulmonary complications
(12%) and GVHD (10%; Table 2). OS probabilities among the
patients still alive after 2 years were 97% (95% CI, 96% to 97%)
and 93% (95% CI, 92% to 94%) at 5 and 10 years, respectively
(Table 3). Long-term survival in this cohort varied based on underly-
ing NMD. Patients with inborn errors of metabolism or leukodystro-
phies had the lowest survival probabilities at each evaluable time
point (Table 3). The most common cause of death in 2-year survi-
vors was organ failure (20%), followed by complications of primary
disease (17%), infection (11%), and GVHD (10%). Subsequent
neoplasms were the cause of death in 6% of cases (Table 2).

Comparisons of mortality rates in each disease group with rates in
the general population are presented in Table 2. Although long-term
survival was excellent, the study cohort alive at 2 years still had a
fourfold increased incidence of all-cause mortality compared with
age- and sex-matched controls from the general population (SMR,
4.2; 95% CI, 3.7-4.8). Mortality rates for all NMDs were significantly
higher than rates in the general population, with the exception of
patients with thalassemia or autoimmune disease. Increased mortal-
ity rate was most dramatically noted in children with inborn errors of
metabolism or leukodystrophies, whose risks of death were 37- and
25-fold higher than expected, respectively (Table 2).

SNs

Among 5933 patients with median follow-up of 7.6 years (range, 2-
20.9), 71 (1.2%) developed SNs. Details of the 71 individual cases
are presented in supplemental Table 1. Incidence of SNs was highest
in children with FA (5.5%), SAA (1.1%), or other marrow failure disor-
ders (1.7%; Table 4). In patients with hemoglobinopathies, PIDs, met-
abolic disorders, leukodystrophies, or other NMDs, SN rates were
,1%. No SNs were observed in patients receiving transplants for
thalassemia. The most frequent SNs were hematologic malignancies,
including acute myeloid leukemia (AML; n 5 8), myelodysplastic syn-
drome (MDS; n 5 7), and acute lymphoblastic leukemia (n 5 3).
Oropharyngeal cancers, including mouth (n 5 2), tongue (n 5 5),
and hypopharynx (n 5 1), comprised 25% of cases. Skin cancers,
including melanoma (n 5 2), were diagnosed in 9 patients (Table 4).

The observed incidence of SNs posttransplantation was significantly
higher than the expected incidence in the general population (SIR,
11; 95% CI, 8.9-13.9; Table 5). Excess risk was evident in those
receiving transplants for FA (SIR, 50; 95% CI, 34-71), SAA (SIR, 8;
95% CI, 4-12), or SCD (SIR, 11; 95% CI, 2-33). Patients with leu-
kodystrophy or histiocytic disorders had 10- (95% CI, 1-37) and
14-fold (95% CI, 5-33) higher-than-expected incidence of SNs,
respectively. Posttransplantation SN incidence was not significantly
higher than expected in patients undergoing transplantation for thal-
assemia, PIDs, osteopetrosis, or metabolic disorders (Table 5).

Tumor site–specific comparisons of SNs in the study cohort with
the general population were restricted to the 55 cases assigned
ICD-10 codes. Analysis revealed that risk in the study cohort was
elevated for almost all cancer sites (Table 5). Compared with the
general population, the study cohort had significantly increased
rates of AML (SIR, 23; 95% CI, 9.7-44) and MDS (SIR, 730; 95%
CI, 293 to .1000), as well as increased rates of oropharyngeal,
skin, thyroid, liver, and bladder tumors. Of particular note were the
higher-than-expected rates of tongue (SIR, 490; 95% CI, 159 to
.1000) and mouth tumors (SIR, 113; 95% CI, 14-408), which
developed exclusively in patients receiving transplants for FA or mar-
row failure syndromes. Patients in the study cohort also had higher-
than-expected rates of nonmelanomatous skin cancer (SIR, 68;
95% CI, 27-140). The incidence of bone cancer and central ner-
vous system tumors was not significantly higher in the study cohort
than would be expected in the general population.

In the full cohort of patients, multivariable models revealed that TBI-
based conditioning was associated with a significantly higher hazard
of SNs. Specifically, patients who received a TBI-based conditioning
regimen had a 2.5-fold higher hazard of developing a posttransplan-
tation SN compared with those who did not receive TBI-based con-
ditioning (HR, 2.5; 95% CI, 1.5-4.1; P 5 .0003). Among patients
with FA, nonmyeloablative conditioning was associated with a 75%
reduction in the hazard of SNs (HR, 0.26; 95% CI, 0.1-0.9; P 5

.0271). Development of chronic GVHD in patients with FA was
associated with a 4.8-fold increased hazard of SN development
(HR, 4.8; 95% CI, 2.3-10.4; P ,.0001).

Table 2. Cause of death ,2 vs $2 years posttransplantation

(N 5 6028)

Primary cause of death <2 y, n (%) �2 y, n (%) Total, n (%)

Patients, n 1524 251 1775

Primary disease 104 (7) 43 (17) 147 (8)

Graft failure 87 (6) 9 (4) 96 (5)

GVHD 151 (10) 26 (10) 177 (10)

Infection 332 (22) 28 (11) 360 (20)

Pulmonary/ARDS 182 (12) 11 (4) 193 (11)

Organ failure 348 (23) 50 (20) 398 (22)

Secondary malignancy 19 (1) 14 (6) 33 (2)

Other cause 147 (10) 33 (13) 180 (10)

Unknown 2 (0) 0 (0) 2 (0)

Missing 152 (10) 37 (15) 189 (11)

ARDS, acute respiratory distress syndrome.
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Median time from HCT to SN development was 7.5 years (IQR,
3.5-10.4; range, 0.04-18.5; Figure 2). Median latency between
transplantation and SN was shortest for AML (median, 1.8 years;
IQR, 1.0-3.7). Latency was longer for cancers of the oropharynx
(median, 10.2 years; IQR, 8.2-14.5), as well as for skin (median, 7.2
years; IQR, 2.9-7.9) and other solid tumors (median, 8.6 years; IQR,
6.1-10.6; Figure 2). Information on 71 individual SN cases with
details about primary NMD, pretransplantation conditioning, TBI, and
GVHD is presented in supplemental Table 1.

Discussion

To our knowledge, this is the largest study examining SN incidence
and late mortality in an international cohort of children and adoles-
cents receiving transplants for NMDs. Findings indicate that a major-
ity of patients who undergo HCT for treatment of NMDs and are still
alive after 2 years have excellent long-term survival. These findings,
while encouraging, underscore the fact that despite low cumulative
incidence of late mortality, the risk of early death remains a

Table 3. Survival probabilities at 5 and 10 years in patients alive $2 years post-HCT, with corresponding SMRs, by NMD

Primary disease n (%) 5 y (95% CI) 10 y (95% CI) SMR (95% CI) P

Patients alive $2 y post-HCT n 5 4214 97 (96-97) 93 (92-94) 4.2 (3.7-4.8) ,.0001

Bone marrow failure disorder

SAA 192 (5) 98 (97-99) 95 (93-97) 1.8 (1.3-2.4) .0009

FA 393 (9) 96 (94-98) 92 (88-95) 4.8 (3.4-6.6) ,.0001

Other marrow failure 242 (6) 95 (91-97) 93 (88-96) 6.4 (3.8-10) ,.0001

Hemoglobinopathy

Thalassemia 401 (10) 98 (97-99) 98 (97-99) 0.7 (0.3-1.4) .3942

SCD 247 (6) 97 (94-99) 96 (93-98) 8.3 (3.9-15) ,.0001

Immunodeficiency syndrome

SCID 403 (10) 97 (95-98) 93 (90-96) 4.8 (3.0-7.3) ,.0001

Non-SCID PID 607 (14) 97 (96-99) 95 (93-97) 5.0 (3.3-7.4) ,.0001

Histiocytic disorder 273 (6) 98 (96-99) 94 (89-97) 9.3 (4.8-16) ,.0001

Inborn error of metabolism, leukodystrophy, other

Metabolic disorder 314 (7) 93 (89-95) 86 (81-90) 25 (18-5) ,.0001

Leukodystrophy 143 (3) 89 (83-94) 75 (64-84) 37 (37-53) ,.0001

Osteopetrosis 77 (2) 93 (86-98) 85 (74-93) 11.5 (5.5-21) ,.0001

Autoimmune disease 12 (,1) 100 83 (46-100) 12.9 (0.3-72) .1498

Table 4. Incidence of SNs by primary NMD with SIRs (N 5 5933)

Primary NMD n of survivors (median follow-up, y; range) Reported SNs, n (%) SIR (95% CI) P

Total 5933 (7.6; 0-20.9) 71 (1.2) 11 (9-14) ,.001

Bone marrow failure disorder

SAA 1429 (7.6; 0-20.8) 16 (1.1) 8 (4-12) ,.001

FA 574 (9.1; 0.2-20.4) 31 (5.4) 50 (34-71) ,.001

Other marrow failure 343 (7.7; 0.6-20.3) 6 (1.7) 15 (5-32) ,.001

Hemoglobinopathy

SCD 294 (6.1; 0.1-20.1) 3 (1) 11 (2-33) .005

Thalassemia 572 (5.3; 0.2-20.0) 0 (0) — —

Immunodeficiency syndrome

SCID 575 (7.3; 0.2-20.9) 2 (0.3) 4 (0.5-14) .196

Non-SCID PID 793 (8.0; 0.2-20.5) 3 (0.4) 4 (0.7-10) .107

Histiocytic disorder 466 (7.1; 0.5-20.2) 5 (1) 14 (5-33) ,.001

Metabolic disease, leukodystrophy, other

Leukodystrophy 227 (6.1; 0.2-20.2) 2 (0.9) 10 (1-37) .034

Osteopetrosis 150 (6.9; 0.2-20.2) 1 (0.7) 10 (0.3-56) .191

Metabolic disorder 474 (8.3; 0.2-20.4) 2 (0.4) 4 (0.5-15) .172

Autoimmune 24 (4.7; 0.3-15.8) 0 (0) — —

Other 12 (8.7; 5.5-14.0) 0 (0) — —
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significant challenge in the pediatric transplantation population. Fur-
thermore, the risk of death resulting from GVHD, infection, or organ
failure persists over time, particularly in those undergoing transplan-
tation for inborn errors of metabolism or leukodystrophies. Despite
our cohort having higher-than-expected mortality when compared
with the general population, a majority of patients who remained
alive 2 years posttransplantation had high survival rates at both 5
and 10 years. With the exception of patients undergoing transplan-
tation for FA, the study cohort had a reassuringly low cumulative
incidence of posttransplantation SNs.

The cumulative incidence of mortality in our long-term survivors is
similar to other recent reports of patients undergoing allogeneic
HCT for NMDs. In a recent study examining posttransplantation
mortality in patients still alive at 2 years, the 20-year OS rate by pri-
mary diagnosis was 92% for immune disorders, 91% for SAA,
82.3% for sickle cell anemia or thalassemia, and 68.5% for FA.
When compared with the general population, the relative mortality in

patients undergoing transplantation between 2000 and 2010 was
actually higher than in earlier time periods. The authors suggested
this could be related to the relatively lower rate of childhood death
resulting from other causes. Overall, they noted that the cumulative
incidence of late mortality decreased significantly over time from
1990 to 2010.13 In 2007, Bhatia et al14 reported 5- and 10-year
survival outcomes in patients with SAA of 96% and 94%,
respectively.

For children in our cohort who received transplants for FA, SAA, or
marrow failure, 10-year survival probabilities were .90%. In our
analysis, which was restricted to patients still alive at 2 years, sur-
vival probabilities at 5 and 10 years for patients with SAA were
98% and 95%, respectively. These rates are substantially higher
than earlier reports of outcomes in SAA,15 which may be related to
the younger age of our cohort or continued improvements in the
transplantation procedure, as has been suggested in other recent
reports. It should be noted that the present analysis, in contrast to
prior studies, did not include 1-year transplantation-related mortality,
which may also have contributed to the relatively improved out-
comes. Similar to recent studies reporting survival outcomes near
100% in children receiving matched sibling donor transplants for
SCD, we observed excellent long-term survival in this group, with 5-
and 10-year survival probabilities of 97% and 96%, respectively.16

We observed no excess risk of death in patients receiving trans-
plants for thalassemia. In 2012, Bernardo et al17 reported 5-year
survival of 93% in younger patients undergoing transplantation for
thalassemia, which is closer to the probabilities observed in our
cohort.

We observed favorable long-term survival in patients with PIDs,
which has been reported by others, although inconsistently.3,18 Pai
et al19 reported that in patients who receive transplants before the
onset of infection, excellent survival is expected in infants with
SCID. Survival in our cohort was similar to that of the younger
patients.20 Again, differences in mortality risk observed between our
study and earlier studies may in part be attributed to differences in
cohort selection criteria (1- vs 2-year survivors). Few studies have
reported long-term outcomes in patients undergoing transplantation
for histiocytic disorders. We observed that survival for these patients
was excellent at both 5 and 10 years (98% and 94%, respectively).

Ten-year survival probabilities in patients with inborn errors of
metabolism or leukodystrophies ranged from 75% to 86%. In an
analysis of OS in children undergoing cord blood transplantation for
leukodystrophies, Van den Broek et al21 reported similar survival
probabilities to those observed in our cohort despite not restricting
their study to 2-year survivors. Survival probabilities were similar to
what we observed in our cohort, suggesting that the risk of post-
transplantation mortality, which is often highest in the early post-
transplantation period, may persist over time in this patient
population.

Overall, the study cohort had a low incidence of posttransplantation
SNs (1.2%). With median follow-up of nearly 8 years, SN incidence
was 5.5% in patients with FA and 1.1% in patients with SAA.22

These rates are slightly lower than those of prior reports in this
patient population with similar length of follow-up.23 In one of the
earliest studies examining posttransplantation SN rates, Soci�e et al24

reported an 8-year SN incidence up to 22% in children receiving
transplants for SAA. More recent studies with longer follow-up have
reported higher rates of SNs, which may reflect the long latency

Table 5. Site-specific tumor incidence with SIRs (N 5 5933; 35667

person-years)

Tumor site

Reported SN

cases, n (%) or n SIR (95% CI)* P

Head and neck 18 (25)

Tongue 5 490 (159 to .1000) ,.001

Mouth 2 113 (14-408) ,.001

Oropharynx 2 .1000 (309 to .1000) ,.0001

Hypopharynx 1 .1000 (32 to .1000) .002

Nose, sinuses 1 47 (1.2-264) .042

Oropharynx, unspecified 7 — —

Hematologic 19 (27)

Lymphoid leukemia 3 3 (0.65-9) .143

Myeloid leukemia 8 23 (9.7-44) ,.001

MDS 7 730 (293 to .1000) ,.001

MDS, unspecified 1 — —

Skin 9 (13)

Melanoma of the skin 2 7 (0.8-25) .071

Nonmelanoma skin 7 68 (27-140) ,.001

Bone and soft tissue 7 (10)

Connective, soft tissue 2 6 (0.8-23) .083

Bone 2 6 (0.7-21) .096

Sarcoma, unspecified 3 — —

Thyroid 5 (7) 16 (5.2-37) ,.001

GI/GU 7 (10)

Liver 2 28 (3-100) .005

Cervix uteri 1 13 (0.3-74) .145

Testis 1 3 (0.1-15) .607

Bladder 1 42 (1.0-234) .047

GI/GU, unspecified 2 — —

Brain, CNS 2 (3) 2 (0.3-8) .473

Breast 1 (1) 10 (0.3-58) .184

Other, unspecified 3 (4) — —

CNS, central nervous system; GI, gastrointestinal; GU, genitourinary.
*Based on number of SN cases with assigned ICD-10 codes (n 5 55).
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between transplantation and SN development. In 2014, the Euro-
pean Group for Blood and Marrow Transplantation reported that
cumulative incidences of SNs after transplantation in patients with
FA were 21% at 15 years and 34% at 20 years post-HCT.25

Our observation that patients with FA had an increased SN risk
compared with the general population is consistent with other stud-
ies of FA patients. Even in the absence of HCT, the underlying
genetic instability associated with FA renders these patients at
increased risk for head and neck tumors, as well as for hematologic
and solid malignancies.26 In patients with FA who undergo HCT,
exposure to TBI or alkylating agents, immunosuppression, and
GVHD development have been associated with SN development.
We observed that chronic GVHD was a significant risk factor for
SN development in patients with FA. The use of non–TBI-based
conditioning regimens is increasingly common in recent decades.
Whether this practice shift will reduce the rates of SNs in this popu-
lation remains to be seen.

Rates of posttransplantation SNs were low in patients undergoing
transplantation for SCD or thalassemia. Studies in patients with thal-
assemia have reported that rates of posttransplantation SNs are
similar to rates in patients who do not undergo HCT.27 In our
cohort, we did not observe any SNs in patients with thalassemia.
Recently, Keegan et al28 reported a higher incidence of leukemia in
patients with SCD compared with the general population. However,
in our cohort, SN risk after transplantation for SCD was not
increased compared with the general population. It is plausible that
treatment of SCD, a disease that is confined exclusively to the
hematopoietic system, may have reduced the likelihood of develop-
ing MDS or leukemia later on.

Patients with PIDs also had low rates of posttransplantation SNs.
Historically, patients with PIDs may be at a higher risk of developing
PTLD in the early post-HCT period. In our study, the incidence of

SNs in patients receiving transplants for primary immunodeficiencies
was ,1%; however, PTLD was not included as an SN for the pur-
poses of the present study. Patients with histiocytic disorders had
an SN rate of 1.1%, which was significantly higher than expected in
the general population. Oropharyngeal, mucosal, and nonmelanoma-
tous skin cancers were the most common nonhematologic SNs
observed in our cohort. All patients with oropharyngeal cancers had
an underlying diagnosis of FA (supplemental Table 1). Timing of SN
development in our cohort was similar to that in other reports.29 In
addition to early leukemia and skin cancer, we observed a long-term
risk for thyroid, oropharyngeal, and liver tumors, as well as a persis-
tent risk for MDS. A majority of nonleukemic SNs occurred $5
years post-HCT.

A strength of this study is the large, international cohort of children
and adolescents, with detailed treatment information and long dura-
tion of follow-up. The analysis builds on earlier work from the
CIBMTR, which examined mortality rates in long-term survivors after
HCT for primary malignancy or SAA before 2004.14,30 The present
analysis extends this work, with 8 more years of data in a cohort
with a broader spectrum of NMDs. Similar to other reports, we
found that TBI is still associated with a higher hazard of SNs, and
early posttransplantation mortality rates remain unacceptably high.
We were unable to evaluate pretransplantation organ dysfunction
related to underlying disease, which could have contributed to sur-
vival outcomes, particularly in patients with metabolic syndromes or
leukodystrophies. For data collected through the CIBMTR, there is
central pathology review for SN cases, and we were unable to
obtain enough data to assign ICD-10 codes for 16 of the reported
cases. These SNs were not included in the analysis of relative inci-
dence; therefore, the true SIR for some NMD groups and some
site-specific cancer diagnoses may have been underestimated.
Long-term follow-up beyond 10 years was only available in a subset
of our cohort, which also may have led to underestimation of SN

Figure 2. Median time to SN development

after HCT. Median time to SNs for all new diagnoses

was 7.5 years (IQR, 3.5-10.4; range, ,1 to 18.5).

Median time to SNs by tumor type was as follows:

AML: 1.8 years (IQR, 1.0-3.7; range, ,1 to 7.5); acute

lymphoblastic leukemia (ALL): 2.7 years (IQR, ,1 to

3.6; range, ,1 to 3.6); MDS: 4.2 years (IQR, 3.8-7.7;

range, ,1 to 10.2); skin: 7.2 years (IQR, 2.9-7.9;

range, ,1 to 11.3); oropharyngeal: 10.2 years (IQR,

8.2-14.5; range, 1-18.5); solid tumors: 8.6 years (IQR,

6.1-10.6; range, ,1 to 17.9); and other SNs,

unspecified: 14.6 years (IQR, ,1 to 18.1; range, ,1

to 18.1).
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risk, because many malignancies often develop beyond 15 years
posttransplantation.27 Additional follow-up will be necessary to
determine longer-term survival and later SN development in this
patient cohort.

In summary, we report excellent long-term survival in patients still
alive at 2 years, as well as low incidence of posttransplantation
SNs, in an international cohort of children and adolescents undergo-
ing transplantation for NMDs. These findings are accompanied by a
recognition that early posttransplantation mortality remains a signifi-
cant challenge and that the risk for SN development persists over
time. The patients at highest risk of developing SNs were those
who might have had underlying predispositions to malignancy, spe-
cifically patients with FA or marrow failure disorders. In the full
cohort, TBI-based conditioning regimens were associated with a
significantly higher hazard of SN development; in patients with FA,
the hazard of SNs was significantly higher in those with chronic
GVHD. We observed no excess cancer risk in children receiving
transplants for thalassemia, PIDs, osteopetrosis, and metabolic dis-
orders. The present findings suggest that in the absence of individ-
ual patient susceptibility, the transplantation procedure itself may not
necessarily increase the likelihood of developing a malignancy. It is
important to note that a majority of nonleukemic SNs developed at
least 5 years posttransplantation, which highlights the need for long-
term surveillance and close follow-up in children and adolescents
undergoing transplantation for NMDs.31
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