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Abstract

Background: A major impediment in the treatment of ovarian cancer is the relapse of chemotherapy-resistant
tumors, which occurs in approximately 25% of patients. A better understanding of the biological mechanisms
underlying chemotherapy resistance will improve treatment efficacy through genetic testing and novel therapies.

Methods: Using data from high-grade serous ovarian carcinoma (HGSOC) patients in the Cancer Genome Atlas
(TCGA), we classified those who remained progression-free for 12 months following platinum-taxane combination
chemotherapy as “chemo-sensitive” (N = 160) and those who had recurrence within 6 months as “chemo-resistant”
(N = 110). Univariate and multivariate analysis of expression microarray data were used to identify differentially
expressed genes and co-expression gene networks associated with chemotherapy response. Moreover, we
integrated genomics data to determine expression quantitative trait loci (eQTL).

Results: Differential expression of the Valosin-containing protein (VCP) gene and five co-expression gene networks
were significantly associated with chemotherapy response in HGSOC. VCP and the most significant co-expression
network module contribute to protein processing in the endoplasmic reticulum, which has been implicated in
chemotherapy response. Both univariate and multivariate analysis findings were successfully replicated in an
independent ovarian cancer cohort. Furthermore, we identified 192 cis-eQTLs associated with the expression of
network genes and 4 cis-eQTLs associated with BRCA2 expression.

Conclusion: This study implicates both known and novel genes as well as biological processes underlying response
to platinum-taxane-based chemotherapy among HGSOC patients.

Keywords: Chemotherapy resistance, Co-expression network analysis, Valosin containing protein, Expression
quantitative trait loci, The Cancer Genome Atlas, High-grade serous ovarian carcinoma, Genome-wide association
study, Differential gene expression analysis, Transcriptomics, Genomics
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Background
Ovarian cancer is the most lethal gynecological malig-
nancy and the 8th leading cause of cancer death in
women around the world [1]. According to the Glo-
bal Cancer Observatory report in 2012, ovarian cancer
accounts for 3.6% of all cancer cases and 4.3% of all
cancer related deaths worldwide [2]. High-grade ser-
ous ovarian carcinoma (HGSOC) is the most common
form of ovarian cancer that accounts for up to 70%
of all cases [3]. Routine diagnosis is often difficult
due to the lack of mass screening methods and the
heterogenous manifestations of symptoms, which re-
sults in approximately 75% of HGSOC patients diag-
nosed with advanced stages [4]. The average 5-year
survival rates are 39% for Stage 3 and 17% for Stage
4 cancers [1].
The current standard of care for ovarian cancer is

aggressive cytoreductive surgery followed by
platinum-taxane combination chemotherapy [4]. How-
ever, this standard of care is not effective for all pa-
tients, with approximately 25% experiencing relapse
within 6 months following chemotherapy containing
platinum-based compounds, likely due to the develop-
ment of antineoplastic resistance [5]. The median sur-
vival time for recurrent ovarian cancer ranges from
12 to 24 months [6, 7]. Treatment options for patients
with recurrent ovarian cancer include non-platinum-
based chemotherapy regimens, immunotherapy, and
molecular targeted therapy [7, 8].
Ovarian cancer has a multifactorial etiology that in-

cludes genetic and non-genetic risk factors. An esti-
mated 23% of cases are hereditary, but the majority
are sporadic with multiple reported risk factors such
as history of gravidity, infertility, and late age meno-
pause [9, 10]. A better understanding of the etiology
of ovarian cancer, as well as the genetic mechanisms
underlying variable response to platinum-based
chemotherapy, is needed for improved diagnosis and
treatment. For example, previous studies reported that
the BRCA1 and BRCA2 genes, which are associated
with increased risk of ovarian cancer, harbor muta-
tions associated with platinum drug sensitivity and
survival [11]. Similarly, tumor suppressor genes such
as RB1, NF1, RAD51B, PTEN have been associated
with acquired chemotherapy resistance [12]. Earlier
studies have also highlighted the importance of the
immune system in the treatment of ovarian cancer.
For example, loss of chemokines and disruptions to
the IFN-γ pathway have been associated with poor
treatment outcomes in HGSOC paients [13] whereas
the NFκB signaling pathway and elevated expression
of STAT1 were associated with increased response to
platinum therapy [14–16]. However, these known
genetic variations do not account for all of the

variability in chemotherapy response among HGSOC
patients and there is currently no screening method
to accurately predict prognosis prior to start of
chemotherapy. Thus, further studies are necessary to
determine additional modulators of chemotherapy re-
sponse, which can be used as biomarkers for genetic
testing.
The majority of earlier studies of chemotherapy re-

sponse in ovarian cancer patients used univariate ana-
lysis of gene expression data known as differential gene
expression (DGE) analysis. For example, DGE analysis
identified genes correlated with ovarian cancer subtypes
in the TCGA cohort [17], which have also been associ-
ated with differential response to platinum-based
chemotherapy [18]. Moreover, similar univariate
methods have been applied to investigate gene expres-
sion differences in cisplatin sensitive vs. resistant ovarian
cancer cell lines after cisplatin exposure [19]. A limita-
tion of DGE analysis is that it assumes each gene func-
tions in isolation within the genome, which fails to
capture the effects of complex gene-gene interactions.
Our study of chemotherapy response in HGSOC pa-
tients applies a multivariate approach to identify groups
of co-expressed genes, which may contribute to com-
mon biological pathways. These genes may each have
modest effects that are not detected by conventional
univariate analysis. Specifically, we applied Weighted
Gene Co-expression Network Analysis [20] (WGCNA),
which uses an unsupervised machine-learning algorithm
to identify clusters of highly correlated or co-expressed
genes. Moreover, we correlated sequence variations with
co-expressed gene networks to identify expression
Quantitative Trait Loci (eQTLs), which are potentially
regulatory variants associated with gene expression. In
addition, our study used gene expression data profiled
from whole patient tumors, which were obtained during
the initial cytoreductive surgery. This allows us to exam-
ine the tumor microenvironment and tumor cell intrin-
sic events which are difficult to study in cell-line derived
expression datasets. A better understanding of the bio-
logical mechanisms regulating chemotherapy response
will enable more effective treatment by improving the
accuracy of genetic testing and identifying novel therap-
ies for HGSOC patients.

Methods
Patient classification
We retrieved 587 high-grade serous ovarian carcin-
oma (HGSOC) patients with available clinical data
from the Cancer Genome Atlas (TCGA) Genomic
Data Commons (GDC) portal [21] using the TCGA-
biolinks R/Bioconductor package [22]. We selected for
patients who received platinum-based adjuvant
chemotherapy, the majority of which (96%) also
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received taxane treatment (see Supplemental Table 1
for characteristics of the cohort). A small percentage
of the cohort has received additional adjuvant therap-
ies in combination with platinum compounds, such as
gemcitabine (9%), doxorubicin (2.6%), topotecan
(2.6%), bevacizumab (2.2%), and tamoxifen (2.2%)
(Supplemental Table 2). The interval between a pa-
tient’s last primary chemotherapy treatment and the
onset of a recurrent tumor or progression of an exist-
ing tumor was used as a metric for determining
chemotherapy sensitivity. Patients who developed a
new tumor in less than 6 months following their last
primary chemotherapy treatment were defined as re-
sistant (N = 110). In contrast, those who did not have
a recurrent tumor event for over a year after their
last primary chemotherapy treatment were defined as
sensitive (N = 160). Individuals who had a recurrent
tumor event between 6 months to 1 year following
chemotherapy were excluded from the study. This
strategy for dichotomizing resistant and sensitive pa-
tients was used to enrich for genetic differences.

Transcriptomics data processing and analysis
Expression microarrays
Of the 270 HGSOC subjects classified as sensitive or re-
sistant to chemotherapy, 238 (138 sensitive, 100 resist-
ant) had primary tumor microarray expression data
available (Affymetrix ht_hg_u133a chip) in the GDC
portal. The robust multi-array average (RMA) method
[23] in the affy package from Bioconductor [24] was
used for background correction, log-transformation, and
quantile normalization of the probe intensities. Two po-
tential outliers and two duplicated samples were re-
moved from the study during the quality control step
using the arrayQualityMetrics [25] package (see Supple-
mental Data 1 for steps of pre-processing), resulting in
135 sensitive and 99 resistant HGSOC subjects in the
expression set. Next, probes were filtered using the me-
dian absolute deviation (MAD) whereby the top 50%
with highest variation (n = 11,107) were selected for ana-
lysis. This non-specific filtering step removed probes
with low variability in expression across the cohort,
which are not likely to be differentially expressed be-
tween sensitive and resistant patients, reducing the num-
ber of multiple testing corrections and, therefore, the
likelihood of false positives.

Covariates
We assessed multiple potential confounders for correl-
ation with therapeutic outcome including age, race, sur-
gery (cytoreductive) outcome, cancer grade, and cancer
stage (Supplemental Table 1). With the exception of age
(p = 0.0041), all factors showed no significant difference
between chemo-sensitive and chemo-resistant patients.

For this reason, age at diagnosis was included as a covar-
iate in all subsequent analyses.

Differential gene expression analysis
The Limma [26] package in Bioconductor [27] was used
to identify differentially expressed genes between
chemo-sensitive and resistant groups using linear
models. The false discovery rate (FDR) method was
employed as a measure for multiple testing correction to
control for type I error.

Weighed gene co-expression network analysis (WGCNA)
We performed hierarchical clustering of genes using the
R package WGCNA [20], which groups genes based on
their similarity in expression. This was achieved by first
creating a similarity matrix using Pearson correlation of
expression among all genes. The resulting matrix was
raised to a power of 9, as suggested by the soft-
thresholding power estimation plot (Supplemental Fig. 1).
Raising the correlation matrix to a power enriches for
differences between weak and strong signals, allowing
for better quantification of gene-gene interactions. The
similarity matrix was transformed to a Topological
Overlap Matrix (TOM), where the strength of associ-
ation between a pair of genes is reinforced by the com-
mon neighbors shared by them. To avoid excessive
splitting of genes into smaller modules, minimum mod-
ule size was set to 30, split sensitivity (deep split) was set
to 4, and modules with similar expression profiles were
merged at a height of 0.5 (Supplemental Fig. 2). Using
principal component analysis, we calculated the module
eigengene for each co-expression cluster to summarize
module gene expression with a single measure. Each
module eigengene was tested for association with
chemotherapy response using generalized linear models.
Finally, we used Cytoscape [28], an open source bioinfor-
matics platform, to visualize significant gene co-
expression networks.

Gene function and pathway annotations
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) [29] was employed to identify
biological pathways and functions that were enriched in
each significant gene co-expression module. We also
screened significant genes in the GeneMANIA [30] data-
base to identify functional connections reported in pub-
lished literature. Next, we searched the UCSC
transcription factor binding site (TFBS) conservation
sites track using DAVID to identify enriched motifs of
transcription factors that may co-regulate genes within
each cluster. Finally, we used the Drug–Gene Interaction
database (DGIdb) [31], a public database with curation
of data describing relationships between genes, chemi-
cals, drugs, and pathological phenotypes, to identify
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genes with prior reported associations with chemothera-
peutic agents.

Validation of differentially expressed gene
The Kaplan–Meier plotter tool was used to cross-
validate the differential expression of VCP in an in-
dependent ovarian cancer cohort (GEO accession
identifier: GSE9891) [32]. This replication cohort in-
cluded gene expression profiling (Affymetrix Human
Genome U133 Plus 2.0 Array) of 285 ovarian tumor
samples. Patients were filtered to include those with
cancer histology of serous carcinoma and who re-
ceived chemotherapy containing a platinum com-
pound to allow close comparison with the TCGA
ovarian cancer cohort. This step omitted a total of
60 subjects from analysis, which included 21 with
endometrioid carcinoma cases and 43 who did not
receive platinum therapy (4 overlapping subjects).
Thus, 225 patients remained for replication analysis.
Patient survival was evaluated using a Cox propor-
tional hazards model and progression-free survival
(PFS) was the primary outcome used in the replica-
tion analysis [33].

Validation of co-expression networks
For validation of co-expression networks, the SurvEx-
press database was used, which allows users to validate
the combined effect of multiple gene expression mea-
sures with a target trait [34]. The same cohort and filter-
ing steps were used for validation (GSE9891, N = 225).
The survival curve was evaluated using a Cox propor-
tional hazards model and PFS was the primary outcome
used in the replication analysis.

Genomics data processing and analysis
Genomics data
Single nucleotide polymorphisms (SNPs) data from
germline tissues (DNA extracted from blood or solid
non-tumor ovarian tissue) were obtained from the
TCGA legacy database. The Affymetrix Genome-Wide
Human SNP Array 6.0 was used to capture genetic vari-
ations, which detected 906,600 SNPs. Of the 270 sub-
jects from TCGA classified as resistant or sensitive to
chemotherapy, 266 (157 sensitive and 109 resistant) had
genotype data available.

Imputation
The imputation of autosomal chromosomes was per-
formed using the Michigan imputation server pipeline
[35]. We used the 1000 Genome Project phase 3 sequen-
cing data (version 5) [36] reference panel for the imput-
ation of missing genotypes. We then used Eagle v.2.3
[37] for phasing of the genotypes to their respective
chromosomes. For the imputation of variants on the X

chromosome, SHAPEIT [38] was used for phasing in
combination with the 1000 genomes project phase 3
(version 5) reference panel (Supplemental Data 2).

Quality control

Subject level Two pairs of individuals had a relatedness
coefficient (pi-hat) > 0.9, which were likely duplicated
samples. One subject from each pair was randomly re-
moved from the dataset. Next, inbreeding coefficients
(F) were computed for each subject using PLINK [39]. A
total of 18 subjects with high homozygosity (F > 0.05) or
heterozygosity (F < -0.05) rates were excluded. Moreover,
genetic sex was estimated based on heterozygosity rates
(F) of the X chromosome, and four subjects who had
undefined genetic sex (F > 0.2) were removed from the
study.

SNP level
SNPs with minor allele frequency (MAF) less than 1% or
with genotyping call rate less than 90% were removed.
This step removed 38,430,595 SNPs with MAF < 0.01,
resulting in 9,528,963 SNPs to be used for further
analysis.

Genome-wide association study
After imputation and quality control, 240 subjects
(N = 142 sensitive, 98 resistant) and a total of 9,528,
963 SNPs (MAF > 0.1) remained available for analysis
(Supplemental Data 3). Plink (v.1.90) was used to
compute genome wide and BRCA1/2 targeted associ-
ation analysis using a logistic regression model. We
pruned variants in strong (r2 > 0.8) linkage disequilib-
rium (LD) within the BRCA1/2 loci to determine in-
dependent association signals. Manhattan plot was
generated using the qqman package in R [40].

Variant annotations
Variant Effect Predictor (VEP) [41] was used to predict
the functional consequence of the identified variants.
Similarly, the database of Genome-Wide Repository of
Associations Between SNPs and Phenotypes (GRASP)
[42] and Clinvar [43] were used to identify variants with
known phenotype associations.

Expression quantitative trait loci (eQTL) analysis
Common SNPs (MAF > 0.01) were tested for association
with gene expressions of BRCA1, BRCA2, and co-
expression networks using the matrixeQTL R package
[44]. The correlation of a genotype with nearby gene ex-
pression indicates potential regulatory function of the
SNP on the corresponding gene. These regulatory SNPs
are known as cis-expression Quantitative Trait Loci (cis-
eQTL). Cis-eQTLs are defined as correlated SNPs found
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within 1Mb from the gene transcriptional start site
(TSS).

Results
Univariate or differential gene expression (DGE) analysis
was used to test the association of 11,107 probes with
chemotherapy response in HGSOC patients from TCGA.
This identified that low expression of a probe (208648_at)
mapping to the Valosin Containing Protein (VCP) gene was
significantly associated with resistance to chemotherapy

(FDR adjusted p-value < 0.05; Fig. 1). Replication analysis in
an independent ovarian serous cancer cohort following
treatment with platinum antineoplastic agents using the
Kaplan–Meier survival curve plotter demonstrated that low
expression of VCP was associated with poor progression-
free survival (p = 0.015) and shorter median survival time
(Fig. 2a). In addition to VCP, DGE analysis yielded 628
probes mapping to 534 unique genes that were nominally
correlated with chemotherapy response (unadjusted p-value
< 0.05). We report these findings in Supplemental Table 3.
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Fig. 1 Differential expression analysis of platinum-taxane based chemotherapy response in HGSOC patients. Volcano plot showing univariate
association analysis results. Red horizontal line demonstrates FDR-corrected p value (< 0.05) threshold. One probe, 208648_at, which maps to the
Valosin-Containing Protein (VCP) gene is significantly differentially expressed and correlated with chemotherapy outcome after multiple testing
correction. A total of 628 probes mapping to 534 unique genes are nominal associated, as indicated by the green line (p = 0.05). This figure was
generated using the R package ggplot2 (v. 3.3.0)
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The hierarchical clustering of genes using WGCNA
resulted in 86 unique modules of co-expressed genes
(Supplemental Table 4). Each module was assessed
for association with chemotherapy response (results
shown in Fig. 3b). Five gene clusters (honeydew1,
lightcyan1, lightpink3, orangered4, and skyblue3)
were significantly co-downregulated in platinum-
resistant patients (p < 0.05) (Fig. 3a). These were vali-
dated in an independent ovarian cancer cohort by
Tothill et al. [32] using SurvExpress, which demon-
strated that the downregulation of the genes in the
five modules was significantly associated with re-
duced patient survival (Fig. 2b). These five significant
modules were annotated using DAVID, which identi-
fied gene enrichment for biological pathways includ-
ing protein processing in the endoplasmic reticulum,
apoptosis, negative regulation of the Wnt signaling
pathway, transcription, immune response, and DNA
double-strand break processing involved in repair via
single-strand annealing. GeneMANIA analysis
showed that genes in these modules were previously
reported in 49 publications, some of which docu-
mented associations with oncogenic pathways and
chemotherapeutic outcomes (Supplemental Data 4).

We performed a search of network module genes in
the gene-drug interaction database (DGIdb) and found
that 35 genes were associated with chemotherapeutic
agents. These include: carboplatin and paclitaxel, which
are often used as a first-line chemotherapy option for
ovarian cancer patients; gemcitabine and bevacizumab,
which are approved agents for the treatment of ovarian
cancer; and various tyrosine kinase inhibitors (TKI),
which are a type of targeted therapy commonly used for
the treatment of chronic myeloid leukemia and other
malignancies [45].
Furthermore, we identified common transcription factor

binding sites located within genes from each module. For
example, we identified that over 96% of genes (49/53
genes) found in the honeydew1 module have a matching
motif for the human organic cation transporter 1 tran-
scription factor (OCT1). Similarly, we report that the
acute myeloid leukemia 1 (AML1) motif maps to over
45% of genes found in orangered4 module. Both of these
transcription factors are associated with oncogenic pro-
cesses and therapeutic outcome [46, 47]. A detailed list of
functional annotations, transcription factors and pathways
related to gene modules can be found in Supplemental
Data 4.

A) B) i) ii)

iii) iv) v)

Fig. 2 Kaplan-Meier (KM) plot of an independent ovarian cancer cohort for cross-validation of differentially expressed gene VCP and gene
modules. KM plot shows the Progression-Free Survival (PFS) of the replication ovarian cancer cohort post platinum-based chemotherapy
treatment. (A) shows the PFS of patients with high/low VCP expression, while (B) shows PFS of patients with high/low module-wide expression
for (i) honeydew1, (ii) lightcyan1, (iii) lightpink3, (iv) orangered4, (v) skyblue3 modules. Red line in (A) indicates the PFS of patients with high VCP
expression and black line indicates the PFS of patients with low VCP or module expression. Patients with high expression of VCP are associated
with better PFS with statistical significance. Green line in (B) indicates the PFS of patients with high module-wide expression and red line
indicates PFS of patients with low module-wide expression. Similarly, patients with high module wide expression are associated with better PFS
with statistical significance. This figure was generated using the web-interface of the Kaplan-Meier Plotter and survExpress
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Our GWAS of SNPs did not identify any variants
correlated with chemotherapy response after multiple
testing correction. The Manhattan plot (Supplemental
Fig. 3) demonstrates that none of the SNPs meet the
genome-wide significance threshold (p < 5 × 10–8), as
indicated by the red horizontal line. This is likely due
to insufficient statistical power resulting from the low
number of subjects in the TCGA-OV cohort. Next,
we performed a targeted association analysis of two
well-known genes associated with ovarian cancer and
chemotherapeutic outcomes: BRCA1 and BRCA2. Of
the 238 SNPs in BRCA1 and 256 in BRCA2, we iden-
tified 56 independent variants in BRCA1 and 86 such
variants in BRCA2 after pruning for LD (r2 > 0.8). As-
sociation analysis determined that 8 SNPs in BRCA2
and 1 SNP in BRCA1 were significantly associated
with chemotherapy response. GRASP analysis identi-
fied that half of the identified BRCA2 variants
(rs11571686, rs7337574, rs10492397, rs1207952) have
been previously associated with varied Low and High
Density Lipoprotein (LDL/HDL) cholesterol levels.
Similarly, annotation analysis using the Clinvar data-
base reported that 4 of the associated variants in

BRCA2 (rs11571584, rs11571686, rs9567600,
rs7337574) are linked with an increased risk of devel-
oping breast and ovarian cancer at an earlier age
(Supplemental Table 5).
Next, SNPs were tested for correlation with the ex-

pression of the 5 network modules. This identified 192
cis-eQTLs associated with gene expression in co-
expression networks. (Supplemental Data 5). Moreover,
of the 8 significant SNPs found in BRCA2, 6 were identi-
fied as cis-eQTLs for nearby genes, including 4 that were
specifically associated with BRCA2 gene expression
(Supplemental Table 5).

Discussion
In this manuscript, we identified known and novel genes
and gene networks correlated with variable response to
platinum-taxane combination chemotherapy in HGSOC
patients. Using a univariate analysis approach, we identi-
fied a differentially expressed gene encoding the valosin-
containing protein (VCP) associated with sensitivity to
chemotherapy. In addition, we applied a multivariate co-
expression network analysis method which identified five
clusters of co-expressed genes correlated with chemo-

Fig. 3 Gene co-expression modules correlated with platinum-based chemotherapy response. a Network plot displaying the five significant gene
co-expression modules from WGCNA: honeydew1 - centre, lightcyan1 - left, lightpink3 - top, orangered4 - bottom, and skyblue3 - right. Nodes
represent probes and edges are connections among the probes. Co-expressed probes (i.e. belonging to a single module) are indicated by the
same color. b Heatmap demonstrating the association strength between the expression of gene modules and chemoresistance phenotype.
Significance (p-value) of module-trait association is displayed beside each module. Colors represent strength of correlation, where red color
indicates higher expression in chemoresistance population and green indicate higher expression in sensitive population. This figure was
generated using Cytoscape (v.3.7.0)
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response. Genes in these modules were enriched for bio-
logical pathways such as protein processing in the endo-
plasmic reticulum, apoptosis, transcription, immune
response, negative regulation of the Wnt signaling path-
way and DNA double-strand break processing involved
in repair via single-strand annealing. Moreover, we iden-
tified potentially regulatory variants (i.e. eQTLs) corre-
lated with the expression of network genes and the
tumor suppressor BRCA2, which has been previously as-
sociated with chemotherapy outcome in HGSOC. Our
study contributes to a better understanding of the bio-
logical processes underlying chemotherapy response in
HGSOC, which could help facilitate genetic testing and
novel therapies.
The most significantly associated probe identified in

the DGE analysis was for a gene encoding Valosin-
containing protein (VCP, p = 3.91E-06). We have con-
firmed that this signal was replicated in an independent
ovarian cancer cohort with statistical significance (p =
0.015). VCP plays a critical role in disintegrating large
polypeptide cellular structures for further degradation by
proteolytic enzymes. It functions to regulate important
pathways of DNA repair, replication and cell cycle pro-
gression by removing faulty polypeptide structures from
chromatin material, ribosomes, endoplasmic reticulum
and mitochondria. VCP is an ovarian cancer-specific es-
sential gene as demonstrated by a pooled short hairpin
RNA (shRNA) screen in 25 ovarian cancer cell lines
[48], and is also essential in cyclin E1 overexpressing
cisplatin-resistant ovarian cancer cells [49]. In alignment
with these findings, VCP has been investigated as a drug
target for ovarian cancer therapy. For example, Bastola
et. al. (2016) reported that VCP inhibitors induce cell
death in ovarian cancer cell lines through the endoplas-
mic reticulum stress pathway [50]. In addition, this study
reported an association between low VCP expression
and poor response to platinum-based chemotherapy in
multiple ovarian cancer cohorts. VCP has also been pre-
viously identified as a potential biomarker for predicting
the success of platinum-based chemotherapy in lung
cancer patients [51].
In our co-expression network analysis, the gene mod-

ule “honeydew1” showed the most significant correlation
with chemotherapy response (p = 6.53e-05). This associ-
ation signal was validated with statistical significance
(p = 5.88e-07) in an independent ovarian cancer replica-
tion cohort. This module includes two probes that map
to VCP, a gene that was associated with chemotherapy
response in our DGE analysis. Genes in this module
were associated with positive regulation of mitochondrial
membrane potential, protein ubiquitination, mitosis, al-
ternative splicing, and apoptotic processes. Pathway ana-
lysis showed that this module is involved in protein
processing in the endoplasmic reticulum. A prior study

found that VCP plays a crucial role in ovarian cancer cell
survival through extraction and degradation of unfolded
proteins in endoplasmic reticulum, and noted that lower
expression of VCP was associated with poor response to
platinum-based chemotherapy [50]. In alignment with
this finding, genes co-expressed in the honeydew1 mod-
ule were co-downregulated in chemo-resistant patients.
The honeydew1 module is composed of 76 probes

mapping to 53 unique genes, and of these, 45 genes
are located in chromosome 9, demonstrating the im-
portance of chromosome 9 in the regulation of
chemo-resistance in ovarian cancer. These findings
support previous studies, where genetic imbalance
and alterations in chromosome 9 have been associ-
ated with progression of ovarian cancer and in-
creased cisplatin resistance [52]. Analysis of
overrepresented transcription factor binding sites
demonstrated that genes in this module may be co-
regulated by a common transcription factor known
as organic cation transporter 1 (OCT1). We found
that over 96% of genes in this module (49/53 genes)
contain a nucleotide motif bound by OCT1. Prior
studies have reported that silencing OCT1 impaired
cisplatin-induced apoptosis in esophageal cancer
cells, and that cisplatin-resistant cells were already
expressing significantly reduced levels of OCT1 [46].
Taken together, these findings characterize a net-
work of co-expressed genes that is associated with
chemotherapy response in ovarian cancer. Genes
within this module may be co-regulated by the
OCT1 transcription factor, which may be used as a
novel potential target for ovarian cancer therapies.
The other four co-expression modules, which were

also replicated in an independent cohort, include genes
known to be involved in oncogenic process and drug re-
sponse outcomes. For example, the orangered4 module,
which was downregulated in resistant patients, consists
of genes associated with regulation of the immune re-
sponse. Genes in this module are associated with func-
tional annotation terms including immunoglobulin
receptor binding, antigen binding, B cell receptor signal-
ing pathway, and phagocytosis. The repression of patient
immune response is a well-known cancer survival mech-
anism, which has been shown to play a role in chemo-
therapy resistance in HGSOC [14, 15]. In addition, 10 of
the 22 genes in this module are enriched for a common
transcription factor binding site: acute myeloid leukemia
1 protein (AML1). This transcription factor is involved
in the haematopoiesis process and immune functions
such as thymic T-cell development. AML1 expression
was found to be associated with cancer cell proliferation,
migration and invasion in ovarian cancer [47]. In
addition, we found that the lightpink3 module is strongly
associated with the transcription regulation process,
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which plays a pivotal role in cancer progression [53]. Fi-
nally, genes in the lightcyan1 and skyblue3 modules are
target regions of well-known chemotherapeutic agents
for ovarian cancer such as carboplatin, paclitaxel, bevaci-
zumab and gemcitabine. Many of these genes are also
target regions for various TKIs, which have been re-
ported to enhance the efficacy of cisplatin treatment and
progression free survival in ovarian cancer [54, 55]. For
instance, our DGIdb search showed that the expression
of the non-receptor tyrosine kinase YES1 (YES Proto-
Oncogene 1, Src Family Tyrosine Kinase) in the skyblue3
module and the serine/threonine kinase MAPK1 (Mito-
gen-activated protein kinase 1) in the lightcyan1 module
are inhibited when TKIs are introduced (Dasatinib, Ibru-
tinib, Rebastinib, Ulixertinib, etc.) (Supplemental
Data 4).
Targeted analysis of BRCA1 and BRCA2 SNPs demon-

strated that 6 out of 9 variants associated with chemo-
therapy response were also cis-acting eQTLs, correlated
with the expression of BRCA2 as well as neighboring
genes N4BP2L1, N4BP2L2, FRY, and STARD13 (nominal
p-value < 0.05). Both BRCA2 and STARD13 are well
known tumor-suppressors, and upregulation of
N4BP2L1 and N4BP2L2 has been associated with posi-
tive prognosis in ovarian cancer cases [56]. The majority
of cis-eQTLs in BRCA2 were associated with the upreg-
ulation of BRCA2 in chemotherapy resistant patients
(Supplemental Table 5). The downregulation of BRCA2
reduces the expression of the homologous recombin-
ation (HR) pathway-associated RAD51 protein and sup-
presses DNA repair in ovarian cancer cells, sensitizing
them to cisplatin [57]. In addition, BRCA2 upregulation
has been shown to promote HR DNA repair and radio-
resistance in pancreatic cancer cells [58]. This finding
indicates that the potential regulation of BRCA2 expres-
sion by the cis-eQTLs we identified may enhance the
HR pathway function in resistant patients. However,
functional experiments are needed to confirm this find-
ing. Finally, our annotation results show that half of
chemotherapy response-associated variants in BRCA2
are linked with LDL/HDL cholesterol levels (Supplemen-
tal Table 5). Prior studies of lung and ovarian cancers
consistently reported that cholesterol levels may affect
the efficacy of platinum-based and platinum-taxane
chemotherapy [59, 60]. Our findings indicate a new link
between genetic variants in BRCA2 and chemotherapy
response through cholesterol level regulation.
One limitation of our study is that 96% of the HGSOC

patients from TCGA received a combination of taxane
and platinum-based chemotherapy. Thus, our results re-
flect response to the combinatorial therapy of platinum
and taxane. Further studies are needed to test the associ-
ation signals between the identified genes and platinum-
specific or taxane-specific resistance. Despite the

successful replication of our findings in an independent
ovarian cancer cohort, another limitation is that our
analysis and validation results are in silico-based. Further
experimental studies are necessary to test the effects of
down- or up-regulation of VCP and other gene networks
on sensitivity to platinum-taxane chemotherapy.

Conclusion
In this study, we identified genes and gene networks cor-
related with chemotherapy response in high-grade ser-
ous ovarian cancer patients, which implicate both
known and novel biological mechanisms. Specifically, we
identified that reduced expression of VCP is associated
with resistance to chemotherapy. This gene is critical for
removing unfolded proteins from the endoplasmic
reticulum and has been known to be associated with
cancer cell survival and response to platinum-based
chemotherapy. In addition, we identified a group of
genes associated with chemotherapy sensitivity that are
co-expressed with VCP on chromosome 9. Genes from
this module are involved in the protein processing in the
endoplasmic reticulum pathway, which has been previ-
ously implicated in chemotherapy resistance and cancer
cell survival. Finally, we report potentially cis-acting
regulatory variants in the BRCA2 gene that are associ-
ated with varied expression of BRCA2. In summary, our
study contributes to a better understanding of the bio-
logical mechanisms underlying chemotherapy response
in high-grade serous ovarian cancer. Our findings could
help improve future patient screening and therapeutics
for ovarian cancer through the identification of gene sig-
natures that may predict chemotherapy response, as well
as the potential discovery of novel drug targets.
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