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Multi-omics reveals that the rumen ")
microbiome and its metabolome together ™
with the host metabolome contribute to
individualized dairy cow performance

Ming-Yuan Xue', Hui-Zeng Sun'?, Xue-Hui Wu', Jian-Xin Liu"" and Le Luo Guan®’

Abstract

Background: Recently, we reported that some dairy cows could produce high amounts of milk with high amounts
of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and
management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown
to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here,
analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify
potential regulatory mechanisms of MPY at both the rumen microbiome and host levels.

Results: Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen
of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition,
the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and
methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed
that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids)
and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen
microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were
positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in
glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen
microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found
that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine,
aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated
contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition,
functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the
host MPY.
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Conclusions: These findings provide a fundamental understanding of how the microbiome-dependent and host-
dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows
under the same management condition. This fundamental information is vital for the development of potential
manipulation strategies to improve milk quality and production through precision feeding.
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Background
Meeting the demand for animal protein products has be-
come a primary global food security concern as the
world population continues to increase [1]. Dairy milk is
an indispensable high nutritional animal protein prod-
uct, and the annual global per capita dairy consumption
is over 100kg/year [2]. Many factors can affect dairy
cow milk production and quality including genetics [3],
management [4], and feed strategy [5]. It has been
widely reported that milk yield is usually negatively cor-
related with milk protein content [6]. However, we have
found that some dairy cows can produce both high milk
yield and high milk protein content comparing to others
when they were fed the same diet and under the same
management [7]. We defined this as milk protein yield
(MPY, high milk protein content x high milk yield or
low milk protein content x low milk yield), which can be
a potential new trait selected for dairy producers [7].

The rumen serves as a bioreactor that enables dairy
cows to obtain nutrients from human-indigestible plant
mass, and we speculated that rumen microbiome can
directly and indirectly affect host MPY. Indeed, we
found that several rumen bacterial taxa contributed to
the milk yield and milk components [8], and different
rumen bacterial richness and compositional patterns
were observed between cows with high and low MPY
[7]. However, recent studies have highlighted that even
when the rumen microbiomes had differential taxo-
nomic compositions, the metabolic functions were simi-
lar [9], suggesting that the difference in the microbiota
at the composition and taxonomic levels may not be dir-
ectly associated with its metabolic functions that affect
the host. Although identifying metabolic functions of the
rumen microbiome is vital, the metabolic functions of
the rumen microbiome reported to date are largely
based on metagenomics [10] and/or metatranscriptomics
[11-13] without integrating metabolomics to investigate
the metabolic-level functions of the microbiome. There-
fore, we further hypothesized that the rumen micro-
biome in high MPY cows has different rumen microbial
metabolites compared with those of low MPY cows,
leading to varied MPY phenotypes.

In addition, recent studies have also reported that the
rumen microbiome, together with the host, affected me-
thane emission [14] and feed efficiency [15] in dairy

cows. The biosynthesis of milk in dairy cows is a compli-
cated biological process that involves not only the rumen
but also host metabolic processes. The milk production
and biosynthesis of milk protein in dairy cows is a compli-
cated biological process that involves not only the rumen
but also host metabolic processes. For example, the serum
metabolome analysis revealed that 36 metabolites had dif-
ferent abundances between high and low MPY cows [6],
indicating that host metabolism can indeed contribute to
MPY biological processes. For milk protein biosynthesis,
the dietary crude protein is firstly degraded and the de-
graded protein is then utilized to synthesize the microbial
protein in the rumen, which together with undegraded
dietary protein is digested into amino acids and absorbed
in the small intestines. The amino acids are transported to
the liver and then transported into the mammary gland
through the bloodstream for the synthesis of milk protein
[16]. Therefore, we further hypothesized that the rumen
microbiome and its metabolites could affect the host me-
tabolism (reflected by the serum metabolome), and subse-
quently affect the MPY. In this study, we performed
rumen metagenomics, rumen metabolomics, and serum
metabolomics on dairy cows with significantly different
MPY to address the following fundamental questions: do
the rumen microbiome (composition and functions), mi-
crobial metabolites, and the host metabolites contribute to
MPY? If so, do they affect this trait equally? The rumen
microbiome and metabolome, as well as the host metabo-
lome, were compared between dairy cows with high and
low MPY, and the contributions of the above three omics
layers to MPY were calculated. The current study will pro-
vide fundamental information about the microbiome-
dependent and host metabolome-dependent mechanisms
that contribute to high-quality dairy milk production.

Results

Characterization of phenotypes

In this study, previously reported milking traits were ob-
tained from 374 dairy cows [8], and 10 cows with the
highest MPY (cows with high milk yield and milk pro-
tein content; HH) and 10 cows with the lowest MPY
(cows with low milk yield and milk protein content; LL)
were selected for metagenome, rumen metabolome, and
serum metabolome analyses. Among the phenotypes,
milk yield (P < 0.01), milk protein content (P < 0.01), and
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MPY (P <0.01) were significantly different between the
HH and LL groups (Table S1).

Profiling of the rumen metagenome
Metagenome sequencing generated a total of 1,069,431,
480 reads, with 66,839,468 + 1,168,990 reads (mean +
standard error of the mean [SEM]) per sample (Table S2).
After quality control and removing host genes, a total of 1,
033,603,420 reads were retained, with 64,600,214 + 1,165,
364 per sample. After de novo assembly, a total of 12,097,
293 contigs were generated (the N50 length of 795 + 28
bp), with 756,081 + 27,721 per sample. The rumen meta-
genome consisted of 94.43% bacteria (355,456,488 se-
quences), 3.80% eukaryotes (14,312,486 sequences), 1.41%
archaea (5,292,432 sequences), and 0.16% viruses (601,612
sequences; Figure S1).

The microbial domains were compared between the
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were significantly different between the two groups (ad-
justed P<0.01, Fig.1a). The permutational multivariate
analysis of variance (PERMANOVA) showed that both
bacteria and archaea were significantly different (adjusted
P <0.01), while eukaryota and viruses were not different
(adjusted P>0.05) between the two groups (Table S3).
The principal coordinate analysis (PCoA) showed separa-
tions between the two MPY groups based on bacterial
(Fig. 1b) and archaeal species (Fig. 1c), while no separation
was found based on eukaryotic or viral species (Figure S2).
Thus, the downstream comparison of rumen microbial
taxa between the two groups of animals was focused only
on bacteria and archaea.

Compositional profiles of the rumen microbiome and
taxonomic differences between the HH and LL cows
The dominant bacterial phyla included Bacteroidetes

rumen microbiomes of the two MPY groups, and archaea  (55.98 + 1.02%),  Firmicutes  (27.32+1.14%), and
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Fig. 1 Microbial compositional profiles of HH and LL cows. a Comparison of microbial domains between HH and LL cows. Significantly different
domains were tested by Wilcoxon rank-sum test with adjusted P value of <0.05. ** P <0.01. b Bacterial compositional profiles of HH and LL
rumen samples based on species visualized using principal-coordinate analysis (PCoA). ¢ Archaeal compositional profiles of HH and LL rumen
samples based on species visualized using PCoA
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Proteobacteria (7.32 + 1.57%); the dominant bacterial
genus was Prevotella (41.95 + 0.85%), followed by Bacter-
oides (729 £0.31%), unclassified Lachnospiraceae
(3.29 £ 0.18%), and Clostridium (2.99 +0.19%); and the
dominant bacterial species included Prevotella sp.
FD3004 (7.01 £0.37%), Prevotella ruminicola (4.64 +
0.21%), Prevotella brevis (3.83 +0.21%), Prevotella sp.
MA2016 (2.77 +0.15%), and Prevotella bryantii (2.57 +
0.44%). For differential abundance comparison analysis
at the phylum level, the abundance of Bacteroidetes was
significantly higher in the rumen of LL cows, while that
of Proteobacteria was significantly higher in the rumen
of HH cows (adjusted P < 0.05, Figure S3). At the species
level, 15 species, including 11 Prevotella sp., one Succini-
monas sp., one Selenomonas sp. and one unclassified
Bacteroidales exhibited significantly higher abundances
in the rumen of HH animals (linear discriminant analysis
[LDA] > 2, P<0.05), while 23 species showed significant
enrichment in the rumen of LL animals (LDA >2, P<
0.05; Fig. 2a).

For the differential abundance comparison analysis of
archaea, the abundance of the most abundant archaeal
phylum, Euryarchaeota (99.01 + 0.23%), was significantly
higher in the rumen of LL cows (adjusted P <0.01,
Figure S4). At the genus level, the abundance of
Methanobrevibacter, the most abundant archaeal
genus (85.44 +2.41%), was significantly higher in the
rumen of LL cows, while the abundances of other dif-
ferential genera were all significantly higher in the
rumen of HH cows (adjusted P<0.05, Figure S4). At
the species level, only the abundance of Methanobre-
vibacter millerae (22.10 +2.31%), the most abundant
archaeal species, was significantly higher in the rumen
of LL cows, while the abundances of the other differ-
ential species were all higher in the rumen of HH
cows (LDA >2, P<0.05, Fig.2b).

Functional profiles of the rumen microbiome and
differential functions between the HH and LL cows

The functions of the rumen microbiome were deter-
mined by the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGQG) profiles and genes encoding CAZymes.
For KEGG profiles, 158 endogenous third-level pathways
were considered as rumen microbial metabolic pathways
(Table S4). These pathways belonged to four first-level
categories, including “Metabolism” (72.26 + 0.46%),
“Genetic information processing” (19.08 £ 0.12%), “En-
vironment information processing” (4.42 + 0.03%), and
“Cellular processes” (4.24 + 0.04%). At the second level,
20 categories were observed, with “Carbohydrate metab-
olism” (17.33 +0.10%), “Amino acid metabolism”
(15.96 +0.11%), “Nucleotide metabolism” (9.82 + 0.06%),
“Replication and repair” (8.71 + 0.06%), and “Energy me-
tabolism” (8.07 + 0.05%) being the most abundant. When
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the identified KEGG pathways were compared, a total of
13 third-level pathways, including two “Cellular pro-
cesses” pathways, two “Genetic information processing”
pathways, two “Environmental information processing”
pathways, and seven “Metabolism” pathways, were sig-
nificantly enriched in the rumen microbiomes of HH
cows, while 18 pathways, including one “Genetic infor-
mation processing pathway”, two “Cellular processes
pathways” and 15 “Metabolism” pathways, were signifi-
cantly enriched in the rumen of LL animals (LDA >2
and P < 0.05; Fig. 3a). When the KEGG modules involved
in the above differential third-level pathways were com-
pared, 24 HH-enriched and 19 LL-enriched modules
were identified (Fig.3b). Regarding carbohydrate metab-
olism and energy metabolism, only two downstream
functions (ko00290 and M00019, converting pyruvate to
valine and isoleucine) were enriched in the rumen of
HH cows (Fig. 4a). Four pathways and two modules were
significantly enriched in the rumen of LL animals
(LDA >2, P<0.05). The four pathways included “Gly-
colysis” (ko00010), “Starch and sucrose metabolism”
(ko00500), “Galactose metabolism” (ko00052), and “Me-
thane metabolism” (ko00680). The two modules were
“Glycolysis” (M00001) and “Galactose degradation”
(M00632). The downstream function of “Valine, leucine
and isoleucine degradation” (ko00280) was also enriched
in the rumen of the LL cows (Fig. 4b).

For CAZyme profiles, a total of 313 genes encoding
CAZymes were identified (Table S5), including 8 auxil-
iary activities (AAs), 79 carbohydrate-binding modules
(CBMs), 16 carbohydrate esterases (CEs), 115 glycoside
hydrolases (GHs), 74 glycosyltransferase (GTs), and 21
polysaccharide lyases (PLs). Among them, genes encod-
ing GT2 (8.64+0.04%) were the most dominant,
followed by those encoding CE1 (4.66 +0.02%), GT4
(4.34 £ 0.02%), GH2 (4.30 £0.02%), and GH3 (4.16 +
0.02%). Among the genes encoding CAZymes involved
in deconstructing carbohydrates (including cellulose,
hemicellulose, starch, protein, and lignin), 18 were
enriched in the rumen of HH cows (15 GH, 1 CE, 1 PL,
and 1 AA), while 34 were enriched in the rumen of LL
cows (27 GH, 4 CE, 2 PL, and 1 AA; Figure S5). Among
the GTs (involved in carbohydrate synthesis), 11 were
enriched in the rumen of HH cows, while two were
enriched in the rumen of LL cows. Regarding the CBMs,
the noncatalytic CAZymes that are involved in the deg-
radation of complex carbohydrates, three were enriched
in the rumen of HH cows, while 19 were enriched in the
rumen of LL cows.

Associations between microbial species and microbial
functions

As protein content is one of the determining measure-
ments of MPY, we further focused on the functions of
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amino acid metabolism in the rumen microbiome. We
found two important pathways involved in branched-
chain amino acid (BCAA) metabolism (Fig. 5a), which
were “valine, leucine and isoleucine biosynthesis”
(ko00290, enriched in the rumen of HH cows) and “val-
ine, leucine and isoleucine degradation” (ko00280,

enriched in the rumen of LL cows), and these pathways
showed a converse enrichment between the HH and LL
groups (LDA >2, P<0.05; Figure S6). The abundances
of genes encoding enzymes involved in these two path-
ways were also compared, showing that the abundances
of genes encoding enzymes involved in BCAA
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could affect the microbial BCAA functions. A total of 24
species showed significant relationships with two BCAA

biosynthesis were all significantly enriched in the rumen
of HH cows, while the abundances of genes encoding en-

zymes involved in BCAA degradation were all significantly
higher in the rumen of LL cows (adjusted P < 0.05; Fig. 5a
and Figure S7). A Spearman’s rank correlation network
between bacterial species and those two BCAA pathways
was then created to explore how rumen bacterial species

pathways (R > 0.50 and P < 0.05), 13 showing positive rela-
tionships with a BCAA biosynthesis pathway (ko00290).
Among those 13 positive relationships between bacterial
species and ko00290, the strongest (R > 0.65 and P < 0.05)
were detected for five Prevotella species, including P.



Xue et al. Microbiome (2020) 8:64 Page 8 of 19

A

Ko000290: Valine, leucine and isoleucine biosynthesis

Pyruvate Threonine
N
EC 1.1.1.86 E€.4.2.1.35 EC 4.3.1.19
EC 1.14.85
/ \
2-Oxoisovalerate 2-Oxobutanoate
EC 2.3.3.13
EC 4.2.1.33 EC 2.6.1.66 EC1.1.1.86
EC 1.1.1.85 .
EC1.2.4.4 EC1.2.4.4 EC1.244
EC1.2.7.7 EC1.2.7.7 EC1.2.7.7
EC1.8.1.4 EC 1.8.1.4 EC1.8.14
EC6.4.1.4 EC 1.3.8.1 EC 1.3.8.1
Acetoacetate/ Methylmalonate Propanoyl-CoA

Acetyl-CoA  semialdehyde

EC6.4.1.3

EC1213 EC 5.1.99.1
— EnrichedinLL
Methylmalonyl-CoA Enriched in HH
:= Notenriched or
EC 5.4.992 l not measured
Methyimalonyl-CoA :

Ko00280: Valine, leucine and isoleucine degradation

Prevotella oralis/ -
Prevotella bryantii
Prevotella tin’;bngﬁsis
Bacteroidales bacterit/J,r’/n KA0344
Pr/e/\//g{ell denticola
/I?’F/eéo ella’paludiviven:

/,’/ // Prevotella corpori Ruminococcus flavefaciens
Selenomonas ruminantium // eCinimbnas amylolytica
// Pfevotelta albensi Erysipelotrichaceae tgacterlum NK3D112
N L

// 5 o
// revo d buccae
Ruminococcus bromi ////,//// /. ovOtE a 0s3 hnospiraceae bacterium FE2018
VZ Provotella histicola i Acterium AD3010
. Prevo a tttsaceha a .
k000290 O besterium-F082 ————————— calibacterium prausnitzii
Prevotella oryzae @becterm TUS
aony «Paraprevotellaeytafipbile Clostridiales bacterium NK3B98

@bacterium P20
«Paraprevetella cfara

Ruminococcaceae bacterium AB4001

—eBacterqiees ynifg
_@bacterfup/P
«Bactefoides tiietaiotaomicron
«Bactéroidés salanitronis
Bacteroides cellulosilyticus

Bacteroides vulgatus

Fig. 5 Microbial functions and species involved in branched-chain amino acid (BCAA) metabolism in the rumen of HH and LL cows. a BCAAs
biosynthesis and degradation pathways. b Correlation networks showed associations between significantly different bacterial species and two
BCAA pathways. The edge width and color (red: positive, grey: negative) are proportional to the correlation strength. The node size and color
(red: significantly enriched in HH; blue: significantly enriched in LL) are proportional to the mean abundance in the respective population. Only
strong (Spearman R of > 0.5 or < —0.5) and significant (P < 0.05) correlations were displayed




Xue et al. Microbiome (2020) 8:64

multisaccharivorax, P. histicola, P. maculosa, P. buccae,
and P. albensis (Fig. 5b).

Rumen metabolome and serum metabolome

A total of 263 compounds were identified in the rumen
metabolome. After ¢ test and variable importance in pro-
jection (VIP) filtering for the relative concentrations of
rumen metabolites, 25 metabolites were significantly dif-
ferent between the two MPY groups, all of which were
significantly higher in the rumen of HH cows (P < 0.05,
VIP > 1; Fig.6a). Metabolic pathway analysis (MetPA)
based on these 25 significantly different rumen metabo-
lites revealed the enrichment of 10 pathways (Fig. 6b),
with “vitamin B6 metabolism”, “glycerolipid metabol-
ism”, and “beta-alanine metabolism” being the signifi-
cantly different pathways (Benjamini-Hochberg false
discovery rate [FDR] < 0.01, pathway impact>0.1). The
rumen metabolome was also used for phenotype (MPY)
association analysis, and 126 MPY-associated metabo-
types (metabolites that were significantly associated with
MPY) were detected (see details in Methods, Table S6).
The 126 MPY-metabotypes were used for PERMA-
NOVA analysis; 106 of the MPY-metabotypes (all were
MPY-positive metabotypes) were correlated with alter-

—
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Table S6). These 106 MPY-positive metabotypes were
considered as rumen microbiome-responsive metabotypes,
which were then found to be significantly associated with
43 microbial modules (P < 0.05; Figure S8). In addition to
the relative concentrations of ruminal small molecules that
were identified by metabolomics, the absolute concentra-
tions of the total volatile fatty acids (VFAs), propionate, val-
erate, and isovalerate (Fig. 6c, d) were quantified and were
significantly higher in the HH cows (P < 0.05).

For the serum metabolome, we analyzed the 176 com-
pounds identified in our previous study [6]. The com-
parison analysis revealed that the relative concentrations
of 19 metabolites were significantly higher in the serum
of HH cows, and the relative concentrations of 12 me-
tabolites were significantly higher in the serum of LL
cows (P<0.05, VIP>1; Fig.7a). These 31 significantly
different concentrations of metabolites were then used
for MetPA analysis, revealing the enrichment of 12 path-
ways (Fig. 7b), with “glycine, serine, and threonine me-
tabolism”, “nicotinate and nicotinamide metabolism”,
and “sphingolipid metabolism”, “aminoacyl-tRNA bio-
synthesis” and “valine, leucine and isoleucine degrad-
ation” being the significantly different pathways (FDR <
0.01, pathway impact > 0.1). The serum metabolome was

ations in the rumen microbiome (adjusted P<0.05; then identified as MPY-positive metabotypes (21
p
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metabolites) or MPY-negative metabotypes (14 metabo-
lites) using the phenotype (MPY) association analysis as
stated above (see details in Methods, Table S7).

To identify whether the MPY-associated metabolites
in rumen could be related to those in the serum, we
compared the rumen and serum metabolites, including
the significantly different metabolites between two MPY
groups, MPY-positive metabotypes and MPY-negative
metabotypes (Figure S9). A Venn diagram of differential
metabolites revealed that a fatty acid, named lauric acid,
was shared by the rumen and serum. For the differential
metabolite-enriched pathways, three pathways were
common in both the rumen and serum of HH cows,

including “pyrimidine metabolism”, “glycerolipid metab-
olism”, and “starch and sucrose metabolism”. The Venn
diagram of MPY-associated metabotypes showed that
“Arginine and proline metabolism”, “Aminoacyl tRNA
biosynthesis”, and “Purine metabolism” were shared by
both rumen and serum MPY-positive metabotypes.

Relationships between the rumen microbiome, rumen
metabolome and serum metabolome, and their
explainabilities for MPY

Spearman’s rank correlations between the rumen micro-
biota and rumen metabolites were assessed, with the re-
sults revealing 65 significant correlations (R > 0.50, P <



Xue et al. Microbiome (2020) 8:64

0.05; Fig. 8a). Among the 65 correlations, positive corre-
lations existed between mainly 11 Prevotella species (P.
albensis, P. maculosa, P. timonensis, P. histicola, P. denti-
cola, P. buccae, P. paludivivens, P. multisaccharivorax, P.
corporis, P. bryantii, and P. oralis) and amino acids, pep-
tides, proteins and organic chemicals (0.50 <R <0.82,
P <0.05). Spearman’s rank correlation network showed
22 relationships between the rumen microbiota and
MPY-associated metabotypes (Fig.8c). Among the 22
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correlations, nine Prevotella species (P. maculosa, P. his-
ticola, P. denticola, P. buccae, P. paludivivens, P. multi-
saccharivorax, P. corporis, P. bryantii, P. oralis) also
exihibited correlations with most of the MPY-associated
metabotypes, including metabolites involved in glutathi-
one, phenylalanine, starch, and galactose
metabolism.

To identify the potential rumen microbiome-host
metabolic interactions, Spearman’s rank correlations
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between the rumen microbiota and serum metabolites
were performed (Fig.8b). Fewer relationships existed
compared to the relationships identified between the
rumen microbiota and rumen metabolites. The relation-
ships between the rumen microbiota and serum MPY-
associated metabotypes showed that seven Prevotella
species were positively correlated with metabotypes in-
volved in the metabolism of several amino acids, includ-
ing glycine, serine, threonine, alanine, aspartate,
glutamate, cysteine, and methionine (Fig. 8d).

The proportions of variation in MPY due to rumen mi-
crobial composition, microbial functions, rumen metabo-
lites, and serum metabolites were estimated using linear
mixed effect model (see Methods). The MPY variation ex-
plained by the rumen microbial composition, microbial
functions, rumen metabolome, and host serum metabolome
were 17.81, 21.56, 29.76, and 26.78%, respectively (Fig. 9).

Discussion
By integrating the rumen metagenome and the rumen
and serum metabolomes, we investigated the rumen
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microbiome-dependent ~ and  host  metabolome-
dependent mechanisms that contribute to MPY and esti-
mated the contributions of the rumen microbial com-
position, functions, and metabolites to the variations in
this trait.

Similar to many previous studies that have assessed
rumen microbiomes using metagenomics [17], bacteria
were the most abundant rumen microbial kingdom in
the rumen of dairy cows and the differences in the
rumen microbial features between HH and LL cows
were mainly found in bacteria. Consistent with our pre-
vious study using 16S rRNA gene amplicon sequencing
[7], the bacterial features of the HH and LL cows re-
vealed differences in the relative abundances of taxa at
various taxonomic levels. Bacteria are key players in
most of the feed biopolymer degradation and fermenta-
tion [18], which suggests that the bacteria play more sig-
nificant roles in contributing to host MPY than other
microbial kingdoms. Notably, at the species level, most
of the species that showed significantly higher abun-
dances in the HH group belonged to the Prevotella

Rumen microbiota-explainability 17.81%_
Microbial function-explainability 24.:56%

/

Phenotype: milk protein yield

Rumen metabolome-
explainability 29.76%

Rumen metabolome

AN /\
Phenotype t-test t-test Phenotype
association  VIP'filtering VIP filtering aesociaton
Metaboli?es associated Differential Differential  \etabolites associated
| | | with MPY rumerl‘n serum with MPY
metabolites metabolites
Linear discriminant analysis effectsize
J l l Permutational multivariate
analysis of variance
in response to microbiome Key rumen comparison Key serum
metabolic ——————— metabolic
pathways pathways
Association Microbial Metabolites sets comparison Serum
MPY-metabotypes MPY-metabotypes
Association T
Association

~~Serum metabolome-explainability
26.78%

| T

Serum metabolome

Fig. 9 Overview of the workflow. Rumen microbial species and functions (Carbohydrate-active enzymes [CAZymes] and KEGG functions) were
compared between two milk protein yield (MPY) groups. Rumen metabolites were separated into two groups that were either positively or
negatively correlated with MPY; and then Permutational multivariate analysis of variance (PERMANOVA) was performed based on the microbiome
abundance profiles to assess the effect of each metabolites (metabolites with adjusted P < 0.05 were considered to associate with rumen
microbiota). The rumen metabolome was also separated into two groups that were significantly different between two MPY groups; and the key
rumen metabolic pathways were enriched based on the significantly different metabolites. Serum metabolites were separated into two groups
that were either positively or negatively correlated with MPY; and were also separated into two groups that were significantly different between
MPY groups, which were further enriched for key serum metabolic pathways. The rumen MPY-positive metabotypes and MPY-negative
metabotypes were associated with microbiome functional modules. The rumen and serum MPY-positive and MPY-negative metabotypes were
clustered into metabolites sets, and were compared. The proportion of variance in MPY explained by the rumen microbial species and functions,
rumen metabolome, and serum metabolome (defined as biome-explainability) were estimated




Xue et al. Microbiome (2020) 8:64

genus. This genus utilizes starch and proteins to produce
succinate and acetate, and is one of the most abundant
core genera in the rumen of dairy cows [19]. The Prevo-
tella species, along with Succinimonas amilolytica which
were over 6-fold enrichment in the rumen of HH cows
and act as a succinate-producing bacteria in the bovine
rumen [20], showed positive relationships with VFAs
concentrations (Figure S10), suggesting their essential
roles in VFAs biosynthesis. Additionally, the higher
abundances of two succinate-producing and propionate-
producing bacteria (Ruminococcus flavefaciens and Sele-
nomonas ruminantium) in the rumen of the HH cows
indicate that these two species might be the main con-
tributors to the higher propionate concentrations in the
rumen of the HH cows. Regarding archaea, the higher
relative abundances of genus-level Methanobrevibacter
and species-level M. millerae in the rumen of LL animals
suggest that the LL cows may produce more methane,
leading to less-efficient milk production [11, 17]. In
addition to bacteria and archaea, the metagenome has
allowed us to identify the rumen microbiome at multi-
kingdom levels, including the eukaryote and virus levels.
Although we did not focus on eukaryotes or viruses in
the current study, their interactions with bacteria could
also be a factor affecting host milking traits, which may
warrant further studies in the future.

As reported in many other studies [9, 12, 21], the func-
tions of the rumen microbiome are more conserved than
the taxonomic composition between two groups of ani-
mals. Interestingly, KEGG functions on carbohydrate deg-
radation were enriched in the rumen of LL cows,
including “galactose degradation”, “starch and sucrose me-
tabolism”, and the downstream pathway of “glycolysis”
that converts glucose to pyruvate, indicating that more
hydrolytic products and pyruvate might be generated by
the LL microbiome due to the higher ability to degrade
carbohydrates. The enrichment of genes encoding
CAZymes involved in deconstructing carbohydrates (GH,
CE, PL, AA, and CBM) in the rumen microbiomes of LL
cows provides further evidence that the LL cows were
more capable of degrading complex substrates. However,
comparison of downstream pyruvate metabolism path-
ways and genes encoding relevant enzymes revealed an
enrichment of genes involved in methanogenesis in the LL
rumen microbiome, together with a higher relative abun-
dance of EC 2.8.4.1, a methyl coenzyme M reductase gene
that catalyze the release of methane in the final step of
methanogenesis [22]. These results suggest a reduced feed
energy in the form of VFAs during microbial fermentation
in the LL microbiome [11, 23]. Altogether, although more
pyruvate might be supplied by the LL microbiome due to
more substrate degradation, the utilization of pyruvate to
generate VFAs may not be efficient compared with that of
the HH rumen microbiome because the hydrolytic
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products were ultimately converted to methane (Fig. 4). In
contrast to the LL cows, the higher abundances of genes
encoding CAZymes that are involved in carbohydrate syn-
thesis (GTs) and the higher concentrations of major VFAs
in the rumen of HH animals indicated that the rumen
microbiomes of HH cows might be more capable and
more efficient in using hydrolytic products to generate
VFAs, and therefore provide more energy for lactogenesis
in host cows (Fig.4b). As feed-efficient animals are com-
monly considered to produce more VFAs and less me-
thane [12, 17, 24], the higher VFAs and lower
methanogenic functions in the rumen of HH cows suggest
that HH cows may be more feed-efficient than LL cows.
Future studies to measure feed efficiency and methane
emission are needed to validate our speculations.

In addition to carbohydrates, studies have reported
that functions regarding nitrogen metabolism contribute
to differential feed efficiency in beef cattle [12] and dairy
cows [17]. We compared our results with a dairy study
that reported that 13 nitrogen metabolism pathways
were enriched in inefficient cows [17] and found that
three of the 13 pathways, including “valine, leucine, and
isoleucine degradation”, “lysine degradation”, and
“phenylalanine metabolism”, were significantly enriched
in the LL cow microbiome. Additionally, the BCAAs, in-
cluding valine, leucine, and isoleucine, are important
contributors to microbial protein synthesis [25], with the
ruminal microbial protein produced by rumen microbes
fulfilling up to 90% of amino acids that arrived to the
small intestine [26]. The enrichment of the BCAA bio-
synthesis functions in the rumen of the HH cows sug-
gest that more microbial protein, which acts as a
precursor for the synthesis of milk protein in the mam-
mary gland, might be synthesized in the rumen of the
HH cows. Moreover, our results revealed that most spe-
cies showing positive relationships with BCAA biosyn-
thesis pathway belonged to the Prevotella genus,
suggesting the role of Prevotella species in BCAA bio-
synthesis, which has not been reported previously. Fu-
ture studies to detect the active microbial functions and
taxa, along with culture-based studies are required to
confirm the function of those Prevotella species in
BCAA biosynthesis.

Another important function identified in the current
study was vitamin B metabolism. In dairy cows, the vita-
min B group is synthesized by the bacteria in the rumen
and functions as enzyme cofactors or precursors for co-
factors [27]. The vitamin B group is involved in several
essential metabolic processes, including fatty acid syn-
thesis, BCAA catabolism, and gluconeogenesis [28]. For
example, biotin acts as a cofactor responsible for carbon
dioxide transfer in carboxylases [29]; riboflavin functions
as cofactors in flavoprotein enzyme reactions, including
succinate dehydrogenase and the oxidation of pyruvate
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[30]; and pantothenate is involved in the synthesis of
CoA, which is important for energy metabolism for
pyruvate to enter the tricarboxylic acid (TCA) cycle as
acetyl-CoA [31]. In our study, functions of the vitamin B
complex, including “Biotin metabolism”, “riboflavin me-
tabolism”, “pantothenate and CoA biosynthesis”, and
“thiamine metabolism” pathways, were more abundant
in the HH rumen microbiome (Figure S5C). Numerous
recent studies have reported that supplementation with
vitamin B compounds could increase milk yield and/or
component yield in dairy cows [28, 32], indicating that a
higher vitamin B level is needed for high milk yield and/
or component yield production. Thus, it is likely that the
rumen microorganism of the HH cows can produce
higher amounts of vitamin B, which could contribute to
the high MPY. Additionally, there were two other path-
ways that were significantly enriched in the HH rumen
microbiome: “bacterial chemotaxis” (2.5-fold) and “fla-
gella assembly” (4.6-fold). By chemotaxis functions, mi-
crobes sense chemical gradients and move towards their
favorable nutritional conditions [33], which causes
changes in the behavior of microbes such as speed of ro-
tation of flagella and flagella assembly [34]. Although the
way in which these pathways affect the overall functions
of the rumen microbiome are unclear, we speculate that
the microbes in HH cows may be more capable of sens-
ing and moving towards their favorable nutrients than
those in LL cows. Future detection of vitamin B produc-
tion as well as microbial flagellin in the rumen metabo-
lome could provide a better understanding of the
contribution of these functions to MPY.

As the outcome of microbiome compositional and
functional differences, differences in rumen metabo-
lomes between the two groups were found in this study.
Our metagenomics functional-level results revealed that
the HH microbiome had less diverse functions but
higher concentrations of VFAs than the LL microbiome.
In addition to the VFAs, the relative concentrations of
several small-molecule metabolites were over 2-fold
higher in the rumen of the HH cows. These small-
molecule metabolites were mainly carbohydrates and
carbohydrate conjugates. For example, the concentra-
tions of glucosaminic acid and phosphate were more
than 6-fold higher in the rumen of the HH cows. These
conjugate acids involve in the microbial pentose phos-
phate pathway, suggesting potentially more oxidation in
the rumen microbiome and subsequently more energy
supply in the HH animals [35]. The higher relative con-
centrations of these carbohydrates provide evidence to
support our previous findings that more metabolic en-
ergy was provided to mammary glands of the HH cows
via bloodstream [6]. The gas chromatography-based
method used in this study separates compounds based
on their volatility and polarity, and is one of the best
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techniques to detect the volatile compounds. Although
we detected some non-volatile small molecules after de-
rivatization, other non-volatile compounds with large
molecular mass might be under-investigated [36]. More
efforts using alternative methods, such as liquid
chromatography-based methods, are required to further
identify the whole rumen microbial metabolome and to
explain the microbial metabolism variation between the
HH and LL animals.

In ruminants, the relationship between rumen micro-
bial taxa and the rumen metabolome has been reported
using goat as a ruminant model [37]. However, whether
and how the rumen metagenome could interact with the
microbial metabolome remains unknown. In the current
study, we identified the associations between rumen
metagenome and rumen microbial metabolome and
found that MPY-associated metabotypes were positively
correlated with specific microbial taxa, mostly Prevotella
species. Our results also revealed that rumen MPY-
associated metabotypes interacted with 43 microbial
KEGG modules as well. Overall, the interactions be-
tween microbial taxa and functions with microbial me-
tabolites suggest that the Prevotella species may be
crucial contributors to microbial metabolites including
amino acids and carbohydrates involved in glutathione,
phenylalanine, starch, sucrose, and galactose metabo-
lisms. The relationships between the rumen microbial
taxa, functions, and metabolome provide new insights
into the functional roles of the rumen microbiome in
producing small molecule metabolites and contributing
to host traits.

Recent papers have reported that the host, together with
the rumen microbiome, affect host traits, including me-
thane production [14], feed efficiency [15], and milking
traits [38] in dairy cows. The findings from our current
study suggest that the rumen metagenome, rumen metab-
olome, and host serum metabolome all influenced the
host MPY [6] similar to the effects on the traits mentioned
above. In our study, the associations between the rumen
microbiome and serum metabolome suggest that the
rumen microbiome potentially interacts with host metab-
olism. Notably, Prevotella species may affect host amino
acid metabolism, including glycine, serine, threonine, ala-
nine, aspartate, glutamate, cysteine, and methionine. We
then estimated the proportions of variation in MPY due to
rumen microbial composition, microbial functions, micro-
bial metabolites, and host metabolites. Inspired by the
concept of biome-explainability which was defined as the
variance in host phenotype explained by the microbiome
in a human study [39], we defined such proportion of vari-
ation as “omics-explainability” in our study. In animals,
this concept was first proposed by Difford et al. in dairy
cows and was defined as “microbiability”, estimated by
quantifying the cumulative effects of microbial abundance
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on phenotypes [14]. Such a concept has also been applied
in pigs [40] and chickens [41]. In a recent dairy study, the
authors found that the cumulative effect of bacteria and
archaea identified by 16S rRNA gene amplicon sequencing
explained 13% of the individual variation in methane pro-
duction [14]. Using metagenomics, we found that the cu-
mulative effect of rumen microbial composition (17.81%)
and functions (21.56%) on the variation in MPY was
higher than that reported for methane production. This
difference may be due to the more comprehensive infor-
mation on the rumen microbiota characterized by metage-
nomics compared with amplicon sequencing, since multi-
kingdom levels including not only bacteria and archaea
but also eukaryotes and viruses can be characterized by
metagenomic sequencing. In addition to the microbiabil-
ity, the omics-explainability of the metabolome has not
yet been reported. The calculation of omics-explainability
of the rumen and serum metabolome in our study sug-
gests that the metabolism of the rumen and host poten-
tially make greater contributions to MPY compared with
the contributions of the rumen microbiome and functions.
Although the rumen microbial taxonomy and functions
has been considered to play roles in efficiency [12, 17] and
milking traits [7], our findings suggest that the rumen mi-
crobial metabolites should be routinely considered in
addition to the microbiome in future studies aimed at im-
proving host efficiency and milking traits. Additionally, by
calculating omics-explainability, researchers have pro-
posed that the characteristics of the rumen microbiota
could be used as new selection criteria to manipulate the
host phenotype in dairy cows, such as methane emission,
in addition to genome-wide selection in dairy breeding
[14]. Our omics-explainability results further suggest that
even better prediction of milking traits may be obtained
by using rumen metabolites, and the prediction can be re-
lated to any other trait associated with rumen function
and metabolism. Further study to detect the prediction ac-
curacy of various omics data for milking traits, compared
to models that use only host genetic data will provide
more evidence for this potentially new selection criteria.
Although the factors affecting the MPY of dairy cows
including feed, management, age, and lactation stage
were largely controlled in our study, we found that the
variation in host MPY were also attributed to the varia-
tions in rumen microorganism and its metabolites, as
well as the utilization and absorption of metabolites by
the host. In addition to the factors mentioned above, this
milking trait could also be attributed to variations in
feed intake and genetics. The differential methanogen
and methanogenesis functions, along with VFA biosyn-
thesis functions and VFA concentrations, indicate differ-
ential methane production and feed efficiency, which
need to be further confirmed. Furthermore, recent
amplicon sequencing-based studies have reported that
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ruminant genetics influenced not only phenotypes but
also the rumen microbiota, and the heritable microbial
taxa were associated with feed efficiency [15, 42] and
methane emission [14]. Due to a lack of knowledge re-
garding the heritability of microbial functions and rele-
vant output metabolites, as well as their contribution to
milking traits, future studies are required to assess the
heritability of those functional and metabolic elements.
Such information will provide evidence highlighting the
possibility of manipulating rumen microbial functions
and metabolites through genetic selection.

Conclusion

Our study identified the rumen microbial taxonomic fea-
tures, functions, metabolites together with their interac-
tions with host metabolism that contribute to host MPY.
Cows with higher MPY had lower abundances of ar-
chaeal species and functions in methanogenesis, leading
to higher functions and enzymes involved in carbohy-
drate synthesis. Several Prevotella species were enriched
in the HH cows and were associated with BCAA biosyn-
thesis functions, ruminal amino acids, and serum amino
acids, fulfilling the demand for rumen microbial proteins
that are utilized by hosts for milk protein biosynthesis.
The microorganisms in the rumen of HH cows serve as
stronger vitamin B producers, meeting the requirement
for higher milking performances. As the outcome of the
microbiome structural and functional differences, the
levels of the small molecular metabolites (mainly amino
acids, carboxylic acids, and fatty acids) and end products
(VFAs) of the HH microbiome were higher, contributing
to differences in metabolites absorbed and transported
by the host. Altogether, omics-explainability analysis re-
vealed that the rumen microbial metabolites and serum
metabolites made greater contributions to MPY than
rumen microbial composition and functions. The
microbiome-dependent and host-dependent mechanisms
contributing to MPY provide insights into strategies for
altering the rumen microbiota for higher milk quality
and production through either feeding management or
genetic selection.

Methods

Animals, sampling, and physiological parameters
measurement

Based on previous milking trait measurements [7], 10
highest MPY cows (cows with high milk yield and milk
protein content; HH) and 10 lowest-MPY cows (cows
with low milk yield and milk protein content; LL) were
selected from the cohort of 374 healthy mid-lactation
Holstein dairy cows hosed at a commercial dairy farm.
Animals received the same diet with a concentrate-to-
forage ratio of 57:43 (dry matter basis) [6]. Rumen con-
tents were sampled using oral stomach tubes and were
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used to measure VFAs [7]. Blood was sampled to meas-
ure chemical parameters in serum [6].

DNA extraction, metagenome sequencing, and
metagenomics data processing

Total genomic DNA was extracted from rumen contents
using the repeat bead-beating plus column method [43].
The quality and quantity of DNA were measured using a
NanoDrop 2000 spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE, USA). After quantity meas-
urement of DNA samples, four samples (three from HH
and one from LL) were discarded due to low DNA
quantity. Power calculations revealed that our sample
size enables 87.5% power and a type I error of 5%, based
on ¢ test of MPY. Construction of metagenome libraries
was performed using TrueSeq DNA PCR-Free Library
Prep Kits (Illumina, San Diego, CA, USA). Metagenome
libraries sequencing was performed on an Illumina
Hiseq 3000 platform (150bp paired-end sequencing,
500 pb inserts) at Majorbio Bioinformatics Technology
Co. Ltd. (Shanghai, China).

The quality control of each dataset was performed
using Sickle (version 1.33, https://github.com/najoshi/
sickle) to trim the 3’-end of reads and 5-end of reads,
cut low-quality bases (quality scores < 20), and remove
short reads (<50bp) and “N” records. The reads were
aligned to the bovine genome (bosTau8 3.7, DOL
https://doi.org/10.18129/B9.bioc.BSgenome.Btaurus.UCS
C.bosTau8) using BWA (http://bio-bwa.sourceforge.net)
to filter out host DNA [44]. The filtered reads were de
novo assembled for each sample using Megahit (https://
github.com/voutcn/megahit) [45]. MetaGene (http://
metagene.cb.k.u-tokyo.ac.jp/) was used to predict open
reading frames (ORFs) from the assembled contigs with
the length >300bp [46]. Assembled contigs were then
pooled and non-redundancies were constructed based
on the identical contigs using CD-HIT with 95% identity
(http://www.bioinformatics.org/cd-hit/) [47]. Original se-
quences were mapped to predicted genes to estimate the
abundances using SOAPaligner (http://soap.genomics.
org.cn/) [48].

Taxonomic and functional annotation from rumen
metagenomes

Taxonomic assessment of rumen microbiota was per-
formed using DIAMOND (http://ab.inf.uni-tuebingen.
de/software/diamond) [49] against the RefSeq database
(http://www.ncbi.nlm.nih.gov/RefSeq/) [50]. Taxonomic
profiles were conducted at domain, phylum, genus and
species levels, with relative abundances calculated. The
PCoA based on Bray-Curtis dissimilarity matrices at spe-
cies level was performed. Microbial taxa with a relative
abundance >0.1% in at least 50% of cows within each
group were used for downstream analysis.

Page 16 of 19

Contigs were annotated using DIAMOND against the
KEGG database (http://www.genome.jp/kegg/) with an E
value of 1e-5 [51]. The CAZy annotation was performed
using USEARCH (http://www.drive5.com/usearch/) [52].
Abundances of KEGG Orthology (KO), pathway, KEGG
enzyme, Module, and CAZymes were normalized into
counts per million reads (cpm) for downstream analysis.
The KEGG modules, pathways, KEGG enzymes, and
CAZymes with cpm > 5 in at least 50 % of animals within
each group were used for the downstream analysis.

Analysis of rumen and serum metabolome
The rumen metabolome [53] and serum metabolome [6]
were analyzed using gas chromatography (Agilent Tech-
nologies, Santa Clara, CA, USA) combined with Pegasus
HT time-of-flight/ mass spectrometry (GC-TOF-MS,
LECO Corporation, St. Joseph, MI, USA). Chroma TOF
4.3X software (LECO Corporation, St. Joseph, MI, USA)
and LECO-Fiehn Rtx5 database [54] were used for raw
peaks exacting, data baseline filtering and calibration of
the baseline, peak alignment, deconvolution analysis, peak
identification, and integration of the peak area. Both of
mass spectrum match and retention index match were
considered in metabolites identification. Rumen and
serum metabolite peaks that were present in <50% of
samples or with relative standard deviation>30% or with
similarity value < 200 were removed [55]. The unidentified
peaks were also removed from the downstream analysis.
In total, 263 rumen metabolites and 177 serum metabo-
lites were identified and were transformed to have a zero
mean and a unit variance for downstream analysis.

The online platform, MetaboAnalyst 4.0 (https://www.
metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml)
[56], was used for the MetPA based on targeted metabo-
lites using the library of Bos Taurus (cow) [57]. Metabol-
ite set enrichment analysis (MESA) was performed using
MetaboAnalyst 4.0, based on the pathway-associated
metabolite sets library [58]. The metabolite datasets in
serum and rumen were compared between the two MPY
groups and visualized using heat maps (“pheatmap”
package in R, https://www.r-project.org) [59].

Calculation of omics-explainability

Species-level microbial relative abundances, KOs, rumen
metabolites, and serum metabolites were normalized to
have a zero mean and a unit variance and then were
used to construct the matrix M, K, R, and S, respectively
[14]. The LMM utilized to estimate the variances of four
omics was calculated as follows:

Vi =+ p;+di + mi + ejic (1)

where y;;is the phenotype MPY (kg/day); y is the model
intercept; p; is the parity fixed effect; dj is the days-in-
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milk fixed effect; m; is the rumen microbial random ef-
fect for the ith animal ~ NID (0, Mc?), where o2, is the
rumen microbial variance and M is the microbial rela-
tionship matrix; and e, is the residual effects. The
LMM utilized to estimate the KO variance was similar
to Eq. (1), except the random effect of k;, which is the
random effect of the KOs for the ith animal ~ NID (0, K
o7), where o7 is the rumen microbial variance and K is
the rumen functional relationship matrix. The LMM uti-
lized to estimate the rumen metabolic variance was simi-
lar to Eq. (1), except the random effect of r; which is the
random effect of the rumen metabolites for the ith
animal ~ NID (0, Ro?), where ¢? is the rumen microbial
variance and R is the rumen functional relationship
matrix. The LMM utilized to estimate the serum meta-
bolic variance was similar to Eq. (1), except the random
effect of s;, which is the random effect of the serum me-
tabolites for the ith animal ~ NID (0,S0?), where o2 is
the rumen microbial variance and S is the rumen func-
tional relationship matrix. The MPY variance that ex-
plained by the rumen microbial variance, functional
variance, rumen metabolic variance, and serum meta-
% 9}

. . . 0'2 02
bolic variance were estimated as ~%, %, ~%, and =, respect-
%" % % %

ively, where az is the phenotypic (MPY) variance.

The LMM was performed using the “lme4” package in
R (https://www.r-project.org) [60]. The P values of the
omics-explainability estimations were calculated by
using the likelihood ratio tests on the random effect
(P <0.05). The random effect will be accepted when the
likelihood ratio test reveal that fitting the random effect
of omics data being significantly better than the null hy-
pothesis (the variance of the random effect is 0).

Correlation analysis
Correlation analysis between rumen metabolites, serum
metabolites and MPY was performed using Spearman’s
rank correlation to identify the MPY-associated metabo-
types (“MPY- associated metabotypes”), with P value
(Spearman’s rank correlation coefficient) < 0.05 being con-
sidered as significantly MPY-associated metabotypes. To
identify the associations between microbial composition
and each MPY-associated metabotypes covariate, we per-
formed the permutation multivariate analysis of variance
(PERMANOVA) on the microbial abundance profiles [61]
using microbial Bray—Curtis distance in R “vegan” package
(https://www.r-project.org) [62]. Rumen metabolites with
FDR adjusted P <0.05 were considered to be associated
with rumen microbiota and were subsequently used for
correlation analysis with KEGG modules.

All correlation analyses were performed using Spear-
man’s rank correlation, and P value <0.05 was consid-
ered as significant. Correlation network was visualized
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by Cytoscape (Version 3.2.1, http://www.cytoscape.org).
The correlation heat map was generated using the R
program “pheatmap” package (https://www.r-project.
org) [59].

Statistical analysis
The statistical analyses were performed using the “stats”
package in R (https://www.r-project.org) [63]. Milking
traits, serum biochemical parameters, and rumen VFAs
concentrations were compared using ¢ test. Rumen micro-
bial domains, phyla, and genera were compared using
Wilcoxon rank-sum test, with the FDR adjusted P value <
0.05 being considered as significantly different. Rumen mi-
crobial species were compared using linear discriminant
analysis effect size (LEfSe) [64], and significant differences
were examined by a LDA score >2 and P value < 0.05.
The abundances of microbial metabolic pathways, mod-
ules, KEGG enzymes, and CAZymes were compared be-
tween two groups using LEfSe, and significant differences
were considered by an LDA score > 2 and P value < 0.05.
The MetaboAnalyst 4.0 was used to perform the
multivariate analysis and statistical analysis for metabo-
lome data. The PCA, partial least squares discriminant
analysis (PLS-DA), and ¢ test were performed between
the two MPY groups, with the FDR adjusted P value <
0.05 and the VIP >1 being considered as significantly
different metabolites.
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