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Summary

The skin is the outermost layer of the body with an extensive surface area

of approximately 1�8 m2, and is the first line of defence against a multi-

tude of external pathogens and environmental insults. The skin also has

important homeostatic functions such as reducing water loss and con-

tributing to thermoregulation of the body. The structure of the skin and

its cellular composition work in harmony to prevent infections and to

deal with physical and chemical challenges from the outside world. In this

review, we discuss how the structural cells such as keratinocytes, fibrob-

lasts and adipocytes contribute to barrier immunity. We also discuss spe-

cialized immune cells that are resident in steady-state skin including

mononuclear phagocytes, such as Langerhans cells, dermal macrophages

and dermal dendritic cells in addition to the resident memory T cells.

Ageing results in an increased incidence of cancer and skin infections. As

we age, the skin structure changes with thinning of the epidermis and der-

mis, increased water loss, and fragmentation of collagen and elastin. In

addition, the skin immune composition is altered with reduced Langer-

hans cells, decreased antigen-specific immunity and increased regulatory

populations such as Foxp3+ regulatory T cells. Together, these alterations

result in decreased barrier immunity in the elderly, explaining in part

their increased susceptiblity to cancer and infections.
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Skin barrier

The skin is the outermost layer of the body with an exten-

sive surface area of approximately 1�8 m2, and is the first

line of defence against a multitude of external pathogens.

The skin consists of three layers: the top layer is the epider-

mis, a thin layer (approximately 0�1 mm thick) of stratified

squamous epithelium, composed of four strata of ker-

atinocytes in progressive stages of differentiation. The strat-

ified epithelium provides a watertight barrier from the

external environment and prevents excessive water loss

from the body. The epidermis is mainly composed of ker-

atinocytes; however, there are also melanocytes, which

provide a barrier from ultraviolet (UV) radiation through

expression of melanin. The epidermis does not have a

blood supply of its own, but instead is nourished from

blood vessels below. The second layer is the dermis, a

thicker layer (up to 3–4 mm depending on body site),

which has a relatively low cell volume compared with the

epidermis. The dermis predominantly consists of the extra-

cellular matrix, such as collagen, which is made by fibrob-

lasts. In addition to the extracellular matrix, the dermis

contains structures such as blood vessels, lymphatics,

nerves, sweat glands and pilosebaceous units. The deepest

layer of the skin is the subcutaneous layer, which consists

of subcutaneous fat and connective tissue.1

Abbreviations: DC, dendritic cells; DETCs, dendritic epidermal cd T cells; IL, interleukin; ILC, innate lymphoid cell; LCs, Langer-
hans cells; MMP, matrix metalloproteinases; TLR, Toll-like receptor; Treg cells, T regulatory cells; Trm cells, T resident memory
cells; UV, ultraviolet; VZV, varicella zoster virus

ª 2019 John Wiley & Sons Ltd, Immunology, 160, 116–125116

doi:10.1111/imm.13152 REVIEW SERIES: BARRIER IMMUNITY

REVIEW ARTICLE Series Editors: James A. Harker and Laura J. PallettIMMUNOLOGY

https://orcid.org/0000-0003-0990-8835
https://orcid.org/0000-0003-0990-8835
https://orcid.org/0000-0003-0990-8835
mailto:


Skin barrier immunity

The skin is a complex organ that carries out numerous

functions contributing to its barrier immunity

function – the skin structure and stromal and immune

cell composition can be seen in Fig. 1.

Antimicrobial peptides and lipids are secreted onto the

cell surface to control bacterial growth. These include
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Figure 1. Diagrammatic representation of human skin barrier immunity. The surface of the skin is covered in antimicrobial peptides and lipids,

some of which originate from the sebaceous gland located near the hair follicle. The epidermis consists of keratinocytes forming stratified cor-

neum, with melanocytes interspersed. Langerhans cells and T resident memory cells (Trm) can also be found in the epidermis. The dermis has a

more diverse collection of cells including structural cells such as fibroblasts, and immune cells such as dermal dendritic cells (DCs) and macro-

phages, CD4+ and CD8+ Trm, mast cells and Foxp3+ T regulatory cells (Tregs), which are often located near the hair follicle. The final layer of

the skin is the subcutaneous fat, which is primarily composed of adipocytes.
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dermcidin, which is secreted in human sweat and has broad

antimicrobial activity against a range of pathogenic bacte-

ria. Its antimicrobial activity is not affected by the low pH

value and high salt concentrations of human sweat.2 Sebum

is made by sebaceous glands found independently of or

near hair follicles. Within the sebum are antimicrobial

lipids, such as lauric acid and sapienic acid, which play an

important role in controlling pathogenic organisms.3

However, the skin is not a sterile site, and there is

extensive research showing the role that the skin micro-

biota plays in immunity by restricting the growth of

pathogenic bacteria.4 Commensal bacteria have been

shown to produce an antimicrobial peptide that syner-

gizes with the human antimicrobial peptide LL37, which

together kill the pathogenic bacterium Staphylococcus aur-

eus.5 However, insults and pathogens are mostly con-

trolled and prevented entry due to structure and barrier

immunity in the skin.

Skin-resident stromal cells

Keratinocytes are the main component of the epidermis.

They express Toll-like receptors (TLRs), which are crucial

pathogen pattern recognition receptors that when trig-

gered lead to the production of inflammatory cytokines

and initiation of an immune response.6 Keratinocytes

have been shown to constitutively express TLR1, -2, -3, -

5, -6 and -10.7,8 They also have the ability to sense

wound damage and produce inflammatory cytokines and

chemokines such as interleukin-1b (IL-1b), IL-8 and

CCL20 to recruit leucocytes to the site of damage.9

Keratinocytes express a raft of antimicrobial peptides

that control bacterial growth, including adrenomedullin

and b-defensins.10,11 b-Defensin-1 is constitutively

expressed by human keratinocytes and b-defensin-2 and -

4 are up-regulated upon inflammatory challenge.11–13

Keratinocytes can express the antimicrobial peptide

Cathelicidin upon stimulation and can store Cathelicidin

in cytoplasmic granules until needed.14,15 Keratinocytes

also constitutively express RNase 7, which is a very potent

antimicrobial ribonuclease, and upon inflammatory or

bacterial challenge there is further increased expression.16

More recently, it has been proposed that keratinocytes

have the ability to process and present antigen to CD4+ and

CD8+ T cells, initiating an adaptive immune response.17 In

addition, keratinocytes are the key site for the first step in

the vitamin D metabolism pathway, when pro-vitamin D3

(7-dehydro-cholesterol) is metabolized into vitamin D3,

catalysed by UVB. Vitamin D is an important component

of a functioning immune system and its metabolism at the

skin site contributes to barrier immunity.18

Dermal fibroblasts are the structural cells of the dermis;

their primary function is to secrete extracellular matrix

components such as pro-collagen. Fibroblasts express the

full range of TLRs, at a higher level than keratinocytes,

demonstrating their important role in the detection of

pathogens.19 In vitro studies have shown that dermal

fibroblasts can have differing roles in immunity, indeed

TLR4 signalling results in the production of inflammatory

cytokines such as IL-6, IL-8 and the monocyte chemoat-

tractant CCL2.20 Conversely fibroblasts have been shown

to suppress T-cell proliferation via indoleamine 2,3-dioxy-

genase production, and to skew the T cells to produce

immunoregulatory cytokines such as IL-10.21

The subcutaneous layer of the skin is predominantly

composed of adipocytes – their primary function is to be

a repository of energy that responds to hypothermia by

producing heat. More recent work has identified the

important role of adipocytes in barrier immunity as a sig-

nificant source of antimicrobial peptides. In response to

infection, for example with S. aureus, dermal fibroblasts

can differentiate into adipocytes and produce the antimi-

crobial peptide cathelicidin.22

Skin-resident immune cells

Mononuclear phagocytes

Within the epidermis there is a population of mononu-

clear phagocytes called Langerhans cells (LCs). These were

believed to have been seeded at birth and maintained by

local turnover to ensure a steady-state population.23

However, a recent study demonstrated, in a murine

model of immune injury, that repopulation of LCs from

peripheral monocytes makes up for the slow repopulation

from mature LCs.24 Langerhans cells are located at the

interface with the external environment and as such are

multifunctional sentinels of the epidermis. They sample

the environment by extension and retraction of their den-

drites between the keratinocytes in an amoeba-like move-

ment.25 They present antigen to T cells within the

epidermis to initiate a local immune response and also

have the capacity to migrate to the lymph node and initi-

ate immune responses.26

Within the dermis, there is a more diverse population

of mononuclear phagocytes including dermal dendritic

cells (DCs) and dermal macrophage populations. Den-

dritic cells are the sentinels of the immune system, they

sample the microenvironment and either present antigen

to the resident T cells or migrate through the lymphatics

to the lymph node to initiate an immune response.27 His-

torical assessment of dermal DCs identified that they are

more activated then their blood counterparts; dermal

DCs had increased expression of co-stimulatory receptors

and were strong stimulators of T-cell proliferation relative

to their peripheral blood counterparts.28 Two main popu-

lations of dermal myeloid DCs have been identified; the

CD1c+ DCs and the CD141+ DCs. CD141+ DCs are the

cells responsible for cross-presenting antigens to CD8+ T

cells and have homology to the mouse CD103+ DCs.29
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Very few plasmacytoid DCs are observed in steady-state

skin.30

Macrophages are another type of antigen-presenting

cell resident in the dermis and they sense pathogens and

damage and initiate an appropriate immune response. In

addition to the immune function, macrophages maintain

tissue homeostasis through increasing appropriate anti-in-

flammatory mechanisms, contribute to wound healing,

and heal nerves upon tissue injury.31,32 Macrophages are

thought to populate tissues early on but studies have also

shown that they are replenished by circulating mono-

cytes.33 These data are supported by a study in humans

showing that CD14+ cells were a transient population of

monocyte-derived macrophages.34 CD163 has been pro-

posed to be a good marker for dermal macrophages, as it

specifically identifies skin-specific macrophages that are

not recently migrated monocytes.35

Analysis of the location of these different mononuclear

phagocyte populations in the dermis have shown that

DCs can be found closer to the epidermis (around 0–
20 µm beneath the dermo–epidermal junction) and

macrophages are located deeper in the skin (around 40–
60 µm beneath the dermo–epidermal junction).36

Other innate populations

In rodent and cattle skin a population of cd T cells has

been described called dendritic epidermal cd T cells

(DETCs) – these cells are localized in the epidermis.37

The DETCs express a limited T-cell receptor repertoire

and recognize danger-associated molecular patterns

induced on damaged or dysregulated keratinocytes. In

addition, DETCs have been shown to play a role in

maintaining keratinocyte homeostasis as in the absence

of DETCs there was increased keratinocyte apoptosis.37

However, DETCs have not been observed in human

skin. Indeed, in human skin the predominant leucocyte

population is ab T cells, cd T cells and natural killer

cells were found in the skin but at very low frequencies

(0�35% and 0�97%, respectively).38 Neutrophils are not

present in steady-state skin; however, upon sun expo-

sure there is an infiltration of neutrophils that con-

tribute to sunburn and photo-ageing.39

Innate lymphoid cells (ILCs) are a relatively recently

described immune cell population and their function in

the skin is still under investigation. In steady-state human

skin, there are few ILCs, and those cells that are present

tend to be ILC1 and ILC3. ILC populations are signifi-

cantly increase in inflammatory conditions; there is an

influx of ILC2s in atopic dermatitis, and in psoriatic pla-

ques ILC1 and ILC3 populations have been observed.40,41

The dermis also contains mast cells, of which there are

between 77 and 108 cells/mm2.42 Mast cells contain gran-

ules with pre-formed inflammatory mediators such as his-

tamine that are released when receptors are crosslinked,

contributing to local inflammatory responses. Mast cells

also play an important role in allergic reactions and asso-

ciated itching and rash.

T cells

Skin T resident memory (Trm) cells are non-circulating T

cells present in the skin that maintain immune surveillance

and are crucial for initiating robust immune responses at

times of infection.43–45 In steady-state skin, there are around

1 9 106 T cells/cm2 suggesting that in an average person,

there are around 2 9 1010 T cells present in the whole

skin.46 The majority (80%–90%) of T cells found in the skin

are Trm and the remaining T cells are recirculating T cells.47

Cutaneous Trm cells are generated after exposure to antigen

and provide memory at the site of initial exposure – Trm

cells are more potent effector cells compared with circulat-

ing T cells.47 Of the CD3+ Trm cells present in the skin, the

ratio of CD4+ to CD8+ T cells was found to be approxi-

mately 3 : 1 in human epidermis and 6 : 1 in dermis.47

The most commonly used markers to define Trm cells

are cell surface expression of CD69 and CD103.48 T cells

increase CD69 expression in response to antigen exposure

or type I interferon signalling, and this blocks T-cell

egress from the skin by inhibiting sphingosine-1-phos-

phate receptor function.49,50 CD103 is an integrin that

binds to E-cadherin, it has been associated with CD8+

Trm cells present in the epidermis.47,48 CD103 expression

is believed to be partly due to the expression of E-cad-

herin on the keratinocytes, which is important for reten-

tion of these cells in the epidermis.51

In addition to CD69 and CD103, CCR8 has been pro-

posed to be a Trm cell marker.52,53 The sole ligand for CCR8

is CCL1, which is predominantly expressed by CD1a+

LCs.52 The epidermis and in particular keratinocytes have

been shown to play a role in up-regulating CCR8 on naive

T cells in the skin and generating Trm cells, through pro-

duction of Vitamin D3 and prostaglandin E2.
53,54

CD4+ FoxP3 T regulatory (Treg) cells are an important

regulatory cell type that plays an role in immune and tis-

sue homeostasis.55 Foxp3+ Treg cells with a memory skin-

resident phenotype have been observed in the dermis and

in particular in steady-state conditions can be found

located close to hair follicles.56 The short-chain fatty acid

sodium butyrate, which is a bacterial metabolite produced

by skin commensals, can increase Foxp3 expression in

non-Treg cells driving an increase Foxp3+ Treg cells lead-

ing to increased immune tolerance to skin commensals.57

In addition, UVB light has been shown to increase the

number of Foxp3+ Treg cells by facilitating the prolifera-

tion of thymically derived Foxp3+ Treg cells.58 This effect

of UVB could be in part due to the production of Vita-

min D3, which can drive Foxp3+ Treg cell proliferation

in vitro.59 Indeed it is believed Foxp3+ Treg cells accumu-

late around the hair follicle because of entry of
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commensal bacteria to newly formed hair follicles during

neonatal skin development.60

Ageing and skin structure

As we age our skin structure changes (Fig. 2), the epidermal

layer is thinner due to keratinocyte atrophy.61 This leads to

increased trans-epidermal water loss in elderly individuals,

resulting in increased skin dryness.62 The extracellular

matrix components collagen and elastin, which provide ten-

sile strength and elasticity respectively, are substantially

changed with age. The total amount of collagen has been

shown to be reduced with age.63 However, there is also

increased collagen fragmentation, which is believed to be

due to increased matrix metalloproteinase (MMP) expres-

sion in older skin.64 Elastin is an inert protein that is formed

during early development and is not replenished, therefore

any changes to elastin that occur over a lifetime tend to be

permanent.65 MMPs, in particular MMP-1, -3 and -9, target

elastin for fragmentation,65 resulting in reduced skin elastic-

ity and the classical sign of skin ageing, wrinkling.

Dermal fibroblasts contribute to age-associated dermal

thinning as they are reduced in size.66 In addition, dermal

fibroblasts from elderly individuals make less pro-collagen

and have increased expression of MMP-1, contributing to

increased collagen fragmentation.66–68 Other changes in

the skin that are observed with age are reduced sweat and

sebum production.69 Finally, there is a thinning of the

adipose tissue observed with age due to a reduction in

white adipose tissue – subsequent antimicrobial protec-

tion (by the dermal fat) in response to infection is signifi-

cantly decreased. This reduction in adipocytes is believed

to be due in part to the inability of fibroblasts to convert

to adipose tissue.70

Changes in skin structure with age are dependent upon

lifestyle choices and environment challenges, including

UVB exposure and the use of sunscreen, smoking and

environmental pollution.71,72 Collectively these changes

render older people more susceptible to mechanical

injury, alter the skin microbiome and have important

implications for skin barrier immunity.

Immunological changes in the skin with age

The decrease in cutaneous immune function has been

well documented in older humans. A variety of bacterial

infections are more common in the elderly, including cel-

lulitis (in particular of the lower legs), erysipelas, necro-

tizing fasciitis, folliculitis, impetigo, folliculitis and

furunculosis.73 Staphylococcus aureus and b-Haemolytic

streptococci are the most common skin pathogens in the

elderly, although other bacterial infections caused by

Pseudomonas spp. and Klebsiella spp. are also elevated in

older individuals.74 The prevalence of skin colonization

by Proteus mirabilis and Pseudomonas aeruginosa in

people over 65 years old is increased by about 25% com-

pared with younger individuals.74 Fungal infections (such

as Candida) and viral infections such as shingles, herpes

simplex virus-1 and human papillomavirus are also more

common in the elderly.74,75

Non-melanoma skin cancer, including basal cell and

squamous cell carcinomas, is more commonly diagnosed

in persons older than 70 years. The highest incidence of

malignant melanoma and melanoma is in individuals

aged 65 years and older.75–78

Together these observations provide strong evidence for

age-dependent changes in the skin barrier immunity.

Although changes in peripheral immune cell populations

have been well described (as reviewed previously79–81), we

have focused on skin-specific immunological differences

with age (Fig. 3).

Mononuclear phagocytes

Langerhans cells are reduced in number in the elderly. In

addition, LCs from older donors have reduced capacity to

migrate to the lymph node.82 Using an ex vivo epidermal

model, Pilkington et al.83 have shown that lower levels of

IL-1b observed in elderly skin result in reduced migration

of the LCs to the cytokine gradient – demonstrating that

the skin microenvironment plays a detrimental role. The

specific source of IL-1b in the skin remains controversial,

and both keratinocytes and LCs themselves have been pro-

posed as the primary source. In addition, LCs from aged

skin express less human b-defensin-3, an important antimi-

crobial peptide for response to infection.84

The number and phenotype of dermal DCs is compara-

ble between young and old skin.81 However, dermal DCs

from aged skin appear to be functionally impaired in terms

of migration, phagocytosis and ability to stimulate T cells

in a mouse B16 melanoma model.85 The effect of age on

macrophage function is still contentious – some studies

demonstrate reduced TLR expression and TLR-induced

cytokine production.86 In contrast other studies have

shown that there is increased inflammatory cytokine pro-

duction after TLR ligation.87 However, there are limited

data on the effect of age on dermal macrophage popula-

tions. We have shown that CD163+ macrophages produce

less tumour necrosis factor-a in antigen-challenged old

skin, but upon removal of the macrophages from the skin

environment they produce similar amounts of pro-inflam-

matory cytokine in response to TLR ligands.82 This suggests

that it is the skin environment itself that is altered with age

rather than intrinsic dysfunction of macrophages.

T cells

Repeated antigen stimulation throughout life can have sig-

nificant effects on human antigen-specific T cells, including
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the induction of exhaustion and senescence. Functional

exhaustion of T cells is characterized by loss of functional

activity, increase in inhibitory receptor expression [such as

programmed cell death protein 1 (PD-1)]. It is a mecha-

nism necessary for limiting the magnitude of the effector

T-cell response but it also contributes to the functional

decline in adaptive immunity with age. Senescence, a loss

of replicative capacity, is often induced by repeated stimu-

lation, and is primarily induced through the process of

telomere erosion. Although the age-related changes in the

circulating T-cell pool have been well characterized and

extensively reviewed,79 the age-related changes in the skin-

resident T-cell population have not been extensively stud-

ied. The differences in the regulation of senescence and the

importance of telomere shortening between mouse and

human T cells should also be taken into account when

extrapolating from mouse models.88

Tissue-resident CD8+ T cells have recently been shown

to promote a long-lasting state of equilibrium between

melanoma and the immune system.89 Depletion of these

Trm cells demonstrated that they actively suppress tumour

progression.89 How anti-tumour surveillance and control

by skin-resident Trm cells is affected by age and age-re-

lated changes within the CD8 population has not been

studied. It is known that skin-resident Trm cells are vital

to clear skin infections,90–92 so defects in Trm cells may

explain the increased incidence of infection seen in the

elderly. We and others have shown that there are

decreased delayed-type hypersensitivity responses to recall

antigens such as Candida or varicella zoster virus

(VZV)75–78 in older adults due to a reduced infiltration

of T cells at the site of antigen challenge. Our group has

shown that the function of skin-derived CD4+ T cells was

not impaired with age in response to both mitogen- and

antigen-specific stimulation ex vivo,93 although the skin

residency markers were not used for cell isolation. Inter-

estingly old skin actually had a higher proportion of

VZV-specific T cells compared with young – possibly

suggesting accumulation over a lifetime of subclinical

reactivation.94 There was, however, an increase in PD-1

expression on both CD4 and CD8 T cells in old individu-

als compared with young skin, suggesting that older T

Structural skin changes with age

Young

Smooth

Epidermis

Old

H2O

Wrinkles

Dermis

Subcutaneous
fat

Normal
collagen Fibroblasts

Normal
elastin

Fragmented
collagen

Fragmented
elastin

Figure 2. Structural changes in human skin with age. Young skin structure (left) and compared with older skin structure (right). Older skin has

fragmented elastin and collagen, increasing water loss, which leads to skin dryness and increased wrinkles. In addition, the skin is thinner with all

three layers being less thick then the younger counterpart.
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cells are more susceptible to inhibition via programmed

death ligand 1/PD-1 signalling.93

Foxp3+ Treg cells

The proportion of regulatory cells in normal skin is

increased in older mice and humans.95,96 People who

had the highest proportion of Foxp3+ Treg cells had

the worst delayed-type hypersensitivity response to VZV

recall antigen – showing that Foxp3+ Treg cells in the

skin can interfere with antigen-specific immunity.97

Indeed, in a mouse model of melanoma, Treg cells can

suppress very early stages of the inflammatory response

to antigen challenge.98 It is known that there is an

increase in Foxp3+ Treg cell numbers in cancers such

as melanoma and basal cell carcinoma.99–101 In human

squamous cell carcinoma, 50% of cells have a Foxp3+

Treg phenotype, reduction of Foxp3+ Treg cell percent-

age in these patients and their function led to clinical

improvement.102 The reasons why Foxp3+ Treg cell

numbers are increased in older skin are not clear. It

has been shown that UVB irradiation can lead to the

induction of Foxp3+ Treg cells and that these Foxp3+

Treg cells suppress other immune cells through the

production of IL-10.58,103 It is also tempting to postu-

late that Foxp3+ Treg cells could be induced or accu-

mulate as an attempt to the immune system to control

unwanted low-grade inflammation, which accompanies

ageing.

Inflamm-ageing and senescence in the skin

Chronic low-grade inflammation, termed inflamm-ageing,

is characterized by high serum C-reactive protein.104

Inflamm-ageing is known to negatively impact on immu-

nity because older people with elevated IL-1b had

increased risk of morbidity and mortality.105 It has been

postulated that innate immune cells such as macrophages

are a contributor to the inflamm-ageing phenotype,

because due to changes in tissue structure – such as skin

thinning – they are exposed to more bacteria, which leads

to chronic activation and subsequent inflammatory

cytokine production, such as is seen with increased gut

permeability in an aged mouse model.106

Another contributor to inflamm-ageing, especially in

the skin, is UV damage. Repeated exposure to UVB, as
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Figure 3. Skin barrier immunity changes with age. Schematic showing the effect of age on skin-resident populations. Negative/inhibitory effects
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would be the case in old skin, leads to the accumulation

of macrophages and increase in reactive oxygen species

and MMP, and subsequent damage to the extracellular

matrix. Inappropriate complement activation may also be

caused by the increase in oxidative stress and accumula-

tion of damaged cells, in line with observations in

atherosclerosis.107 Another contributor to increased

inflammation in the old is the accumulation of senescent

cells; senescence is defined as irreversible growth arrest. It

is known that there is an accumulation of senescent der-

mal fibroblasts, as classically defined by p16 expression in

the skin of old mice and humans.108–110 Senescent fibrob-

lasts secrete a raft of inflammatory mediators such as IL-

8, IL-6, tumour necrosis factor-a and CCL2.110 This pro-

duction of inflammatory mediators from senescent cells is

termed senescence-associated secretory phenotype, which

contributes to the low-grade inflammation observed in

older individuals.111 A recent paper has shown that senes-

cent dermal fibroblasts persist in the skin by evading

recognition and killing by natural killer cells and CD8+ T

cells, through increased expression of HLA-E.110 Other

skin-resident cell populations that have been shown to be

senescent include endothelial cells and melanocytes.112,113

Although increased frequency and number of senescent T

cells have been observed in the periphery,80 their contri-

bution to the skin environment is unknown and warrants

further investigation.

How this inflammation directly negatively affects cuta-

neous immune responses is not clear. Our studies have

shown that skin from older individuals has a propensity

to mount an inappropriate response to saline injection,

which negatively correlates with antigen-specific cuta-

neous immunity.94 Furthermore, blocking inflammation

using a p38-mitogen-activated protein kinase inhibitor,

Losmapimod, reduced this non-specific inflammation

while improving the ability of old individuals to respond

to recall antigen challenge.94

Concluding remarks

Skin barrier immunity is comprised of stromal cells such

as keratinocytes and adipocytes and immune cells such as

Langerhans and Trm cells working in concert to prevent

pathogen entry and to deal with continuous physical and

chemical challenges. With increasing lifespan, it is impor-

tant to understand how skin changes with age and the

impact that these changes have on barrier immunity.

Clearly, the skin environment is detrimental to a success-

ful immune response of older people as removal of indi-

vidual cells from the skin microenvironment results in

restoration of immune function. Specifically which cells

alter the ageing skin environment is unknown, certainly

senescent cells such as fibroblasts will contribute greatly.

However, there more research is required to understand

fully which cells are responsible for the ageing skin

microenvironment and which cell types, such as ker-

atinocytes, endothelium and adipocytes, warrant further

investigation. Better understanding of the inhibitory and

inflammatory mechanisms that operate in older skin is

crucial for the development of new strategies to combat

infections and cancer.
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