Skip to main content
. 2020 Apr 15;20(8):2226. doi: 10.3390/s20082226

Table 3.

Comparison with other state-of-the-art methods on the datasets HDM05-65, HDM05-14, CMU-30, and CMU-14. The results are presented in top-down order. The results using our approach are shown in bold text. * The CMU dataset with 14 classes was used, as well as the dataset recorded with their own Vicon (http://www.vicon.com/) motion capture device. Note: Normalized Trajectories (NT), relative positions of joints (PO), Temporal Differences (TD), Tree Structure Vector Quantized (TSVQ), Hierarchically Bidirectional Recurrent Neural Network with Long-Short Term Memory (LSTM) (HBRNN-L). For more details, see Section 2 and Section 4.3.2.

Dataset Approach Algorithm Features Training Accuracy
HDM05-65 Du et al. [19] HBRNN-L NT 90% 96.90%
HURNN-L NT 96.70%
DBRNN-L NT 96.70%
DURNN-L NT 96.62%
Cho et al. [18] Hybrid MLP (λ=0.5) PO+TD 95.59%
Hybrid MLP (λ=0.9) PO+TD 95.55%
Hybrid MLP (λ=0.1) PO+TD 95.46%
Hybrid MLP (λ=0.1) PO+TD+NT 95.21%
MLP PO+TD 95.20%
Our approach DNN NT+Keyframes 95.14%
Cho et al. [18] SVM PO+TD+NT 95.12%
Hybrid MLP (λ=0.9) PO+TD+NT 95.04%
SVM PO+TD 94.95%
MLP PO+TD+NT 94.86%
Hybrid MLP (λ=0.5) PO+TD+NT 94.82%
Du et al. [19] DBRNN-T NT 94.79%
DURNN-T NT 94.63%
Sedmidubsky et al. [1] CNN+KNN NT 93.9%
Cho et al. [18] ELM PO+TD+NT 92.76%
ELM PO+TD 91.57%
HDM05-14 Our approach DNN NT+Keyframes 50% 98.6%
Sedmidubsky et al. [1] CNN+KNN NT 94.3%
Elias et al. [62] CNN+KNN NT 87.4%
CMU-30 Kadu and Kuo [37] Two-Step SVM Fusion TSVQ 80% 99.6%
Our approach DNN NT+Keyframes 99.3%
Kadu and Kuo [37] Two-Step Score Fusion TSVQ 98.2%
Pose-Histogram Classifier B-PL04 95.6%
B-PL06 95.6%
Motion-String Similarity A-SL12 95.6%
A-SL13 95.6%
Pose-Histogram Classifier B-PL05 95.3%
B-PL03 92.8%
Motion-String Similarity A-ML12 82.3%
A-ML13 80.5%
CMU-14 Our approach DNN NT+Keyframes 85% 98.5%
Wu et al. [44]* Hierarchical Tree 3D Trajectories 98.1%
Wu et al. [48]* Smith–Waterman 3D Trajectories 97.0%