Table 3.
Comparison with other state-of-the-art methods on the datasets HDM05-65, HDM05-14, CMU-30, and CMU-14. The results are presented in top-down order. The results using our approach are shown in bold text. * The CMU dataset with 14 classes was used, as well as the dataset recorded with their own Vicon (http://www.vicon.com/) motion capture device. Note: Normalized Trajectories (NT), relative positions of joints (PO), Temporal Differences (TD), Tree Structure Vector Quantized (TSVQ), Hierarchically Bidirectional Recurrent Neural Network with Long-Short Term Memory (LSTM) (HBRNN-L). For more details, see Section 2 and Section 4.3.2.
Dataset | Approach | Algorithm | Features | Training | Accuracy |
---|---|---|---|---|---|
HDM05-65 | Du et al. [19] | HBRNN-L | NT | ||
HURNN-L | NT | ||||
DBRNN-L | NT | ||||
DURNN-L | NT | ||||
Cho et al. [18] | Hybrid MLP | PO+TD | |||
Hybrid MLP | PO+TD | ||||
Hybrid MLP | PO+TD | ||||
Hybrid MLP | PO+TD+NT | ||||
MLP | PO+TD | ||||
Our approach | DNN | NT+Keyframes | |||
Cho et al. [18] | SVM | PO+TD+NT | |||
Hybrid MLP | PO+TD+NT | ||||
SVM | PO+TD | ||||
MLP | PO+TD+NT | ||||
Hybrid MLP | PO+TD+NT | ||||
Du et al. [19] | DBRNN-T | NT | |||
DURNN-T | NT | ||||
Sedmidubsky et al. [1] | CNN+KNN | NT | |||
Cho et al. [18] | ELM | PO+TD+NT | |||
ELM | PO+TD | ||||
HDM05-14 | Our approach | DNN | NT+Keyframes | ||
Sedmidubsky et al. [1] | CNN+KNN | NT | |||
Elias et al. [62] | CNN+KNN | NT | |||
CMU-30 | Kadu and Kuo [37] | Two-Step SVM Fusion | TSVQ | ||
Our approach | DNN | NT+Keyframes | |||
Kadu and Kuo [37] | Two-Step Score Fusion | TSVQ | |||
Pose-Histogram Classifier | B-PL04 | ||||
B-PL06 | |||||
Motion-String Similarity | A-SL12 | ||||
A-SL13 | |||||
Pose-Histogram Classifier | B-PL05 | ||||
B-PL03 | |||||
Motion-String Similarity | A-ML12 | ||||
A-ML13 | |||||
CMU-14 | Our approach | DNN | NT+Keyframes | ||
Wu et al. [44]* | Hierarchical Tree | 3D Trajectories | |||
Wu et al. [48]* | Smith–Waterman | 3D Trajectories |