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Abstract: While the number of casualties and amount of property damage caused by fires in urban
areas are increasing each year, studies on their automatic detection have not maintained pace with
the scale of such fire damage. Camera-based fire detection systems have numerous advantages
over conventional sensor-based methods, but most research in this area has been limited to daytime
use. However, night-time fire detection in urban areas is more difficult to achieve than daytime
detection owing to the presence of ambient lighting such as headlights, neon signs, and streetlights.
Therefore, in this study, we propose an algorithm that can quickly detect a fire at night in urban areas
by reflecting its night-time characteristics. It is termed ELASTIC-YOLOv3 (which is an improvement
over the existing YOLOv3) to detect fire candidate areas quickly and accurately, regardless of the size
of the fire during the pre-processing stage. To reflect the dynamic characteristics of a night-time flame,
N frames are accumulated to create a temporal fire-tube, and a histogram of the optical flow of the
flame is extracted from the fire-tube and converted into a bag-of-features (BoF) histogram. The BoF is
then applied to a random forest classifier, which achieves a fast classification and high classification
performance of the tabular features to verify a fire candidate. Based on a performance comparison
against a few other state-of-the-art fire detection methods, the proposed method can increase the fire
detection at night compared to deep neural network (DNN)-based methods and achieves a reduced
processing time without any loss in accuracy.
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1. Introduction

Among the various types of disasters, fires are often caused by human carelessness and can be
prevented sufficiently in advance. Fires can be categorized as occurring under natural conditions,
such as forest fires, and in urban areas such as buildings and public places. Forest fire detection is very
different from indoor or short-range fire detection due to atmospheric conditions (clouds, shadows,
and dust particle formation), slow spreading, ambiguous shapes, and color patterns [1,2]. Therefore,
fire detection in urban areas or indoors requires different approaches from forest fire.

With the rapid urbanization and an increase in the number of high-rise buildings, fires in
urban areas are more dangerous than forest fires in terms of human casualties and property damage.
According to a report by the Korea National Fire Agency, 28,013 fires occurred in buildings and
structures in 2019, accounting for 66.2% of all fires that year. These building fires resulted in 316 deaths,
1915 injuries and $415 million in damage, which are the greatest numbers incurred annually in recent
years [3]. Considering that industrial society is continuously growing, this phenomenon will continue
for the time being. In particular, fires in buildings or public places are more likely to occur at night
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when people are less active. Therefore, improvements in the accuracy of night-time fire detection can
greatly reduce property damage from fires.

Conventional fire alarm systems using optical, infrared, and ion sensors are not triggered until
smoke, heat or radiation actually reach the sensor and typically cannot provide additional information
such as the fire location, size or degree of combustion. Therefore, when an alarm is triggered, the system
manager should visit that location to see if a fire is present [4].

Camera-sensor-based fire detection systems have recently been proposed to overcome the
limitations of existing sensors. Unlike existing sensor-based fire detection approaches, the advantages
of vision-based fire detection systems can be summarized as follows [5]: (1) the cost for the equipment
is relatively lower than that of optical, infrared, and ion sensors; (2) the response time for fire and smoke
detection is faster; (3) the system functions as a volume sensor and can therefore monitor a large area;
and (4) the system manager can confirm the existence of the fire without visiting the location. Unlike
a normal visible camera, a fire may be detected using a thermal camera. Although the potential flame
area can be easily detected using a thermal camera by measuring the heat energy emitted from the fire,
detecting fires using this method has several problems in urban areas, unlike natural environments
such as mountains and fields [6]. First, a thermal camera is more expensive than a normal visible
camera, and surrounding objects such as automobile engines, streetlights and neon signs can have heat
energy similar to that of a fire flame when the thermal camera is far away. In addition, the difference in
thermal energy between hot summer and cold winter occurs due to radiant heat on the surface [7],
so the fire classification model training must be made differently.

Conventional camera-based fire detection methods have applied algorithms developed based
on the basic assumption that fire flames have a reddish color with a continuous upward motion.
Therefore, classic camera-based methods use the color or differences in the information within the
frame as a pre-processing step [4,5,8,9]. However, because the physical characteristics between fires at
day and night are extremely different, a false detection may occur if a daytime fire detection algorithm
is applied to a fire at night without a proper modification. Night-time fires located at a medium to
long distance from the camera have the following differences compared to daytime fires, as shown in
Figure 1a,b:

• a loss of color information;
• a relatively high brightness value compared to the surroundings;
• various changes in the shape and size from light blurring; and
• movements of the flames in all directions (daytime flames tend to move in an upward direction).

By contrast, fire-like lights such as neon signs, streetlights and the headlights of vehicles have
a similar brightness, shape and reflection as real night-time fires, as shown in Figure 1c,d.

In conventional fire flame detection, the candidate flame regions are initially detected using
a background subtraction method, whereas non-flame colored blocks are filtered out using color
models and some conditional rules. These processes are essential steps for verification. Various
parameters can then be used to characterize a flame for classification, such as the color, texture,
motion and shape. After feature extraction, the learning of the pattern classifiers such as finite
automata [4], fuzzy logic [5,10], support vector machine (SVM) [11], the Bayesian algorithm [12,13],
neural network [14] and random forest [15] is conducted based on the feature vectors of the training
data. Finally, the candidate flame regions are classified into fire- or non-fire flame regions using the
pattern classifiers.

By contrast, deep learning-based fire detection has recently exhibited state-of-the-art performance
in fire detection tasks. This approach significantly reduces the dependency of hand-crafted feature
extraction and other pre-processing procedures through end-to-end learning that occurs directly in
the pipeline from the input images. In particular, the application of a convolutional neural network
(CNN) [16] significantly improves the performance of conventional machine learning-based algorithms
for image-based fire detection. In a CNN-based approach, the input image is transformed through



Sensors 2020, 20, 2202 3 of 17

a collection of filters in the convolutional layer to create a feature map. Each feature map is then
combined into a fully connected network, and the fire is recognized as belonging to a specific class
based on the output of the softmax algorithm.

This paper focuses on fire detection using a camera, particularly for night-time fires, which are
more difficult to detect than daytime fires. Owing to the different characteristics of daytime and
night-time fires, a specialized algorithm for night-time fires is required. The application of a CNN
to detect fire regions in still images can be a very useful approach. However, as mentioned above,
night-time fires have similar characteristics as vehicle headlights or neon signs, and we therefore cannot
achieve a high fire detection accuracy when a CNN is used alone. An additional procedure is needed to
distinguish between real fire regions and regions with fire-like characteristics at night. As an alternative,
an efficient approach is to combine a recurrent neural network (RNN) [17] or long short-term memory
(LSTM) [18] with a CNN instead of using a CNN alone to consider the continual movement of a flame.
However, this approach requires more computations, making real-time processing difficult to achieve.
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Figure 1. Examples of night-time fire and night-time fire-like lights: (a) a constantly changing size and
shape of the fire without color information, (b) fire occurring in the corner of the building, (c) fire-like
streetlight and car headlight, and (d) fire-like neon sign.

2. Related Studies

Fire detection studies range from traditional sensor-based methods to the latest camera-based
methods. Among them, this paper focuses on camera-based approaches, which have been actively
studied in recent years. Camera-based fire approaches can be divided into machine learning and
CNN-based methods, which are popular deep learning models. This section introduces some
representative algorithms used in three different approaches and analyses the advantages and
disadvantages of each.

2.1. Machine Learning and Deep Learning-Based Fire Detection

Chen et al. [19] proposed a fire detection algorithm using an RGB color model. However, the fire
color depends on the burning material, and thus, additional features are required for accurate fire
detection. To solve these problems, Töreyin et al. [20] used a spatial wavelet transform and a temporal
wavelet transform to determine the presence of a fire, as well as the color change of the moving region.
Ko et al. [11] used a two-class SVM classifier with a radial basis function kernel based on a temporal
fire model with wavelet coefficients. Apart from the SVM, fuzzy logic was successfully applied to
various fire videos using probability density membership functions based on a variation in the intensity,
wavelet energy, and motion orientation on the time axis [21]. Ko et al. [5] proposed fuzzy logic with
Gaussian membership functions of the fire shape, size, and motion variation to verify the fire region
using a stereo camera.

Because analyzing the dynamic movement of a fire flame is an important factor in improving the
fire detection performance, Dimitropoulos et al. [22] used an SVM classifier and the spatio-temporal
consistency energy of each candidate fire region by exploiting prior knowledge regarding the possible
existence of a fire in the neighboring blocks based on the current and previous frames. In addition,
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Foggia et al. [9] proposed a multi-expert system combining complementary feature information based
on the color, shape variation and a motion analysis.

In the conventional approaches mentioned above, the features and classifiers for fire detection are
generally determined by an expert. Many known hand-crafted features such as color, texture, shape and
motion are used as the input features, and fire detection is based on pre-trained classifiers such as
an SVM, fuzzy logic, AdaBoost, and random forest. Conventional approaches require relatively lower
computing power and memory than deep learning-based approaches, but they achieve a relatively
poor fire detection performance in a variety of environments. To solve this problem, CNN-based
methods have recently been applied to enable end-to-end learning and minimize the amount of expert
interference in feature extraction and classifier decisions after applying a basic model design.

Deep neural network (DNN)-based fire detection studies have recently been actively carried out.
Such studies can be divided into the use of a CNN using still images and an RNN (or LSTM) with
sequence images.

Frizzi et al. [23] used a simple CNN model having the ability to apply feature extraction and
classification within the same architecture. This approach was proven to achieve a better classification
performance than some other relevant conventional fire detection methods. Zhang et al. [24] proposed
a joined deep CNN. With this method, the fire detection is applied in a cascaded fashion; thus, the full
image is first tested using the global image-level classifier, and if a fire is detected, the fine-grained
patch classifier is followed to detect the precise location of the fire patches.

Muhammad et al. [25] used a lightweight CNN based on the SqueezeNet [26] architecture for fire
detection, localization, and semantic understanding of a fire scene. Muhammad et al. [27] also replaced
SqueezeNet with GoogleNet [28] for fire detection using a CCTV surveillance network. Dunning and
Breckon [29] investigated the automatic segmentation of fire pixel regions (super-pixel) in an image
within the real-time bounds without reliance on the temporal scene information. After the clustering
of a fire image, a GoogleNet [28] or simpler network is applied to classify the super-pixels of a real fire.
In addition, Barmpoutis et al. [30] proposed a fire detection method in which Faster R-CNN [31] was
applied followed by an analysis of the multi-dimensional textures in the candidate fire regions.

Most CNN-based approaches use a deep or shallow CNN network to confirm a fire region or
detect a fire candidate as the first step and then apply additional techniques to verify the fire candidates.
However, because fire detection is applied based on a CNN with a still image without considering
the temporal variation of the flame, such methods have a high probability of a false detection of the
surrounding fire-like objects as an actual fire. To solve this problem, some methods [32–34] have
combined an RNN or an LSTM with a CNN when considering the spatio-temporal characteristics
of the sequential fire flames. With these approaches, a CNN is normally used to extract the spatial
features, and an RNN or LSTM is used to learn the temporal relation between frames. Han et al. [32]
combined a CNN with an RNN in a consecutive manner such that the sequence data could be allowed
in the model. Cao et al. [33] proposed an attention-enhanced bidirectional LSTM for camera-based
forest fire recognition. Kim and Lee [34] used Faster R-CNN to detect the suspected regions of a fire
and then summarized the features within the bounding boxes in successive frames accumulated by the
LSTM to classify whether a fire was present within a short-term period.

Although these LSTM- or RNN-based approaches have a lower false detection ratio than
a CNN-only fire detection method, it remains difficult to model the irregular moving patterns of
a fire flame because only limited frames can be used simultaneously owing to the memory capacity.
In addition, because a CNN and the LSTM layers must be applied in each frame, a large number of
parameters and operations make real-time processing difficult to achieve.

Most of the existing studies related to fire detection have thus far been aimed at a daytime
environment. In such an environment, flames have prominent colors, shapes and movements,
providing more reliable results. However, in night-time environments, the movements of the flames
are relatively small, making it difficult to distinguish from the surrounding lights that have similar
characteristics, such as car headlights, streetlights, and neon signs. In particular, daytime fires can be
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easily detected by people, allowing for an early evolution, whereas fires at night occur when there
are no people in the building or when people are asleep. Therefore, night-time fires are difficult to
detect early, and if a fire breaks out, the loss of life and property becomes much greater than those of
a daytime fire. Therefore, a fire monitoring algorithm specialized for night-time fires is needed.

2.2. Contributions of this Work

Unlike related approaches that use only a CNN or a CNN with an RNN (LSTM), a CNN is
combined with an RF (which is a representative algorithm of an ensemble model) in this study,
to improve the speed and accuracy of the fire detection. In addition, fire-tubes are generated by
combining successive fire candidate areas for fire verification instead of an LSTM, and the accuracy of
the fire detection is improved by learning irregular and dynamic fire motion patterns. In particular,
the focus of this study is on night-time fire detection in urban areas, which is relatively more difficult
to achieve than daytime fire detection. The results on various types of video show the excellent
performance of the proposed approach.

In a previous study of Park et al. [35], we introduced a simple model of a night-time fire detection
system using a fire-tube and RF classifier based on temporal information. However, for more accurate
fire detection, we improved the basic ELASTIC model structure to increase the accuracy on small sized
fires. Second, using the previous method, a linear fire-tube was generated in previous successive
frames based on the fire area of the current frame, whereas in the current approach, we redesign
a nonlinear fire-tube by extracting the regions as closely as possible to the actual fire region in every
frame. Third, a codebook is constructed by applying more training data, and an RF is regenerated by
using more various night-time fire training videos. Moreover, we prove the successful performance of
the proposed method using more night-time fire datasets and confirm that the detection accuracy of
a night-time fire is higher than that of other related CNN- and LSTM-based methods with a shorter
processing time.

Figure 2 shows the overall structure of the proposed framework. To detect night-time fires having
irregular movements within a short time effectively, this study first detects the candidate fire areas
using a lightweight CNN (Figure 2a). We combine an ELASTIC block with the YOLOv3 network [36]
to improve the detection rate for small objects when considering the processing time and accuracy.
To obtain the temporal information in the detected fire candidate areas, we construct a fire-tube by
connecting the fire candidate areas that appear in consecutive frames. From the fire-tubes, the motion
orientation between frames is estimated by an optical flow, and a histogram of oriented features
(HoF) is generated based on the orientation of the motion vectors. Each HOF is transformed into
a bag-of-features (BoF) histogram through codebook mapping (Figure 2b), and the final verification of
the fire area is achieved using a random forest (RF) classifier (Figure 2c), which has a fast processing
time and high accuracy with the transformed feature vectors.

The remainder of this paper is structured as follows. We present an overview of the related studies
on camera-based fire detection in Section 2. Section 3 provides the details of our proposed method
in terms of the feature extraction and classifier. Section 4 provides a comprehensive evaluation of
the proposed method through various experiments. Finally, some concluding remarks are given in
Section 5.
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Figure 2. Overview of the proposed method for night-time fire detection: (a) fire candidate regions
are extracted from consecutive images using ELASTIC-YOLOv3, and (b) a fire-tube is constructed by
connecting the fire candidate areas, where the HoF are generated by the orientation of the motion
vectors for estimating the temporal information of a fire-tube. Each HoF is transformed into a BoF
histogram through codebook mapping. (c) The BoF are generated from fire and fire-like regions,
and a random forest (RF) classifier is trained.

3. Fire Detection Methods Using ELASTIC-YOLOv3 and Fire-Tube Analysis

3.1. ELASTIC-YOLOv3

The most important factor in fire detection is the early-stage detection starting from a very small
sized fire. Among the several object detection algorithms used for detecting early fire candidate areas,
we adopted fast YOLOv3 [36], which is an upgraded version of YOLO [37]. YOLOv3 [36] has the
advantage of being able to operate on both a CPU and a GPU because the object detection speed is
extremely fast. However, it has a disadvantage in that the detection performance of small objects is
low compared to that of Faster R-CNN [31] or single-shot detector (SSD) [38].

Recently, ELASTIC Block [39] was introduced to improve the detection performance of objects of
various sizes by applying downsampling and upsampling in the convolution layer while keeping the
number of parameters similar to the computations of the existing CNN model. Therefore, we propose
the use of an ELASTIC-YOLOv3 network by combining an ELASTIC block with the existing YOLOv3
network to improve the detection accuracy in a small sized fire region.

The ELASTIC block is divided into Path 1 (blue boxes), in which three convolutions are applied,
and Path 2, in which upsampling is conducted after an average pooling and continuous 1 × 1 and 3 × 3
convolutions, as shown in Figure 3a. Unlike the initial ELASTIC block, modified ELASTIC applies a 3 ×
3 convolution with a stride of 2 to the input feature maps to reduce the size by half and applies them to
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the input of each path. Instead of downsampling in Path 2, average pooling is applied to minimize the
loss of feature information. Because the ELASTIC block can extract features that reflect various sizes
of objects, compared to a conventional CNN through two paths, it can increase the detection rate for
both small and large objects. In addition, because the ELASTIC block divides the existing single path
into two paths, the number of parameters and operations can be maintained similar to the original
single path.

An ELASTIC block was applied to Darknet-53, the base network of YOLOv3, as shown in Figure 3b.
As indicated in the figure, ELASTIC Darknet-53 (blue dotted line) consists of five consecutive blocks,
and each block is executed repeatedly between one and eight times. The YOLOv3 part (red dotted line)
uses the same structure as YOLOv3.

We used ELASTIC-YOLOv3 to detect candidate fire regions for the input images. The fire detection
performance of ELASTIC-YOLOv3 is demonstrated in Section 4.
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Figure 3. ELASTIC-YOLOv3 structure with proposed ELASTIC block. (a) The elastic block was
upsampled from the average pooled input along Path 2 through two convolutions at low resolution and
concatenated back to the original resolution, and (b) an ELASTIC-YOLOv3 structure with an ELASTIC
block was coupled to Darknet-53, which is YOLOv3’s base network. The symbol × indicates the number
of repetitions of the block.

3.2. Temporal Fire-Tube Generation Using the Histogram of Optical Flow

Because fire flames constantly vary in terms of shape and irregularity depending on the burning
material and wind conditions, it is necessary to observe multiple frames to consider the above
characteristics over time. In a similar manner to that described in Ko et al. [40], we first generate a 3D
fire-tube by combining the candidate blocks with N corresponding blocks in the previous frames,
as shown in Figure 4a. Each tube has a different width and height (∆w,∆h) and the same time duration
∆n. In a previous study [35], the width and height of the tube were determined to be the same as the
size of the fire region of the current frame, whereas in this study, the size and location of the fire zone
are changed according to the fire information of each frame.

In addition to the above-mentioned factors, there is a difference in the movement of the fire flame
depending on the distance between the camera and burning point. Owing to the distance between the
camera and fire flame and the irregular movement of the fire, an effective way to reduce false detections
is by stacking only those frames in which a change occurs in the fire-tube rather than every frame.
To solve this problem, every frame goes through a skip-frame process to determine the frames to stack.
If the index of the currently detected frame is i, the fire region of the current ith frame is stacked into the
first region of the fire-tube (k = 0). Next, moving backward through the video sequences, the magnitude
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of the HoF between the fire region of the (i−1)th frame and kth region of the fire-tube is compared.
If the difference in magnitude between two frames is greater than a threshold (th), the (i−1)th frame is
stacked on the fire-tube and the fire-tube index (k) is increased. Otherwise, the (i−1)th frame is skipped
and not stacked on the fire-tube. This process is repeated until the fire-tube is full (N). Here, N was set
to 50, and the threshold th was adjustable according to the distance between the camera and monitored
object. In addition, the maximum number of skip frames was limited to three.

The fire-tube generation process when considering the motion variation of the fire is shown in
Algorithm 1.

Algorithm 1 Skip Frame for Fire-Tube Generation

F-Tube: A set of fire-tubes
Initialize F-Tube = ∅, N: size of F-Tube
HoFmag: Magnitude of HoF
th: a threshold for skip frame selection
k: index of fire-tube, i: index of current candidate frame (i > N (50))
K = 0, F-Tube[k] = frame (i)
i–
Do

If frame (i) == f ire &
∣∣∣∣F-Tube[k].HoFmag −HoF(i)mag

∣∣∣∣ ≥ th

Then
F-Tube [k] = frame (i)
k++, i–
Else

i–//skip frame
While (No. of frames of F-Tube is full)

We compute the HoF from each fire-tube, as shown in Figure 4b. Because the size of the fire
regions belonging to the fire-tube varies, the HoF of the same dimension is extracted by applying
the spatial pyramid pooling (SPP) [41] from each fire-tube region. Each HoF is discretized into nine
orientations including zero motion, and each discrete orientation is binned according to the magnitude.
Because SPP partitions the region into divisions from finer to coarser levels and aggregates local
features into a single feature, it does not require normalizing the region beforehand and is not affected
by the scale or aspect ratio of the region. We apply two-level spatial pyramids {1 × 1 and 2 × 2} to
extract a nine-dimensional HoF from each divided region and concatenate the extracted HoFs to obtain
45-dimensional combined HoF. Therefore, the feature vector created in one fire-tube becomes 2205
dimensions throughout the following equation:

Concat_HoF =
L∑

l=1

l2 × (N − 1) × dim(HoF) (1)

HoF consists of nine dimensions (dim), and L indicates the SPP level. A total number of five
blocks are generated in a single frame by applying the SPP (including a 1 × 1 global block).

3.3. Bag-of-Features Extraction from HoF and Fire Verification

In this section, we describe how to extract feature vectors in 2205 dimensions for a fire-tube.
If multiple fire candidates are detected in a video, it takes considerable time to extract the feature
vectors from multiple fire-tubes at the same time. Therefore, we use the BoF to shorten this feature
vector extraction.
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To apply the BoF, we first create a visual codebook consisting of 35 visual words (clusters) through
K-means clustering in the training dataset, as shown in Figure 4. The visual codebook consists of 30
visual words for the fire class and 5 visual words for the non-fire class. Once the visual codebook of the
BoF is built, two types of BoF histograms should be estimated for the fire and non-fire classes. The BoF
histogram assigns each feature to the closest visual word and computes the histogram of visual word
occurrences over a temporal volume [41]. The K-dimensional BoF histogram is estimated from the
visual codebook by means of binary weighting, which indicates the presence or absence of a visual
word based on values 1 and zero, respectively. All weighting schemes apply a nearest-neighbor search
in the visual codebook, in the sense that each fire-tube is mapped to the most similar visual word.
The reduced feature vector is finally determined based on the last random forest classifier, regardless
of whether the fire is real.

Although the performance of CNN has become superior to that of existing machine learning
(ML)-based methods in terms of image classification problems, CNN requires a large number of
hyperparameters, such as the learning speed, cost function, normalization, and mini-batch, as well as
careful parameter adjustments. Therefore, it cannot be effectively generalized when the training data
are small in number [42]. By contrast, RF, which is a representative ML algorithm, has a relatively
lower performance than CNN for high-dimensional and continuous data such as image and audio
data. However, when the data are of a tabular type and the number of training data is small, the RF
can be quickly learned and tested with fewer parameters [43]. In this study, although the input data
were made up of image sequences, we used an RF instead of a CNN or an RNN because BoF is tabular
data, the number of training data are limited, and a fast fire detection was needed.

During the RF learning process, referring to the experiment results of Ko et al. [44], the maximum
depth of the tree was set to 20, and the number of trees constituting the RF was set to 120. Once the RF
was trained, the BoF histogram of the test fire-tube was generated and distributed into the trained RF.
Each feature corresponded to one leaf of a decision tree in the RF. To compute the final class distribution,
we arithmetically averaged the probabilities of all trees, L = (l1, l2, . . . , lT), as follows:

P(ci|L) =
1
T

∑T

t=1
P(ci|lt), iε

{
f ire, non− f ire

}
(2)
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where T is the number of trees. We chose ci as the final class of an input image if P(ci|L) had the
maximum value. Figure 5 describes the detailed procedure of the testing based on the BoF of the
fire-tube and RF.
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4. Experimental Results

The benchmark dataset associated with camera-based fire detection is relatively small compared to
other research areas. Vision based fire detection(VisFire) [45] and the Keimyung University (KMU) Fire
& Smoke Database [46], two known databases related to fire detection, were unsuitable for the purposes
of this study because they are mostly for daytime and nearby fire videos. Therefore, we constructed
a night-time fire dataset in this study (NightFire-DB), which included some night-time videos from
the KMU Database [46] and new night-time fires downloaded from YouTube. NightFire-DB was
a collection of various night-time fire and fire-like videos in an urban environment including roads,
large factories, warehouses, shopping malls, parks, and gas stations taken at night. There were a total
of 14 fire and 10 non-fire videos for training. The test videos consisted of 10 fire videos and 10 non-fire
videos. The average number of frames of each video was 1030 frames, and the frame rate was 30 Hz,
whereas the size of each input video varied from a minimum pixel resolution of 320× 240 to a maximum
pixel resolution of 640 × 480. Table 1 describes the detailed configuration of NightFire-DB.

The dataset for training the proposed ELASTIC-YOLOv3 consisted of still images of night-time
fires from NightFire-DB. This dataset consisted of 4000 static images of night-time fire and fire-like
images. In addition, for learning about the proposed temporal fire-tube-based fire verification method,
600 fire-tubes were randomly selected from NightFire-DB: 300 fire-tubes with fire and 300 fire-tubes
without fire in the presence of tenuous fire-like lights. We measured the precision, recall, and F1-score
to evaluate the performance of the proposed algorithm.

To determine fire detection, we declared that a fire was detected correctly when the overlap rate
between the actual ground truth area and the detected area was more than 50%. We used the popular
precision, recall and F1-score (the harmonic mean of precision and recall) as the evaluation measures
for the fire and object detection:

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

F1− score = 2×
1

1
Precision + 1

Recall

= 2×
Precision×Recall
Precision + Recall

(5)

The system environment for the experiment included Microsoft Windows 10 and an Intel Core i7
processor with 8 GB of RAM. The proposed ELSATIC-YOLOv3 operated based on a single Titan-XP
GPU, and the RF algorithm was tested using a CPU.

Table 1. Configuration of test video sequences including fire and non-fire videos.

Fire Video No. Total No. of Frames Non-Fire No. Total No. of Frames

real-fire01 1788 non-fire01 343

real-fire02 862 non-fire02 1439

real-fire03 1187 non-fire03 1388

real-fire04 1131 non-fire04 913

real-fire05 683 non-fire05 575

real-fire06 1121 non-fire06 514

real-fire07 1787 non-fire07 1269

real-fire08 1786 non-fire08 686

real-fire09 1260 non-fire09 665

real-fire10 718 non-fire10 473

Average 1232 Average 827

4.1. Performance Evaluation of Fire Candidate Detection

The number of codebooks that determined the size of the BoF was an important factor in extracting
accurate temporal characteristics from the fire-tube. A smaller sized codebook could reduce the number
of dimensions of the BoF, although in this case, such a codebook may lack classification power because
HoF with different properties could be assigned within the same cluster. By contrast, a larger sized
codebook could reflect various HoF properties, but was sensitive to noise and required additional
processing time [40].

To determine the appropriate number of codebook sizes, this study compared the precision and
recall by varying the sizes of codebooks for some of the test data (real-fire01, 03, 05, 06, 07 and 08).
As shown in Figure 6, as the size of the codebook increased, the two measures increased simultaneously.
However, when the size reached over 150, the precision was maintained, but the recall reduced steeply.
If the codebook size was 150 or more, the number of false positives decreased, and the precision was
maintained, whereas the number of false negatives increased rapidly, and the recall continued to
reduce. This was because as the codebook grew in size, fewer fire-tubes were allocated to the outlier
cluster. However, in a real fire, it is more dangerous to miss a fire (false negative) than to experience
a false detection (false positive). Therefore, in this study, the most appropriate codebook size was 80
when considering the accuracy and computational time for generating a codebook.
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4.2. Performance Evaluation of Fire Candidate Detection

To validate whether the proposed ELASTIC-YOLOv3 for the detection of a fire candidate could be
effectively applied to test the NightFire-DB dataset, a performance evaluation was conducted based on
the difficulties of the dataset defined into three levels according to their size: small, medium, and large.
A small fire was defined as a case in which the fire size was less than 10% of the size of the original input
frame, a medium fire as less than 30%, and a large more than 30%. For the performance evaluation,
we first compared the precision, recall and F1-score against the original YOLOv3 [36].

As shown in Table 2, in terms of the precision, YOLOv3 and ELASTIC-YOLOv3 showed similar
detection performances regardless of the fire size. However, in terms of the recall, the proposed
ELASTIC-YOLOv3 improved by 10.2% for small fires and 6.1% for medium sized fires compared with
YOLOv3. The relatively higher recall rate of the ELASTIC-YOLOv3 method meant that the proposed
method detected fire candidates well without false negatives (missing fires) even in small sized fire
regions. Therefore, the proposed ELASTIC-YOLOv3 showed a better performance than YOLOv3 even
for small sized fires. In terms of the F1-score, ELASTIC-YOLOv3 achieved good even scores across all
fire sizes, whereas YOLOv3 had a large gap in score between large and small sized fire regions.

Table 2. Comparison of the precision, recall, and F1-score according to the size of fire regions for the
proposed ELASTIC-YOLOv3 and original YOLOv3 [19] using the NightFire-DB.

Methods Precision (%) Recall (%) F1-Score (%)

YOLOv3 [36]

Small 97.5 81.9 89.0

Medium 98.8 92.6 95.6

Large 97.6 99.2 98.4

Average 98.4 90.3 94.2

Proposed ELASTIC-YOLOv3

Small 96.3 92.1 94.1

Medium 99.8 98.7 99.3

Large 99.4 100 99.7

Average 98.8 97.0 97.9

In addition, we compared the fire candidate detection performance and processing time per frame
with the Faster R-CNN- [33] and single-shot detector (SSD)-based fire detectors, which are widely used
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in object detection and other fire detection studies. Table 3 shows the comparison results of the four
methods. Note that the SSD showed the highest precision, whereas the recall rate was the lowest at
67.7%. Owing to an imbalance of the precision and recall, the F1-score was 80.4, which was 17% lower
than ELASTIC-YOLOv3. The Faster R-CNN showed a better fire detection performance than that of
the SSD, but required twice as much processing time. YOLOv3, as is well known, has a much faster
processing time than SSD and Faster R-CNN. It was also found in the experimental results that its fire
detection performance was superior to those of the other two methods even for various sizes of fires.
The proposed ELASTIC-YOLOv3 required 0.1 ms more processing time than the original YOLOv3,
although the recall and F1-score were largely improved.

Table 3. Comparison of the precision, recall, F1-score, and processing time of four methods using
NightFire-DB. SSD, single-shot detector.

Methods Precision (%) Recall (%) F1-Score (%) Processing Time (ms)

SSD [38] 99.0 67.7 80.4 22.5

Faster R-CNN [47] 81.7 94.5 87.2 45

YOLOv3 [36] 97.9 91.2 94.3 15.9

ELASTIC-YOLOv3 98.5 96.9 97.7 16

4.3. Performance Evaluation of Temporal Fire-Tube and BoF

In this section, we evaluate the performance of a fire verification algorithm to determine whether
it correctly reflects the irregular movement of a fire using the BoF based on a fire-tube and RF classifier.
Because the proposed algorithm (ELASTIC-YOLOv3 + RF) should be compared to similar algorithms
that reflect the dynamic nature of a fire region, we first applied ELASTIC-YOLOv3 and input the fire
candidate regions into a deep three-dimensional convolutional network (3D ConvNets) [48] algorithm
and LSTM. 3D ConvNets [48] is a popular deep learning algorithm for training spatiotemporal features
for a video analysis, such as action recognition, abnormal event detection, and activity understanding.
Because action recognition requires a spatiotemporal feature analysis similar to fire, 3D ConvNets are
combined with ELASTIC-YOLOv3 (ELASTIC-YOLOv3 + 3D ConvNets [48]). In the case of LSTM,
we adopted the method in [33] to apply a feature vector converted from a CNN to the LSTM layer
in a frame-by-frame manner and verify the fire through a continuous LSTM output. Like other
comparison methods, only frames detected by ELSATIC-YOLOv3 as fire candidates were input into
the LSTM (ELASTIC-YOLOv3 + LSTM [33]). All experiments were measured after 50 frames because
fire verification was required only after a certain frame had been accumulated. With the proposed
method, a GPU was used for ELSATIC-YOLOv3, and a CPU was used simultaneously for the RF.

Because all three comparison methods were a type of post-processing based on the fire candidate
detection results of ELASTIC-YOLOv3, there were two factors regarding the point noted in Table 4.
The first was how well the algorithms removed false positives that were detected incorrectly, and the
second (by contrast) was how well the algorithms maintained true positives that were detected correctly.

As shown in Table 4, the performance of the proposed method was superior to that of the other
methods [33,48] in terms of the recall, F1-score, and processing time. In particular, the recall rates of
two of the comparison methods were much lower than that of the pre-processing of ELASTIC-YOLOv3,
whereas the proposed method showed an improvement of 2.6%. This meant that the proposed fire-tube
method applying an RF reflected the dynamic nature of a flame well. Moreover, a better recall rate is
a more important factor in evaluating the performance, because it is more dangerous to miss a fire
than to have a false detection. In terms of precision, the ELASTIC-YOLOv3 + LSTM [33] method was
approximately 21% lower than the pre-processing, whereas the proposed method had a 1.8% decrease
over the pre-processing. This meant that the precision of the ELASTIC-YOLOv3 + LSTM [33] method
was degraded because the true positives and false positives were filtered as a non-fire, whereas the
proposed method could effectively verify the fire candidates detected during the pre-processing using



Sensors 2020, 20, 2202 14 of 17

the fire-tube and RF classifier. In addition, because the proposed post-processing method simply
extracted the BoF from the fire-tube and verified the fire using an RF when applying both the GPU and
CPU at the same time, the processing time was faster than the other two methods using only a GPU.

Table 4. Comparison of the precision, recall, F1-score, and processing time of four comparison methods
using the NightFire-DB. The processing time of each algorithm included 15 ms of ELASTIC-YOLOv3.

Methods Precision (%) Recall (%) F1-Score (%) Processing
Time (ms) Operation

ELASTIC-YOLOv3 + 3D
ConvNets [48] 97.9 89.3 89.3 20.4 GPU

ELASTIC-YOLOv3 + LSTM [33] 76.7 99.5 86.6 56 GPU

ELASTIC-YOLOv3 + RF classifier 96.7 99.5 98.0 24.8 GPU (YOLOv3)
+ CPU (RF)

Figure 7 shows the fire detection results obtained using our proposed method and the NightFire-DB
test data. We see that the proposed algorithm could detect a real fire correctly even with other lights
around the fire, such as streetlights, neon signs, and car headlights, and could detect some small fires at
a long distance. However, the proposed algorithm occasionally incurred a false detection in a non-fire
region (e.g., the second image in Figure 7b) if a change in size change continuously occurred, such as
when the car headlights moved forward in front of the camera.

Sensors 2020, 20, x FOR PEER REVIEW  14 of 17 

 

using an RF when applying both the GPU and CPU at the same time, the processing time was faster 
than the other two methods using only a GPU. 

Table 4. Comparison of the precision, recall, F1-score, and processing time of four comparison 
methods using the NightFire-DB. The processing time of each algorithm included 15 ms of ELASTIC-
YOLOv3. 

Methods 
Precision 

(%) Recall (%) 
F1-Score 

(%) 
Processing 
Time (ms) Operation 

ELASTIC-YOLOv3 
+ 3D ConvNets [48] 

97.9 89.3 89.3 20.4 GPU 

ELASTIC-YOLOv3 
+ LSTM [33] 

76.7 99.5 86.6 56 GPU 

ELASTIC-YOLOv3 
+ RF classifier 96.7 99.5 98.0 24.8 

GPU 
(YOLOv3) 
+ CPU (RF) 

Figure 7 shows the fire detection results obtained using our proposed method and the NightFire-
DB test data. We see that the proposed algorithm could detect a real fire correctly even with other 
lights around the fire, such as streetlights, neon signs, and car headlights, and could detect some 
small fires at a long distance. However, the proposed algorithm occasionally incurred a false 
detection in a non-fire region (e.g., the second image in Figure 7b) if a change in size change 
continuously occurred, such as when the car headlights moved forward in front of the camera. 

 

Figure 7. Fire detection results using NightFire-DB: (a) ten real fire videos and (b) ten non-fire videos. 
The green boxes at the bottom of the images are the candidate fire regions when using ELASTIC-
YOLOv3, and the red boxes are the final results of the proposed RF when applying the fire-tube 
method. 

  

Figure 7. Fire detection results using NightFire-DB: (a) ten real fire videos and (b) ten non-fire videos.
The green boxes at the bottom of the images are the candidate fire regions when using ELASTIC-YOLOv3,
and the red boxes are the final results of the proposed RF when applying the fire-tube method.

5. Conclusions

In this paper, we presented a new night-time fire detection method in an urban environment
based on ELASTIC-YOLOv3 and a temporal fire-tube. As the first step of the algorithm, we proposed
the use of ELASTIC-YOLOv3, which can improve the detection performance without increasing
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the number of parameters through improvements to YOLOv3, which is limited to the detection
of small objects. For the second step, we proposed a method for generating a dynamic fire-tube
according to the characteristics of the flame, a method for extracting the movement of the flame using
an HoF, and an algorithm for converting the HoF into the BoF. Fire candidate regions detected using
ELASTIC-YOLOv3 were quickly validated using the HoF and BoF extracted from the fire-tube and RF
classifiers. The experimental results showed that the proposed method using both a GPU and CPU
was faster than deep learning and LSTM-based state-of-the-art fire detection approaches. Based on
the experimental results, we see that the proposed method could be successfully used for real-time
fire detection at night in urban areas owing to the high accuracy and fast processing speed. Because
the proposed method in this paper was an experiment on various fire videos collected on YouTube,
the results may vary depending on changes in the surrounding environment, changes in weather,
and camera conditions when applied in a real urban environment. Therefore, it is necessary to collect
more databases and analyze the results assuming various urban environments in the future.

The current algorithm required the use of a GPU for ELASTIC-YOLOv3; hence, there was a limit
when applying it to low-end embedded systems. However, if YOLOv3 were upgraded to a tiny version
that could run on a CPU, it could be optimized for embedded systems. Moreover, for future research,
we plan to improve the algorithm to detect forest fires at night using a long-distance camera (installed
at a monitoring tower) in addition to nearby night-time flame detection by developing new types of
fire-tube and BoF algorithms.
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