
Review Article
Detection and Prognosis of Prostate Cancer Using
Blood-Based Biomarkers

Wei Jin ,1 Xiang Fei,1 Xia Wang,1 Yan Song ,1 and Fangjie Chen 2

1Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
2Department of Medical Genetics, School of Life Sciences, China Medical University, Shenyang, Liaoning, China

Correspondence should be addressed to Fangjie Chen; chenfj@cmu.edu.cn

Received 28 February 2020; Revised 24 March 2020; Accepted 27 April 2020; Published 4 May 2020

Guest Editor: Xiaolu Jin

Copyright © 2020 Wei Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Prostate cancer (PCa) is second only to lung cancer as a cause of death. Clinical assessment of patients and treatment efficiency
therefore depend on the disease being diagnosed as early as possible. However, due to issues regarding the use of prostate-
specific antigen (PSA) for screening purposes, PCa management is among the most contentious of healthcare matters. PSA
screening is problematic primarily because of diagnosis difficulties and the high rate of false-positive biopsies. Novel PCa
biomarkers, such as the Prostate Health Index (PHI) and the 4Kscore, have been proposed in recent times to improve PSA
prediction accuracy and have shown higher performance by preventing redundant biopsies. The 4Kscore also shows high
precision in determining the risk of developing high-grade PCa, whereas elevated PHI levels suggest that the tumor is aggressive.
Some evidence also supports the effectiveness of miRNAs as biomarkers for distinguishing PCa from benign prostatic
hyperplasia and for assessing the aggressiveness of the disease. A number of miRNAs that possibly act as tumor inhibitors or
oncogenes are impaired in PCa. These new biomarkers are comprehensively reviewed in the present study in terms of their
potential use in diagnosing and treating PCa.

1. Overview

Prostate cancer (PCa), which manifests as solid tumors, is the
most prevalent form of cancer in male individuals. PCa is
second only to lung neoplasms in terms of mortality rate,
and its incidence rises with age in numerous countries. In
the US alone, around 2.8 million male individuals are diag-
nosed annually with PCa [1]. A marked increase has also
been noted recently in the incidence of PCa in China due to
factors such as lifestyle changes and more efficient diagnosis.
The incidence of PCa may also differ due to different dietary
habits. Dietary factors, like the consumption of protein, fat,
carbohydrates, vitamins, and polyphenols, may have an
important role in PCa pathogenesis [2, 3]. Adequate diet
and physical activity trigger alterations in the serum factors
that retard the development of androgen-reliant PCa cells
and cause them to die [2, 4]. Conversely, PCa can be pro-
moted by a high body mass index, hypertension, and a num-
ber of metabolic factors [5, 6]. PCa is characterized by a high
degree of inhomogeneity, as it can manifest as either latent

forms or highly aggressive forms that lead to morbidity and
death due to metastasis to other parts of the body [7–9].

PCa screening is based on the use of the prostate-specific
antigen (PSA), a feature that has made this disease notably
contentious within the healthcare field. PCa exhibited a stag-
gering rise in incidence during the period from 1986–1991,
when the PSA test first became available. However, subse-
quent prostate biopsies frequently revealed no correlation
between elevated PSA levels and the presence of cancer in
many cases. Indeed, PSA levels do not exceed 4.0μg/L in
20–25% of the cases with a PCa diagnosis [10]. The results
of cytology or histopathology are the basis of a confirmed
PCa diagnosis, especially in cases where the PSA levels lie
between 4 and 10μg/L—the so-called “grey area.” By con-
trast, about one-quarter of the cases with PSA levels of
2–10μg/L has positive biopsies.

PSA is not an exclusive marker of cancer because it is
produced by cancerous prostate cells and by healthy prostate
cells. Therefore, factors such as a large prostate size, benign
prostatic hyperplasia (BPH), or prostatitis can trigger false
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positives and result in an incorrect PCa diagnosis and treat-
ment [11]. The United States Preventive Services Task Force
issued a recommendation in 2018 that PCa screening should
not be performed on the basis of PSA levels in cases of male
individuals refusing the procedure or in male individuals 70
years of age or older [12]. Furthermore, unimportant tumors
may be excessively detected due to PSA-based screening,
leading to unnecessary treatment. In addition, the possible
positive outcomes of screening are no greater than the
adverse outcomes of excessive detection and unnecessary
treatment [13]. Diagnosis of PCa based only on PSA levels
is therefore gradually losing its appeal as a clinical approach
[14]; however, this has not put an end to the controversy
surrounding screening [15, 16]. A recent study suggested
that although discontinuation of PSA-based screening
would eliminate excessive diagnoses, the lack of screening
would lead to a complete failure to avoid preventable deaths
and would increase the PCa-related mortality rate by 13-
20% [17].

In recent times, various initiatives have been launched to
identify novel subtypes of PSA that could make PSA-based
screening more precise for diagnosing early PCa and formu-
lating a prognosis for it. These initiatives have yielded several
novel PCa biomarkers, including the PHI, a biomarker that
has received the approval of the US Food and Drug Admin-
istration (FDA) for prostate cancer detection [18]. Another
PCa biomarker is the 4Kscore, otherwise known as the 4-
kallikrein panel, which screens for total PSA, fPSA, intact
PSA (iPSA), and human kallikrein 2. MicroRNAs are another
source of promising PCa biomarkers that have emerged as
potential alternatives to PSA, owing to the progress being
made in deep sequencing technology [19]. Taking all these
aspects into account, the aim of the present study is to review
the new understanding that has been achieved regarding PCa
blood-based biomarkers and the role that they can play in
diagnosing and treating early PCa.

2. The Prostate Health Index (PHI)

The importance of proPSA as a component of fPSA was
highlighted in 1997 by the revelation that the serum of indi-
viduals with PCa contained truncated proPSA forms [20].
Preliminary findings confirmed that PCa could be detected
based on proPSA isoforms, leading to fewer negative biopsies
in cases with PSA levels in the “grey area.” A reliable immu-
noassay has since been made available on the market by
Beckman Coulter to assess [-2] proPSA, and this immunoas-
say has been extensively investigated for its relevance for use
in managing early PCa. Overall, PCa patients have a notably
higher ratio of [-2] proPSA to fPSA (%p2PSA).

The [-2] proPSA immunoassay has now been integrated
alongside fPSA and tPSA in the PHI test. This test is highly
specific for PCa of clinical importance and has proven effec-
tive in detecting this disease [21, 22]. It enables differentia-
tion between benign prostatic hyperplasia (BPH) and PCa
in suspected cases, but it can also enhance the accuracy of
detection of high-grade cancer, thereby preventing redun-
dant biopsies. In June 2012, this biomarker received FDA
approval for use in detecting PCa in male individuals 50 years

of age or older who had PSA levels of 4–10μg/L and had
undergone a digital rectal examination (DRE) without
abnormal outcomes. The National Comprehensive Cancer
Network also endorses the PHI test in cases where a biopsy
has not been conducted or has produced negative results,
and the Network specifies that a significant risk of PCa is
reflected by PHI results higher than 35 [23].

Prospective research conducted in multiple centers
among a sample of 2499 men has indicated that the use of
PHI values higher than 30 at 90% sensitivity for high-grade
PCa (HGPC) (Gleason ≥ 7) could have prevented Gleason 6
PCa diagnoses in 33% of the cases and biopsies in 56% of
the cases of Asian men. Similarly, the use of PHI higher than
40 at 90% HGPC sensitivity could have prevented Gleason 6
PCa diagnoses in 31% of the cases and biopsies in 40% of the
cases of Caucasian men [24, 25]. Prediction of biopsy results
based on PHI and the %p2PSA score has now been advocated
by a number of researchers. The usefulness of these measure-
ments in cases where the PSA levels fall between 2 and
10μg/L has been demonstrated by two studies conducted in
multiple centers in 1362 and 646 patients. The %p2PSA
was associated with an area under the curve (AUC) value of
0.72, while the PHI was associated with an AUC value of
0.74 [23]. Both biomarkers considered together were associ-
ated with an AUC value of 0.67 [26]. Chiu et al. suggested
that PHI was effective in cancer risk stratification for both
European and Asian subjects [25]. However, population-
specific PHI reference ranges were different and should be
used [25]. These findings support the relevance of the PHI
test for identifying cases among Asian and Caucasian indi-
viduals with a high risk of PCa and thereby minimizing
redundant biopsies and excessive PCa diagnosis.

When compared with the total PSA and %fPSA, the com-
bination of %p2PSA and PHI provided a greater precision of
PCa detection at biopsy [23, 27]. Furthermore, the two bio-
markers were well-correlated with tumor aggressiveness,
occurring at higher levels in cases of Gleason > 6. These find-
ings have been confirmed by two meta-analyses from 2013
and 2014, which indicated that %p2PSA and PHI were,
respectively, associated with AUCs of 0.635–0.78 and 0.69–
0.781 [28, 29]. These meta-analyses additionally highlighted
the superior outcomes obtained with these two biomarkers
compared with those obtained with PSA and %fPSA. The lat-
ter observation was reinforced by a later meta-analysis, which
undertook a comparison between PHI and %fPSA in cases
with total PSA levels of 2–10μg/L. In that meta-analysis,
PHI had an AUC value of 0.74, while %fPSA had an AUC
value of 0.63 [30].

Some researchers have argued that PCa could be pre-
dicted clinically with greater accuracy by incorporating PHI
and %p2PSA into multivariate models that take into account
the integration of PSA and a range of clinical and demo-
graphic factors. For instance, the incorporation of PHI and
%2pPSA into a multivariate model based on patient age,
prostate volume, PSA, and %fPSA was reported to increase
the AUC value from 0.762 to 0.802 or 0.815, depending,
respectively, on whether a logistic regression analysis or an
artificial neural network was applied [31]. Similarly, a differ-
ent study on 112 patients with Gleason 6 who underwent
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radical prostatectomy reported that the patients with a final
histology upgrade to Gleason 7 or higher exhibited markedly
increased PHI values [32]. Another study found that PHI had
an AUC value of 0.815 for the detection of GHPC in cases of
Gleason 7 or higher [33] and suggested that the ideal PHI
cut-off point of 24 at 95% sensitivity for detection of aggres-
sive PCa. The use of this cut-off point prevented redundant
biopsies in 41% of the cases. By contrast, an active monitor-
ing program involving 167 patients revealed that the baseline
and longitudinal %p2PSA and PHI levels allowed better
prediction of renewed biopsy categorization at follow-up,
whereas total PSA level showed no similar correlation with
renewed biopsy categorization [34].

3. The 4Kscore

Another test that can predict the likelihood of occurrence of
high-risk PCa is the 4Kscore or 4-kallikrein panel. The
4Kscore consists of four kallikrein blood markers—total
PSA, free PSA (fPSA), intact PSA (iPSA), and the human
kallikrein-related peptide 2 (hK2)—and has received ample
research attention. For example, researchers from theMemo-
rial Sloan-Kettering Cancer Center have found an association
between the 4Kscore and AUC values that exceeded not only
the AUC values associated with a PSA-based model for the
detection of all types of PCa (AUCs = 0:674 – 0:832) but also
the AUC values for HGPC detection with Gleason of 7 or
higher (AUCs = 0:793 – 0:870) [35, 36]. A comparison of
the equivalent clinical models for high-risk PCa prediction
yielded similar results. The model incorporating the variables
of PSA, patient age, and DRE had AUC values of 0.709–
0.868, whereas the addition of fPSA, iPSA, and hK2 to the
model led to AUC values of 0.798–0.903 [37].

One major factor that PCa risk predictions typically take
into account is prostate volume, as this factor has an impact
on the levels of PSA in the serum. However, one study
reported that the method used to perform the 4Kscore to
detect PCa was unaffected by the prostate volume [38]. This
was the conclusion reached from a biomarker investigation
in two groups of patients (n = 2914, n = 740, respectively)
with PSA levels of 3μg/L or higher. The inclusion of the pros-
tate volume in a model underpinned by 4Kscore, patient age,
and DRE led to an increase in AUC from 0.856 to 0.860 in the
first group, whereas the inclusion or exclusion of the prostate
volume made no difference to the AUC value in the second
group (0.802).

The 4Kscore was made available on the market by Opko
Diagnostics. It constitutes an algorithm that generates pre-
dictions about HGPC by integrating the 4-kallikrein panel
with patient age, DRE, and history of previous biopsy. The
US Food and Drug Administration FDA has not yet
approved this test, but the National Comprehensive Cancer
Network issued a recommendation in June 2015 that the
4Kscore could be employed to screen for HGPC in cases
where biopsy had either not been conducted or where it
had produced negative results [39, 40].

In a prospective study conducted in 26 urology centers
throughout the US, the 4Kscore achieved an AUC value of
0.82 when it was used to assess 1012 male patients about to

undergo a prostate biopsy. The use of a 6% cut-off point
was found to eliminate the necessity of a biopsy in 30% of
the cases and deferred diagnosis in only 1.3% of the HGPC
cases [41]. By contrast, a different study reported that the
4Kscore enabled the prediction of HGPC in cases with PSA
levels exceeding 10μg/L or with a positive DRE [42]. This
ability of the 4Kscore to decrease the number of biopsies
without overlooking a significant proportion of HGPCs has
been highlighted by a number of studies [43, 44]. The biopsy
was deemed unnecessary in approximately half of the 262
cases scheduled for prostate biopsy because of PSA levels of
3μg/L or higher, but the diagnosis of aggressive PCa was
overlooked in just 1% of these cases when the 4Kscore was
used [45]. A different study on a sample of 740 male individ-
uals who had been referred for biopsy due to high PSA levels
reported comparable results [46].

The efficacy of the 4Kscore for predictions was demon-
strated by a study initiated in 1986 in Sweden on a sample
of patients of different ages (40, 50, and 60 years old) [47].
The patients were divided into two groups based on their
4Kscore outcomes at 50 and 60 years of age to determine
how likely they were to develop remote metastasis after two
decades. The study concluded that remote metastasis was
more likely to develop in patients with a 4Kscore exceeding
5 at 50 years of age and with PSA levels of 2μg/L or higher,
as well as in patients with a 4Kscore exceeding 7.5 at 60 years
of age and PSA levels of 3μg/L or higher. Biopsy was consid-
ered unnecessary in cases that had moderate increases in PSA
levels during midlife and a low risk of HGPC based on the
4Kscore. A different study on 1423 PCa patients showed that
remote metastasis occurred in 235 patients with PSA levels
exceeding 2μg/L. However, metastasis was much better
predicted by a prespecified model underpinned by the four
kallikrein markers than by PSA alone [47]. On the whole,
the available research results support the efficiency of the
4Kscore for use in early PCa diagnosis and prognosis.

One study compared the efficacy of the 4Kscore and PHI
in a sample of 531 male individuals with PSA levels of 3–
15μg/L. Neither biomarker differed markedly in the detec-
tion of either any-grade PCa or HGPC. The 4Kscore had
AUC values of 0.69 and 0.718, while the PHI had AUC values
of 0.704 and 0.711 [48].

4. The Usefulness of MicroRNAs as
PCa Biomarkers

4.1. miRNAs and PCa. Ample research has recently explored
the function of protein-coding genes in oncogenesis. Tran-
scription of the human genome to messenger RNA (mRNA)
occurs in a proportion of 90%, but protein encoding is under-
taken by just 2% of the genome. Therefore, many RNAs do
not encode for any protein. According to the findings from
the latest studies, a genome segment without protein encod-
ing is involved in oncogenesis [49, 50].

The expression of genes is regulated by endogenously
expressed small, noncoding, single-stranded RNAs known
as microRNA (miRNAs). Adverse regulation of gene expres-
sion by miRNA genes occurs after transcription, with the
miRNA genes attaching primarily to the 3′ untranslated
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region (3′-UTR) of the coding gene, thereby suppressing
mRNA translation. In the case of PCa, this suppression also
promotes pathways for PCa progression by triggering trans-
lational repression or mRNA deterioration [49, 50]. The
types of miRNA complexes present in human plasma and
serum were investigated in one study by differential centrifu-
gation and size-exclusion chromatography of the miRNAs
[51]. Most of the miRNAs were found in the plasma and
serum in a form that did not undergo membrane binding,
whereas a few were vesicle-associated miRNAs. A different
study suggested that miRNAs from human serum, saliva,
and other biological fluids could be made more sensitive
through exosome isolation [52].

The physiological and pathological processes showing
miRNA involvement include development, differentiation,
metabolism, immunity, proliferation, apoptosis, senescence,
cell identity, and stem cell maintenance [50, 53]. A number
of miRNAs that participate in the development of human
cancer have been identified, and these appear to act as onco-
genic factors that prevent the activity of tumor-suppressing
genes or as tumor-suppressing miRNAs that activate onco-
genes [54].

Novel biomarkers for the diagnosis and prognosis of can-
cer can be discovered by investigating cancer-related abnor-
mal miRNA expression profiles. Many methods have been
used to detect miRNAs, including northern blotting, next-
generation sequencing (or RNA sequencing, RNA-Seq),
microarrays analysis, reverse transcription PCR (RT-PCR),
highly sensitive biosensors, and computational prediction
[55]. In 2008, the first circulating miRNA profile of the serum
of patients with diffuse large B-cell lymphoma was published
as an aid for cancer diagnosis [56]. In many human cancers,
the processes of development, invasion, and progression
occur through direct involvement of hundreds of miRNAs
with modified expression, and the cancer-related genomic
area contains approximately half of the miRNA genes. PCa
development is promoted by this type of dysfunctional regu-
lation through the upregulation of oncogene modulation or
downregulation of tumor inhibitors [50].

The current findings indicate the notable feature that
the classification of human cancer origins can be based
on miRNA signatures [57]. Thus, metastatic cancers of
unknown origin can be effectively identified with high tissue
specificity based on their miRNAs. For instance, a study of
208 tumors consisting of 15 distinct histologies, including
PCa, revealed successfully and estimated the primary tumor
origin by profiling miRNA expression in paraffin-
embedded tissue [58]. A novel algorithm formulated in that
study also categorized the miRNAs with 85% general preci-
sion (CI: 79–89%). This algorithm was successful in deter-
mining the primary origin of 42 of 48 metastases (88%
precision; CI: 75–94%). However, these results must be veri-
fied by further research.

Several studies have highlighted an association between
PCa and the modifications observed in the expression of
miRNAs, which are associated with dysfunctional cell prolif-
eration, differentiation, progression, and other processes [59,
60]. Comprehending the mechanism by which miRNAs
interact with their targets and the implications of those inter-

actions for PCa development is important for identifying the
central part played by miRNAs in PCa [61]. This comprehen-
sion can also help in developing efficient treatment interven-
tions, especially because aberrant miRNA expression is now
viewed as a useful biomarker for diagnosing and classifying
PCa and for determining its prognosis [62].

4.2. Oncogenic miRNAs and PCa. Cancer cell progression is
promoted by miRNAs that serve as oncogenic miRNAs
[63]. Calin and colleagues [64] were the first to investigate
the correlation between miRNA dysregulation and cancer.
Specifically, the authors observed that the dysregulation of
miR-15 and miR-16 contributed to the development of
chronic lymphocytic leukemia. PCa is typically associated
with overexpression of miRNAs (e.g., miR-21, miR-32,
miR-221, miR-222, miR-181, miR-18a, and miR-429) that
have a crucial function in the regulation of PI3K/AKT,
the epithelial-to-mesenchymal transition (EMT), cell pro-
liferation, apoptosis, and androgen receptor (AR) expres-
sion [65, 66].

The androgen-regulated oncogenic miRNAs with expres-
sion in PCa include miR-21 and miR-32 [67]. MiR-21 regu-
lates the expression of a large number of mRNA targets
associated with microvascular proliferation and tumor inva-
siveness, and its expression is correlated with weak biochem-
ical recurrence-free survival. Therefore, miR-21 expression
can be used to estimate the probability of biochemical recur-
rence in PCa patients who have undergone radical prostatec-
tomy [68]. The expression of miR-21 is also associated with
castration resistance and metastasis, and its level increases
linearly with clinical parameters such as the Gleason score
and lymph node metastasis [59]. A study conducted on
patients who had undergone radical prostatectomy revealed
a close correlation between elevated miR-21 levels and
advanced disease staging, lymph node metastasis, and poor
patient outcomes. A multivariate analysis revealed that
miR-21 expression was an independent estimator of bio-
chemical recurrence after five years [69]. Hence, miR-21
can be used as a biomarker that anticipates cancer progres-
sion [70].

An additional miRNA with androgen regulation (via
dihydrotestosterone [DHT] stimulation) is miR-32. This
miRNA has a higher expression in castration-resistant pros-
tate cancer (CRPC) cases than in benign prostatic cases. Its
oncogenic activity includes targeting B-cell translocation
gene 2 (BTG-2) as well as phosphoinositide-3-kinase inter-
acting protein 1 (PIK3IP1). This miRNA suppresses apopto-
sis and encourages cells to proliferate by stimulating cell
growth, as revealed by observations of miR-32 effects in the
LNCaP PCa cell line. On the whole, miR-32 manifests its
oncogenic activity by targeting the tumor-suppressing genes
that control the ability of cells to proliferate, survive, and
migrate [71, 72].

The oncogenic reprogramming of PCa-mobilized stem
cells is believed to occur with the involvement of oncogenic
miR-125b, miR-130b, and miR-155 [73, 74]. Mechanistic
studies confirm that stem cell neoplastic reprogramming
is likely triggered by miR-125b and miR-155 exosomal
trafficking via targeted suppression of the sizable tumor-
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suppressor homolog2 and programmed cell death by the
neoplastic transformation suppressor protein 4 [75]. Fur-
thermore, miR-125 has been observed to target apoptosis-
promoting genes in PCa, thus functioning as an oncogene
[76]. Apoptosis is suppressed and cell proliferation is intensi-
fied when miR-125b, a miRNA triggered by an androgen
receptor, is activated in the LNCaP cells. Some evidence sup-
ports miR-125b targeting of the mediator of Mdm2 seques-
tration, p14ARF and subsequent disruption of Mdm2
deterioration, and triggering of the p53 network [77].

The expression of p27Kip1, which regulates the cell cycle,
is susceptible to the effects of several miRNAs, such as miR-
221, miR-222, and miR-429 [78]. Two of these, miR-221
and miR-222, are encoded on the X chromosome and share
a seed sequence. Both of these miRNAs manifest their onco-
genic effects by targeting a number of tumor-suppressing
genes, and they both display overexpression in PCa. Abnor-
mal expression of these two miRNAs can aid in prognosis
because this expression has a close association with metasta-
tic CRPC [78].

A modified miR-9 signature has been correlated with the
progression and metastasis of PCa [79]. Similarly, miR-27a
targets prohibition in PCa, thereby regulating AR processing
[61]. PCa tissues and cell lines also show high expression of
miR-18, which targets the tumor-suppressing serine/threo-
nine-protein kinase 4, thereby functioning as an oncogenic
miRNA [80]. One study showed that the inhibition of miR-
18a slowed PCa cell and tumor growth by promoting apopto-
sis triggered by Akt dephosphorylation with STK4 mediation
[80]. These findings support the use of the peripheral blood
oncogenic miR-18a as a noninvasive PCa biomarker and
for differentiating PCa from BPH [81].

Important stages in PCa progression are associated with
poor prognosis; these include bone metastasis and events
affecting the skeleton [82]. Extensive research has been con-
ducted on the involvement of miRNAs in cancer metastasis.
PCa has been associated with the upregulation of miR-96,
miR-154, and miR-409-5p, which are likely very important
promoters of cancer colonization of bone during metastasis
[83–86]. Additional evidence produced by targeting major
fibroblast-activating molecules has shown a correlation
between PCa progression and increased expression of miR-
133b, miR-409, and miR-210 [84, 85].

4.3. Tumor-Suppressing miRNAs and PCa. Tumor-suppress-
ing gene action may be an additional function of miRNAs.
Cancer cells generally exhibit downregulation of tumor-
suppressing miRNAs, thereby promoting proliferation [87],
the epithelial-mesenchymal transition (EMT), invasiveness,
and metastasis. PCa progression could be monitored by eval-
uating the expression pattern of tumor-suppressing miRNA
as a biomarker, and the same pattern could also be targeted
by various treatment interventions [88].

Reduced expression of miRNA has been associated
with cancer progression in a number of studies. PCa with
castration resistance can develop through priming of AR
and AR-V7 upregulation with hnRNPH1 mediation follow-
ing dysregulation of miR-212 [89]. The PCa tumor promoter
EGFR is targeted by miR-133 and miR-146a, thereby pre-

venting disease progression. Therefore, intensified EGFR sig-
naling may explain the loss of these two biomarkers and the
subsequent aggressive progression of PCa [90]. Evidence has
also been produced to indicate that the LNCaP, DU145, and
PC3 PCa cell lines, as well as PCa tissues, exhibit reduced
expression of miR-335 [91]. Another miRNA that inhibits
tumors is miRNA-30a, a miRNA that targets sine oculis
homeobox homolog 1 to prevent cancerous cells from prolif-
erating and invading other tissues [92].

PCa is also associated with the downregulation of miR-
145, miR-200, miR-29b, miR-205, and miR-940, which leads
to the upregulation of genes associated with the EMT. During
the EMT, cells lose their attachment to other cells, and epi-
thelial cells acquire the abilities of migration and invasion
through conversion to mesenchymal stem cells capable of
differentiation into various other cell types. Reduced expres-
sion of miR-29b and miR-130b in PCa is also correlated with
extracellular matrix regulation through the targeting of
matrix metalloproteinase 2 (MMP2) [93, 94]. EMT and can-
cer invasion are inhibited by miR-200 members through a
direct suppression of the zinc-finger E-box binding homeo-
box 1 and 2 (ZEB1 and ZEB2) translation factors [95]. Both
prostate tumors and cancer cell lines have been associated
with miR-200b downregulation, and miR-200b expression
contributes significantly to the regulation of tumor invasion,
metastasis, and chemosensitivity [96]. Enhanced expression
of miR-200b targets Bmi-1, thereby preventing the prolifera-
tion and migration of PCa cells, as well as increasing PCa cell
chemosensitivity to docetaxel.

In general, hindering the EMT by miR-200c appears to
support the maintenance of the “epithelialness” of cancer
cells [97, 98]. According to one study, PCa was prevented
from progressing by miR-205 downregulation that targets
laminin-332, integrin-β4, and MMP-2 to regulate the extra-
cellular matrix [99]. In addition, miR-205 targets the Bcl-2
protein to suppress apoptosis. The loss of miR-205 is signifi-
cant in androgen-autonomous expression equivalent to Bcl-2
upregulation and possibly in reduced sensitivity to docetaxel
in PCa [100].

An association has been established between decreased
expression of miR-146a in PCa and angiogenesis suppression
through targeting of the epidermal growth factor receptor
pathway [101]. The progression and metastasis of PCa are
stimulated by miR-1 downregulation through targeting of
Src and TWIST1 [102]. EMT regulation and PCa progression
are also mediated by targeted downregulation through the
loss of miR-154 due to stromal antigen 2 (STAG2), the loss
of miR-203 due to tumor growth factor-alpha (TGF-α), and
the loss of miR-224 due to Tribbles Pseudokinase 1 (TRIB1)
[103, 104].

The original members of the family of tumor-suppressing
miRNAs are miR-15a and miR-16. These two miRNAs are in
charge of regulating the expression of numerous oncogenes,
such as BCL2, MCL1, CCND1, and WNT3A. The effects of
miR-15 and miR-16-1 on the BCL2 gene product trigger apo-
ptosis [105–107]. By contrast, the loss of these two miRNAs
elevates the levels of cyclin D1, an important regulator of
the transition from the G1 to the S phase. The loss of these
two miRNAs also activates the WNT3a gene and the

5Mediators of Inflammation



precancerous Wnt signaling pathway. Notably, cancer pro-
gression is stimulated by the cooperation between increased
miR-21 expression and the loss of miR-15 and miR-16, as
revealed by mouse models of PCa. One study found that
some PCa patients exhibited deregulated miR-15/miR-16
and miR-21, and this deregulation was related to suboptimal
prognosis and disease-free survival [108].

The expression and activity of the AR gene also seem to
be targeted by a number of tumor-suppressing miRNAs. Pro-
liferation is inhibited and apoptosis intensified by miR-488∗
[109], which can successfully reduce the expression of the AR
protein in androgen-responsive as well as androgen-
refractory PCa cells. PCa cells that overexpress miR-488∗
have also been shown to have lower PSA expression. Simi-
larly, the direct downregulation of AR expression by exces-
sive expression of miR-488∗ in PCa cells can prevent cell
growth and enhance apoptosis [109].

AR expression is significantly affected by miRNAs like
miR-125b, miR-135a, and miR-27a [76, 110]. Androgen-
responsive PCa cells display the upregulation of miR-135a,
which therefore seems to have a tumor-inhibiting effect.
An androgen-responsive component is also demonstrated
by miR-125b in the gene promoter area. Research on cas-
trated mice revealed that the upregulation of miR-125b
caused prostate tumor xenografts to exhibit androgen-
independent growth, suggesting that the miRNA suppressed
apoptosis [110].

AR expression regulates the expression of miR-27a as
well. The expression of prohibitin, a tumor-suppressing gene,
and AR corepressor, is downregulated when miR-27a expres-
sion is increased through androgen mediation. By facilitating
a reduction in the expression of the prohibitin protein prod-
uct, miR-27a upregulates the AR target gene expression and
enhances the growth of PCa cells [111]. On the whole, the
wide range of functions fulfilled by miRNAs in PCa develop-
ment has received substantial attention in the search to
understand how miRNAs aid and inhibit the disease process.

4.4. Exosomal miRNAs. The shortcomings of the existing
protocols for PCa screening call for the discovery of novel
biomarkers. Effective management of this disease and
improvements in prognosis and survival can only come with
protocols that will allow the detection and classification of
prostate tumors as early as possible. Another potential
source of biomarkers is exosomes. These nanovesicles mea-
sure 50–150nm and are found in cells as early endosomes
that contain miRNAs, mRNA, proteins, and lipids. Exo-
somes play a key role in intercellular communication and
in the regulation of recipient cell biology, as well as in a
range of physiological and pathological processes [112].
Some evidence now supports the idea that miRNA can be
reliably sourced from blood-derived exosomes to identify
disease biomarkers [113, 114].

In numerous tumor types, prognosis has been predicted
based on exosomal miRNAs recovered from the blood
[115]. The relevance of using the miRNAs found in exosomes
to manage PCa was investigated in a few studies. Two of
these studies have suggested that PCa could be differentiated
based on miR-141 upregulation [116, 117]. Another study

reported that PCa was associated with the upregulation of
both miR-141 and miR-375 and that disease progression
was correlated with the serum levels of these miRNAs
[118]. A correlation has also been established between poor
survival outcomes and plasma levels of exosomal miR-1290
and miR-375. Better predictions were achieved when these
novel biomarkers were included in a clinical prognostic
model [119, 120]. miR-574-3p, miR-141-5p, and miR-21-
5p were markedly upregulated in urinary exosomes from
PCa patients extracted via lectin-based exosome agglutina-
tion [121]. By contrast, extraction of urinary exosomes by
differential centrifugation revealed a marked increase only
in the expression of miR-141. The presence of miR-19b
was also examined in urinary exosomes extracted via differ-
ential centrifugation and revealed good potential for PCa
detection [122].

Despite the inconsistencies in the reported results, the
initial findings regarding exosomal biomarkers are encour-
aging. However, the determination of the usefulness of exo-
somes will first require standardization of the isolation and
profiling methods and the performance of extensive clinical
trials. Furthermore, miRNAs are not without their short-
comings and difficulties, just like other novel biomarkers
for cancer. These shortcomings and difficulties stem from
differences in how samples are selected, handled, processed,
and prepared, as well as from disagreements regarding
data normalization. Consequently, before miRNAs can be
employed clinically, those shortcomings and difficulties
must be addressed.

5. Conclusion

A great deal of inhomogeneity occurs in PCa. In some cases,
the risk of disease progression is minimal, and the cancer-
specific survival rates at a 15-year follow-up can be higher
than 99%. Around 50–60% of new diagnoses are low-risk
PCa [123]. However, aggressive PCa is associated with a sig-
nificant reduction in survival rate. Therefore, detection of the
disease as early as possible is vital, as is the effective treatment
of these cases. These advances can only come about with the
development of better methods of early diagnosis to improve
the survival rate.

A number of novel biomarkers related to PCa aggressive-
ness have been recently shown to have great clinical poten-
tial. The outcomes of prospective studies conducted in
multiple centers have indicated that the use of the PHI and
4Kscore biomarkers decrease the proportion of redundant
biopsies in male individuals subjected to PSA screening. Var-
ious guidelines have advocated the use of these biomarkers
[124, 125]. Nevertheless, comparative analysis of the useful-
ness of biomarkers requires large-scale prospective studies
and stringent control of the bias caused by patient preselec-
tion based on the levels of PSA in the serum.

Several miRNAs with possible oncogene or tumor-
suppressing functions are deregulated in PCa. As revealed
by miRNA profiling research, mRNAs can regulate gene
transcription either on their own or in conjunction with
other transcription factors, with the end result being dis-
rupted cellular processes in PCa tissues [18, 125]. Novel
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approaches to PCa management could be identified by
advances in the knowledge of the functions of miRNAs in
controlling PCa development and progression [126, 127].
Research on the integrated function of biomarkers and com-
bination with magnetic resonance imaging data is also
worthwhile [128, 129]. Comparative analyses are also needed
on the outcomes achieved with blood biomarkers and the
encouraging data yielded using PSA or PHI. It should be
known that none single biomarker has the capacity to per-
fectly detect PCa, and more detailed profiling of novel PCa
biomarkers remains necessary.
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