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Abstract

Objective: To evaluate the human epidermal growth factor receptor 2 (HER2) status in patients with breast
cancer using multidetector computed tomography (MDCT)-based handcrafted and deep radiomics features.
Methods: This retrospective study enrolled 339 female patients (primary cohort, n=177; validation cohort,
n=162) with pathologically confirmed invasive breast cancer.  Handcrafted and deep radiomics features were
extracted from the MDCT images during the arterial phase. After the feature selection procedures, handcrafted and
deep radiomics signatures and the combined model were built using multivariate logistic regression analysis.
Performance was assessed by measures of discrimination, calibration, and clinical usefulness in the primary cohort
and validated in the validation cohort.
Results: The handcrafted radiomics  signature  had a  discriminative  ability  with  a  C-index  of  0.739 [95%
confidence interval  (95% CI):  0.661−0.818]  in the primary cohort  and 0.695 (95% CI:  0.609−0.781)  in the
validation cohort. The deep radiomics signature also had a discriminative ability with a C-index of 0.760 (95% CI:
0.690−0.831) in the primary cohort and 0.777 (95% CI: 0.696−0.857) in the validation cohort. The combined
model, which incorporated both the handcrafted and deep radiomics signatures, showed good discriminative ability
with a C-index of 0.829 (95% CI: 0.767−0.890) in the primary cohort and 0.809 (95% CI: 0.740−0.879) in the
validation cohort.
Conclusions: Handcrafted and deep radiomics features from MDCT images were associated with HER2 status
in patients with breast cancer. Thus, these features could provide complementary aid for the radiological evaluation
of HER2 status in breast cancer.
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Introduction

Breast cancer is the most common malignancy in women
worldwide and remains the first cause of female cancer-
related death (1,2). Breast cancer is a heterogeneous disease
with diverse phenotypes that exhibit distinctive biological
behaviors (3). Approximately 15%−20% of breast cancers
manifest  as  human epidermal  growth  factor  receptor  2
(HER2)  protein  overexpression  or  gene  amplification,
which is defined as an aggressive subtype associated with
metastatic  behavior  and  poor  clinical  outcomes  (4).
Nevertheless, the prognosis of the HER2-positive subtype
of  breast  cancer  has  substantially  improved  since  the
development  of  anti-HER2 targeted  therapies.  Female
patients  with  HER2-positive  breast  cancer  show  good
responses and high pathological complete response rates
after neoadjuvant chemotherapy with the HER2-blockade
agent trastuzumab; further, these patients demonstrate a
considerable improvement in both disease-free and overall
survival (5-7). Therefore, HER2 status is important for the
prognosis  of  breast  cancer  and in  choosing the optimal
individualized treatment strategy for such patients.

HER2-positive cancers tend to accelerate the growth and
division  of  cancer  cells,  as  well  as  stimulate  the  cell
proliferation and angiogenesis, all of which may cause the
tumor  heterogeneity  (8).  In  recent  years,  studies  have
suggested that the biological characteristics of tumors could
be  captured  using  medical  images  at  both  genetic  and
cellular levels (9). Radiomics, the extraction and analysis of
quantitative imaging features, enables imaging phenotypes
to be correlated with genetic information, which is of great
significance  for  diagnosis,  choosing  individualized
treatment  strategies,  and  predicting  the  prognosis  of
tumors (9-13).

Recent  studies  have  tried  to  use  imaging  features  to
assess their associations with the HER2-positive subtype of
breast cancer. Although breast radiomics features derived
from  magnetic  resonance  imaging  (MRI)  (14-16)  and
mammography (MG) (17) are reportedly associated with
the HER2-positive subtype, other studies have failed to
find a correlation between HER2 status and the features
extracted  from  MRI  (18)  and  positron  emission
tomography/computed  tomography  (PET/CT)  (19).
Accordingly, the current research is still insufficient due to
the  conflicting  relevance;  thus,  further  exploration  is
required. Multidetector computed tomography (MDCT)
also plays an important role in the clinical practice of breast
cancer (20), and the 2019 National Comprehensive Cancer

Network (NCCN) guidelines of Breast Cancer (version 3.
2019)  recommend  chest  contrast  CT  examination  for
patients  with  breast  cancer  if  pulmonary  symptoms are
present. Moreover, many patients with breast cancer would
undergo MDCT for other reasons as well (e.g., chest pain).
The  radiomics  features  within  MDCT  images  may  be
correlated with the HER2 status in breast cancer, which
could provide supplementary assistance with non-invasive
imaging evaluation.

Furthermore, conventional radiomics studies generally
extracted  handcrafted  features,  which  quantify  tumor
shape, intensity, and texture information based on imaging.
However,  low-order  handcrafted  features  may  be
inadequate as they reveal information about medical images
from limited aspects; therefore, the tumor heterogeneity
may not be fully characterized.  Recently,  with develop-
ments  in  image  recognition  and  analysis  tools,  deep
learning  has  drawn  increased  interest.  Deep  learning
technology,  especially  convolutional  neural  network
(CNN), is an artificial intelligence algorithm that learns on
its own to extract the most predictive features directly from
pixel images (21) and has shown remarkable classification
and  recognition  performances  in  image  analysis  (22).
Compared to handcrafted features, deep features reflect
information in medical images from a different perspective
and  may  add  further  predictive  value  to  HER2  status
prediction (23).

To  the  best  of  our  knowledge,  no  studies  have
investigated  the  correlations  between  the  radiomics
features of  MDCT images and HER2 status in patients
with breast cancer. Therefore, the purpose of this study was
to examine if  the combination of handcrafted radiomics
features and deep learning features based on preoperative
MDCT images could evaluate the HER2 status of breast
cancer  and  thus  provide  complementary  aid  for  the
radiological  evaluation of  HER2 status  in patients  with
breast cancer.

Materials and methods

Patient population

This  retrospective  study  was  approved  by  the  Medical
Ethics  Committee  of  Guangdong  Provincial  People’s
Hospital, Guangdong Academy of Medical Sciences, and
the requirement for  informed consent was waived.  The
inclusion  criteria  were  as  follows:  1)  patients  who
underwent  preoperative  contrast-enhanced  MDCT
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between January 2016 and December 2018 with visible
breast  cancer  on  the  images;  2)  histopathological
verification of primary invasive breast cancer with surgical
resection;  and 3)  HER2 expression status  confirmed by
immunohistochemistry  (IHC)  and  fluorescent  in  situ
hybridization (FISH) tests of the surgical specimen. The
exclusion  criteria  were  as  follows:  1)  patients  with
incomplete clinicopathologic data; 2) patients who were
treated with neoadjuvant chemotherapy before surgery; or
3) equivocal HER2 status determined by IHC and FISH
tests.  The patient recruitment flowchart is  presented in
Supplementary Figure S1.

In total, 339 female patients who met the criteria were
included in this study. Of these, 27 patients had multi-focal
or multi-centric lesions, and only the largest tumor lesion
of  each  patient  was  used  for  analysis.  Finally,  the  339
patients were randomly divided into the primary cohort
(n=177; age, 50.53±10.49 years old; range, 27−78 years) and
the independent validation cohort (n=162; age, 51.88±8.71
years  old;  range,  35−73  years).  The  baseline  clinical
information, including age and tumor location, of recruited
patients was collected from the institution archives.

Assessment of HER2 status

The HER2 status of all breast cancer patients included in
this study was detected using the surgical specimen without

neoadjuvant chemotherapy, and determined using IHC or
FISH  te s t s  a ccord ing  to  the  2013  gu ide l ine
recommendations  of  the  American  Society  of  Clinical
Oncology and College of American Pathologists. The IHC
staining intensity of HER2 was graded as 0, 1+, 2+, or 3+.
Grades 0 and 1+ were defined as negative, whereas grade
3+ was considered positive. Grade 2+ was equivocal and was
further confirmed using FISH, which considered a HER2
gene  copy  number  ≥6  or  a  HER2/chromosome
enumeration probe 17 (CEP17) ratio ≥2.0 as confirmation
of HER2 protein overexpression (24).

Radiomics model workflow

The workflow of radiomics features modelling is illustrated
in  Figure  1  and  includes  tumor  segmentation  and  the
resized  process;  handcrafted  features  and deep features
extraction; feature selection; and radiomics signatures and
model construction.

MDCT image acquisition and segmentation

Preoperatively, all patients underwent contrast-enhanced
chest CT scans, which was performed at different MDCT
facilities  at  Guangdong  Provincial  People’s  Hospital
between  January  2016  and  December  2018.  A  more
detailed  description  regarding  image  acquisition  and
segmentation is provided in Supplementary materials.

 

Figure 1 Flowcharts of radiomics features modelling process. The handcrafted radiomics features were extracted from the manually
segmented region of interest. A rectangle containing maximum cross-sectional tumor area was cropped and resized to a fixed size. Deep
features were extracted from a generated RGB image after inputting into pre-trained convolutional neural network model. Then both deep
and handcrafted features were performed feature selection for radiomics signatures and model building. CT, computed tomography; CNN,
convolutional neural network.
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Feature extraction

Handcrafted feature extraction

In  this  study,  four  categories  of  handcrafted  radiomics
features were extracted for analysis: 1) first-order statistics
features;  2)  size-  and  shape-based  features;  3)  texture
features;  and  4)  filter  features.  The  extraction  of
handcrafted  features  is  described  in  detail  in  the
Supplementary materials. Handcrafted feature generation
was  performed  via  a  toolbox  developed  in-house  using
MATLAB 2016b (Mathworks, Natick, MA, USA).

Deep feature extraction

Since  medical  images  typically  have  a  limited  dataset
compared  to  natural  image  sets,  causing  difficulties  in
training CNN models from scratch, the transfer learning
has been proposed to overcome this  shortage.  Transfer
learning is an approach which uses pre-trained models from
images of other domains and makes them useful for new
datasets  (25).  Currently,  transfer  learning  is  widely
implemented in the area of medical deep learning and may
alleviate the limitation of small datasets (26).

In this study, transfer learning was performed to extract
deep  features  from  two-dimensional  MDCT  images.
Convolutional neural networks fast (CNN-F) (27), as the
CNN  model  used  in  our  study,  consisted  of  five
convolutional layers and three fully connected layers, and
was  pre-trained  using  the  ILSVRC-2012  dataset.  The
hyperparameters of the pre-trained model were the same as
those  used  by  Krizhevsky  (28)  and  are  presented  in
Supplementary materials.

For  each  patient,  the  section  containing  the  largest
tumor area was selected as the input into the CNN-F. The
pre-trained model  required three-channel  input  images
(RGB-coded  images);  however,  the  medical  images  in
DICOM  format  were  single-channel  gray  images.
Therefore, we first selected and manually segmented the
largest  tumor area section and cropped the tumor area.
Then, the gray values of the segmented region of interest
(ROI) were converted into the range (0, 255) using linear
transformation  (29)  and  each  image  was  rescaled  to
224×224 pixels  using bicubic  interpolation.  Next,  three
rescaled images were used as the R, G and B channels and
stacked into a three-channel image (224×224×3), which met
the requirement of the pre-trained CNN-F model input.
Finally,  the  deep  features  were  calculated  by  forward
propagation, and the features of the fully connected layer
prior to last fully connected layer were extracted as deep

features for subsequent analysis.
The  entire  deep  feature  extraction  process  was

performed  based  on  a  MATLAB  toolbox  cal led
MatConvNet (Version 1.0-beta25; http://www.vlfeat.org/
matconvnet/).

Feature selection

To construct effective and robust radiomic signatures, a
coarse to fine strategy was employed for feature selection.
Firstly,  depending on the different combinations of  the
independent segmentation of 100 patients, intra- and inter-
class correlation coefficients (ICCs) were used to determine
the robust features. Features with ICC values >0.75 were
classified as robust features for further analysis. Secondly,
univariate  analysis  (the  Mann-Whitney  U  test)  was
performed  to  compare  the  robust  radiomics  features
between HER2-positive and HER2-negative groups. All
features were sorted in ascending order in terms of P values
generated from the univariate analysis; of the features, the
top  20%  were  selected.  Thirdly,  the  support  vector
machine with recursive feature elimination (SVM-RFE)
algorithm was used for further feature selection (30). SVM-
RFE is an efficient feature selection algorithm which ranks
the features according to the weight of features based on
support  vectors.  Finally,  the  number  of  key  features
selected for building a radiomics signature was determined
by the C-index value using 10-fold cross-validation. This
procedure was implemented on both handcrafted feature
and deep feature selections in the primary cohort.

Radiomics signature construction

Using  the  selected  key  handcrafted  features  and  deep
features, the handcrafted- and deep-radiomics signatures
for predicting HER2 status were respectively developed
using multivariate logistic regression in the primary cohort.
We calculated the handcrafted radiomics  score  (HRad-
score)  and deep radiomics  score  (DRad-score)  for  each
patient with a linear combination of the selected features
which  were  respectively  weighted  by  their  normalized
coefficients. The signatures trained on the primary cohort
were  applied  to  the  validation  cohort  for  testing  in
independent cases.

Prediction model development

Multivariate logistic regression was used to select clinical
predictive factors (i.e., age, tumor location) for developing
the prediction model in the primary cohort. Handcrafted-
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and deep-radiomics signatures were applied to develop a
prediction model in the primary cohort.

Statistical analysis

The differences in clinical characteristics and radiomics
scores  between the HER2-positive  and HER2-negative
patients in both the primary and validation cohorts were
assessed. The two-sided Mann-Whitney U test was used
for continuous variables (i.e., age, Rad-score) and the Chi-
square test for categorical variables (i.e., tumor location).
The differences  in  predictive  performance between the
combined model and the radiomics signatures were tested
using the Delong test. Statistical analysis in this study was
performed with R software (Version 3.5.2; http://www.R-
project.org). The R packages that were used in this study
are listed in the Supplementary materials.  P-values <0.05
were considered to be statistically significant.

Evaluation of signatures and model performance

To evaluate the radiomics signatures and prediction model
performance  in  this  study,  we  measured  the  overall
performance,  discrimination,  calibration  and  clinical
usefulness of the model in the primary cohort and then
validated it in the validation cohort (31).

Overall performance

Brier  score  (32)  was  calculated  to  assess  the  overall
performance of the radiomics signatures and the prediction
model.  The  Brier  score  provided  a  measure  of  the
agreement  between  the  observed  binary  outcome  (i.e.,
HER2  positive  vs.  HER2  negative)  and  the  predicted
probability of that outcome. The Brier score for a model
can range from 0 (perfect model) to 0.25 (non-information
model). Generally, a lower Brier score implies better model
calibration and discrimination.

Discrimination

The C-index was used to measure the discriminative ability
of  the  radiomics  signatures  and  prediction  model.  It  is
equal to the area under the receiver operating characteristic
(ROC) curve and varies from 0.5 (no apparent accuracy) to
1.0 (perfect accuracy) (33).

Calibration

Calibration was used to describe the consistency between
the actual outcomes and the predictions. The calibration
curve  was  graphically  presented  as  an  assessment  of

calibration, with predictions on the x-axis and the actual
outcome on the y-axis. Perfect predictions should be on the
45-degree line. The Hosmer-Lemeshow test was applied to
assess the goodness-of-fit of the model, and a high P-value
(>0.05) is considered to be reasonable calibration.

Clinical usefulness

To evaluate the clinical utility of the combined model, the
decision curve analysis was applied (34). In this study the
standardized net benefit (sNB), which ranges from 0 to 1,
was used as a function of the risk threshold in the decision
curve with visualization. The clinical impact plot was used
to visually show the estimated number of patients that had
been deemed as high risk for each risk threshold and the
true positive cases. An ROC components plot was used to
show  the  constituents  of  sNB  (i.e.,  the  true  and  false
positive rates) (34).

Results

Patients’ clinical characteristics

There was no significant difference in the HER2 status
between  the  primary  and  validation  cohorts  (P=0.893).
There  were  also  no  significant  differences  in  clinical
characteristics between the two cohorts (P=0.198−0.893).

The differences in clinical characteristics between the
HER2-positive  and HER2-negative  groups  in  both the
primary and validation cohorts are shown in Table 1. No
significant differences were found in clinical characteristics
(age and tumor location) between the HER2-positive and
HER2-negative patients in either cohort (P=0.065−0.883).

Feature selection and radiomics signature construction

In total, 5,013 handcrafted and 4,096 deep features were
extracted from the ROIs of  patients  with breast  cancer.
After feature selection, 7 handcrafted and 7 deep features
with preferable predictive value were finally selected in the
primary  cohort  to  construct  the  handcrafted  and  deep
radiomics  signatures,  respectively.  The  handcrafted
radiomics (HRad)- and deep radiomics (DRad)-scores of
each patient were calculated using the formula constructed
by  the  respective  selected  features  (Supplementary
materials).

Evaluation of handcrafted and deep radiomics signatures

The  handcrafted  radiomics  signature  demonstrated
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discriminative  ability  with  a  C-index  of  0.739  [95%
confidence interval (95% CI): 0.661−0.818] in the primary
cohort and 0.695 (95% CI: 0.609−0.781) in the validation
cohort.  The  deep  radiomics  signature  demonstrated
discriminative ability  with a  C-index of  0.760 (95% CI:
0.690−0.831) in the primary cohort and 0.777 (95% CI:
0.696−0.857) in the validation cohort. The Brier scores,
Hosmer-Lemeshow  test  results,  and  sNBs  of  the
handcrafted  radiomics  signature  and  deep  radiomics
signatures are shown in Table 2.

Performance of combined model

No significant clinical predictors of HER2 status in breast
cancer  were  found  using  logistic  regression  analysis,
whereas  the handcrafted and deep radiomics  signatures
were identified as  independent predictors.  Therefore,  a
combination  of  the  handcrafted  and  deep  radiomics
signatures was used to form the prediction model in this

study.
The combined model showed better performance for the

prediction of HER2 status in breast cancer than either of
the two radiomics signatures in both cohorts (Table 2). The
overall performance of the combined model was improved;
the Brier scores decreased from 0.220 and 0.231 to 0.211.
The combined model showed good discriminative ability,
achieving a C-index of 0.829 (95% CI: 0.767−0.890) in the
primary cohort and 0.809 (95% CI: 0.740−0.879) in the
validation cohort.

The calibration curve of  the combined model for the
prediction of HER2 status demonstrated good agreement
between the predicted and observed outcomes in both the
primary and validation cohorts (Figure 2). The Hosmer-
Lemeshow  test  was  non-significant  in  the  primary
(P=0.887)  and  validation  cohorts  (P=0.528),  indicating
goodness of fitness.

The  decision  curve  analysis  for  the  two  radiomics

Table 1 Characteristics of patients in primary and validation cohort

Characteristics
Primary cohort Validation cohort

HER2-negative
(n=117)

HER2-positive
(n=60) P HER2-negative

(n=105)
HER2-positive

(n=57) P

Age ( ) (year) 50.63±9.98 50.33±11.48 0.864 52.64±9.17 50.47±7.68   0.113
Tumor location (%) 0.065   0.883

　Upper inner quadrant 42 (23.7) 14 (7.9) 31 (19.1) 20 (12.3)

　Lower inner quadrant 6 (3.4)   9 (5.1) 12 (7.4)   7 (4.3)

　Lower outer quadrant 14 (7.9)   10 (5.6) 21 (13.0) 10 (6.2)  

　Upper outer quadrant 55 (31.1)   27 (15.3) 41 (25.3) 20 (12.3)

HRad-score, median (IQR) −1.035
(−1.375, −0.590)

−0.322
(−0.791, 0.095) <0.001 −1.083

(−1.500, −0.581)
−0.541

(−0.936, 0.0418) <0.001

DRad-score, median (IQR) −1.012
(−2.041, −0.363)

−0.143
(−0.691, 0.288) <0.001 −1.308

(−2.056, −0.786)
−0.278

(−0.777, 0.216) <0.001

HER2, human epidermal growth factor receptor 2; HRad-score, handcrafted radiomics score; DRad-score, deep radiomics score;
IQR, interquartile range; P value is calculated from the univariable association analyses between each of the clinicopathological
variables and HER2 status.

Table 2 Performance of two radiomics signatures and combined model

Performance Measure
Primary cohort Validation cohort

Handcrafted
signature

Deep
signature

Combined
model

Handcrafted
signature

Deep
signature

Combined
model

Overall Brier score 0.191 0.182 0.159 0.220 0.231 0.211

Discrimination C-index
(95% CI)

0.739
(0.661−0.818)

0.760
(0.690−0.831)

0.829
(0.767−0.890)

0.695
(0.609−0.781)

0.777
(0.696−0.857)

0.809
(0.740−0.879)

Calibration H-L test (P) 0.674 0.294 0.887 0.416 0.161 0.528

Clinical
usefulness (T50%) sNB 0.100 0.150 0.333 0.070 0.263 0.360

95% CI, 95% confidence interval; H-L test, Hosmer-Lemeshow test; sNB, standardized net benefit.
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signatures  and  the  combined  model  in  both  cohorts  is
presented in Figure 3A,B. The decision curve analysis plot
showed that the combined model outperformed the two
radiomics signatures in the range of thresholds from 0.2 to
0.8.  The  clinical  impact  plot  showed  that,  if  a  0.5  risk
threshold was used, the number of cases identified as high
risk of expressing HER2-positive was close to the number
of true HER2-positive cases (Figure 3C,D). Finally, the true
and false positive rates were displayed as functions of the
risk threshold in the ROC components plot (Figure 3E,F).

Discussion

In this study, we explored the potential association between
the HER2 status of breast cancer and radiomics features
extracted  from  MDCT  images.  The  combined  model,
which incorporated both handcrafted and deep radiomics
features, showed a good performance in evaluating HER2
status;  thus,  the  combined  model  may  be  useful  as  a
complementary aid in the radiological evaluation of breast
cancer.

HER2-positive  status  has  been  shown  to  be  a  poor
prognostic  indicator  for  breast  cancer,  which  also
simultaneously means significant benefits from anti-HER2
targeted therapies (7). Accurately correlating radiological
features  with  the  HER2  status  in  the  radiological
evaluation  of  patients  with  breast  cancer  is  important.
Although MDCT is not the primary radiological method
for  breast  cancer  evaluation,  at  Guangdong  Provincial
People’s  Hospital,  most  patients  with  breast  cancer

undergo routine MDCT scans for staging before surgery
or neoadjuvant chemotherapy. MDCT is also used for the
follow-up of patients with advanced breast cancer. MDCT
is advantageous as it has a fast scan time and is capable of
multi-planar reconstruction; further, it can be performed
when patient are in the supine position (35).  It  can also
simultaneously evaluate the extension of lesions, as well as
region  lymph  nodes,  the  skin,  chest  wall  and  distant
metastasis (20).

A previous study by Tamaki et  al.  found that MDCT
features (tumor shape, enhancement pattern and density)
are distinct among breast cancer subtypes (36). In recent
years,  radiomics has appeared as  an emerging field that
converts medical imaging into quantitative features, which
may improve clinical diagnosis, prognosis and prediction,
especially  in  oncology (12,37).  In  view of  the  ability  of
radiomics to noninvasively decode tumor heterogeneity,
current  studies  of  other  tumors  have shown a  potential
correlation  between  tumor  genotype  and  CT-based
radiomics  characteristics  (11,38,39).  In  this  study,  we
examined if  radiomics features based on MDCT images
reflect HER2 status in patients with breast cancer.

Many  previous  studies  have  tried  to  investigate  the
relationship between image characteristics and the HER2-
enriched subtype in breast cancer; the most commonly used
imaging technique was MRI (14,15), followed by MG (17)
and PET/CT (19). Chang et al.  have demonstrated that
breast MRI features that quantify the tumor heterogeneity
could be used to indicate HER2 status with an area under
the curve (AUC) of 0.8458 (16). Although the AUC was

 

Figure 2 Calibration curve of combined model in primary cohort (A) and validation cohort (B). The y-axis represents the actual human
epidermal growth factor receptor 2 (HER2)-positive outcome and the x-axis represents the predicted HER2-positive risk. The dotted line
represents a perfect prediction. The red solid line represents the predictive performance of the combined model. Perfect prediction should
be on the 45° line.
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Figure 3 Evaluation of clinical usefulness. (A,B) Decision curves for the combined model and two radiomics signatures of primary cohort
(A) and validation cohort (B). The vertical axis represents standardized net benefit. The two horizontal axes show the correspondence
between the risk threshold and the cost-benefit ratio; (C,D) Clinical impact curve for combined model of primary cohort (C) and validation
cohort (D). Of 1,000 patients, the solid yellow line represents the number of patients who would be considered high-risk human epidermal
growth factor receptor 2 (HER2)-positive for each risk threshold by the combined model. The solid green line indicates the true positive
cases with HER2-positive; (E,F) Receiver operating characteristic (ROC) component curve of the combined model for primary cohort (E)
and validation cohort (F). The figure shows information similar to that of a ROC curve and also shows the true positive rate (solid red line)
and false positive rate (dotted green line) in each risk threshold.
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higher  than  that  of  our  study,  it  lacked  independent
validation.  Moreover,  other  studies  have  found  no
correlation between the HER2 status and imaging features
extracted  from  MRI  (18)  and  PET/CT  (19).  As  for
mammographic  features  (including  tumor  size,  non-
spiculated mass, and calcification) in the study of Nie et al.
(40) and MG-based quantitative radiomics features from
study of Ma et al. (17) and Zhou et al. (41), above studies
reported good performances in differentiating the HER2-
enriched  subtype,  with  AUCs  of  0.75,  0.78  and  0.787,
respectively. The above predictive performances were both
slightly  poorer  than the C-index (which is  equal  to  the
AUC)  of  our  study  in  the  validation  cohort  (C-index:
0.809).  Additionally,  compared with the generally small
HER2-positive dataset  in most of  the above-mentioned
studies,  our  study enrolled 117 HER2-positive  patients
(117/339) with surgical pathology for analysis. Therefore,
the performance of MDCT radiomics features provides a
complementary aid for the radiological evaluation of HER2
status in breast cancer.

In recent years, the integration of multiple markers into
one  model  has  been  shown to  be  advantageous  for  the
individualized management of patients and has also been
shown to outperform the use of individual markers (12,42).
To improve the performance of imaging features in our
study, we extracted and incorporated handcrafted and deep
radiomics features into the predictive model. CNNs are
deep learning models which learn increasingly higher level
features from input images through a series of successive
linear  and  nonlinear  layers  (21,43).  Compared  to
conventional handcrafted radiomics features, high-order
deep  radiomics  features  could  provide  further
supplementary information to elevate the performance of
the  model  (44,45).  In  this  study,  the  model  that
incorporated  both  handcrafted  and  deep  radiomics
signatures  outperformed  the  individual  radiomics
signatures  in  HER2  status  evaluation,  with  a  good
discriminative  ability  (C-index=0.829  in  the  primary
cohort; C-index=0.809 in the validation cohort).

As a preliminary study, this study had some limitations.
First, we examined a relatively small dataset from a single
institution.  Second,  we  only  used  two-dimensional
radiomics features of the largest slice for analysis. Third,
MDCT  is  only  a  single  radiological  method;  further
combinations  with  radiomics  findings  from  multiple
radiological methods including MR and MG are expected

to improve the radiological evaluation for HER2 status.

Conclusions

This study indicated that handcrafted and deep radiomics
features extracted from MDCT images are associated with
HER2  status  in  breast  cancer  and  may  provide
complementary, noninvasive assistance in the radiological
evaluation  of  the  HER2  status  in  patients  with  breast
cancer.
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Figure S1 Patient recruitment flowchart. MDCT, multidetector computed tomography; IHC, immunohistochemistry; FISH, fluorescent
in situ hybridization; HER2, human epidermal growth factor receptor 2; NAC, neoadjuvant chemotherapy.
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 Supplementary materials

Image acquisition and segmentation

Acquisition parameters of multidetector computed tomography (MDCT) scanners were listed in Supplementary Table S1.
After all CT images of each patient were retrieved from the picture archiving and communication system (Carestream,
Canada) in Guangdong Provincial People’s Hospital, we chose arterial phase for image segmentation and analysis, because
this is the phase when the enhancement of tumor lesion showed favorable distinction from adjacent normal glandular tissues.

For handcrafted and deep features extraction, tumor region of interest (ROI) was segmented in the largest cross-sectional
area of the CT image using the free open source software ITK-SNAP (Version 3.6.0, http://www.itksnap.org). All ROIs were
manually delineated along the tumor outline with exclusion of the air and necrosis area that caused by biopsy. To evaluate the
inter-observer and intra-observer reproducibility of the feature extraction, 100 cases were randomly selected for ROI
segmentation and feature extraction. The ROI segmentation was performed by two radiologists, Reader 1 and Reader 2, with
8 and 10 years of chest CT interpretation experience, respectively. Reader 1 then repeated the process one month later.
Intra- and inter-class correlation coefficients (ICCs) were applied for the evaluation of the intra- and inter- observer
agreement of feature extraction. The remaining image segmentation was performed by Reader 1 who was blinded to the
patient’s clinicopathological information.

Handcrafted feature extraction

In view of CT images were collected from different CT scanners, we standardized the images to minimize bias and achieve
predictive consistency. The ROIs of segmented images were resampled to 1 mm × 1 mm pixels before feature extraction by
using bicubic interpolation.

All handcrafted radiomics features were divided into four groups: first order statistics (n=14), size and shape (n=8), textures
(n=63), filter features [n=(63+14) ×4×15=4,620]. The process and the radiomics features selected were described in detail
below.

Size- and shape-based features

Size- and shape-based features mainly reflects the morphological features of the tumor.

First-order statistics features

First-order statistics features were mainly used to describe the distribution of pixel intensities in CT images.

Texture features

Texture features mainly describe the spatial relationship between pixels. In this study, gray level co-occurrence matrix

Table S1 CT scanning parameters for patients

Scanner
Patients

No.
Tube

voltage (kV)

Tube
current
(mAs)

Rotation
time (s)

Detector
collimation

(mm)

Field of
view (mm)

Matrix
Reconstruction

section
thickness (mm)

Acquisition time (s)

Pulmonary
arterial
phase

Arterial
phase

Philips Ingenuity 64-slice CT
(Philips Healthcare,
Cleveland, Ohio, USA)

  89 120 150 0.5 64×0.625 350×350 512×512 1 18 35

256-slice Brilliance iCT
(Philips Healthcare,
Cleveland, Ohio, USA)

  93 120 150 0.5 128×0.625 350×350 512×512 1 18 35

64-slice LightSpeed VCT (GE
Medical systems, Milwaukee,
WI, USA)

157 120 150 0.4 64×0.625 350×350 512×512 1.25 18 35

CT, computed tomography; Acquisition time is the time after 80−100 mL of iodinated contrast material (Ultravist 370, Bayer Schering
Pharma, Berlin, Germany) was injected into vein at a rate of 4 mL/s with a pump injector (Ulrich CT Plus 150, Ulrich Medical, Ulm, Germany).
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(GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM.), gray level dependence matrix
(GLDM), and neighborhood gray tone difference matrix (NGTDM) were used to describe the feature of images.

Filter features

r2GLaplacian of Gaussian filter: A Laplacian of Gaussian spatial band-pass filter ( ) was utilized to extract image features
through adopting different filter parameter σ. The Laplacian of Gaussian filter distribution shows the follow:

r2G (x ; y) = ¡ 1
¼¾4

µ
1¡ x 2 + y2

2¾2

¶
exp
µ
¡ x 2 + y2

2¾2

¶
Where x, y refers to space coordinates of the pixels, and σ in (1.0, 1.5, 2.0, 2.5).

Wavelet filter: Wavelet features were extracted from decomposed images by different wavelet. Different functions (high-
pass or low-pass, represented by H or L) on different scale (X, Y) were represented by a number from 1 to 4 (LL, LH, HL,
HH). The following wavelets were used: rbio4.4, rbio3.3, rbio2.6, rbio1.5, bior6.8, bior3.7, bior2.8, bior2.4, bior1.3, coif5,
coif2, sym8, sym2, db8, db4.

Deep learning feature extraction

In this study, transfer learning was performed to overcome the challenge of the limited amount of data for deep learning.
Convolutional neural network (CNN)-F, as the CNN model used in our study, consists of five convolutional layers and three
fully connected layers and is pre-trained on the ILSVRC-2012 dataset. The hyper-parameter of the model is the same as that
used by Krizhevsky: weight decay 5 × 10−4,  momentum 0.9, initial learning rate 10−2.  When the validation error stops
reducing, the initial rate drops to 0.1.

Vi 2 [1; 4096]
A total of 4,096 features was extracted from the last fully-connected layer. These features have a very abstract meaning, and

we use a special nomenclature to name them as .

Statistical analysis

The following R packages were used in the study:
Caret: for feature selection
rms: logistic model building, nomograms, calibration plots, VIF
rmda: decision curve analysis, clinical impact plot
ResourceSelection: Hosmer-Lemeshow goodness of fit test

Calculation of radiomics score

Handcrafted radiomics signature

After feature selection produce, 7 handcrafted features were selected. A handcrafted radiomics signature was constructed with
7 handcrafted features by using the logistic  regression model.  The handcrafted radiomics score for each patient  was
computed by follow formula (the P value of coefficients and abbreviation description of 7 handcrafted radiomics features
were show in Supplementary Table S2):

ScoreHandcraf ted radiom ics
1

1+ exp (¡®X )
=  where

αX=0.654  +  8.037*  bior2.8_LH_GLSZM_SALGLE  +  1.502*  bior3.7_LL_  GLCM_energy–0.006*  bior6.8_
HL_GLRLM_LRHGLE  –  12.186*  coif5_LL_GLCM_energy  –  15.893*  db8_HL_GLSZM_SALGLE  –  0.905*
LoG_1.5_GLCM_correlation – 2.47* LoG_1.0_ GLSZM_SALGLE

Deep radiomics signature

Same as the handcrafted radiomics signature, the deep radiomics score was obtained as follow (the P value of coefficients of 7
deep radiomics features were shown in Supplementary Table S3):
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ScoreDeep radiom ics
1

1+ exp (¡®X )
=  where

αX= 2.798 + 2.311*V40 + 2.531*V60 – 1.198*V1136 – 2.239*V1653 – 2.256*V1781 – 7.434*V2847 – 1.538*V4027

Table  S2 P  value  of  coefficients  in  handcrafted  radiomics
signature

Features Coefficient P

bior2.8_LH_GLSZM_SALGLE   8.037 0.0430

bior3.7_LL_ GLCM_energy   1.502 0.0009

bior6.8_HL_GLRLM_LRHGLE −0.006 0.0130

coif5_LL_GLCM_energy −12.186 0.0490

db8_HL_GLSZM_SALGLE −15.893 0.0110

LoG_1.5_GLCM_correlation −0.905 0.0440

LoG_1.0_ GLSZM_SALGLE −2.470 0.0140

GLSZM, gray level size zone matrix; SALGLE, small area low
gray level emphasis; GLCM, gray level co-occurrence matrix;
GLRLM, gray level run length matrix; LRHGLE, long run high
gray level emphasis; LoG, laplacian of gaussian.

Table S3 P value of coefficients in deep radiomics signature

Features Coefficient P

V40   2.311 0.0070

V60   2.531 0.0470

V1136 −1.198 0.0320

V1653 −2.239 0.0270

V1781 −2.256 0.0006

V2847 −7.434 0.0020

V4027 −1.538 0.0050
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