Skip to main content
. 2020 Apr 20;20(8):2338. doi: 10.3390/s20082338

Table 10.

Performance comparison with related works.

Author Data Size Calibration Model Input SBP (mmHg) DBP (mmHg)
Inputs Signal Error Error
Chan et al. [14] Unspecified Cal-based Linear
regression
Feature
(PTT)
ECG
PPG
ME: 7.49
STD: 8.82
ME: 4.08
STD: 5.62
Kachuee
et al. [15]
1000 subjects
10 min
(MIMIC 3)
Cal-based AdaBoost Features ECG
PPG
MAE: 8.21
STD: 5.45
MAE: 4.31
STD: 3.52
Cal-free MAE: 11.17
STD: 10.09
MAE: 5.35
STD: 6.14
Kurylyak
et al. [17]
15,000
heartbeats
Cal-based Deep
learning
(ANN)
Features PPG ME: 3.80
STD: 3.46
ME: 2.21
STD: 2.09
Lee et al. [13] 30 subjects Cal-based Deep
learning
(ANN)
Feature
(IPD)
BCG ME: 0.01
STD: 6.75
ME: 0.05
STD: 5.83
Slapnivcar
et al. [19]
510 subjects
700 h
(MIMIC 3)
Cal-based Deep
learning
(ResNet)
Raw PPG MAE: 9.43 MAE: 6.88
Cal-free MAE: 15.41 MAE: 12.38
Su et al. [16] 84 subjects
10 min
Cal-based Deep
learning
(RNN)
Features ECG
PPG
RMSE: 3.73 RMSE: 2.43
Tanveer
et al. [20]
39 subjects
(MIMIC 1)
Cal-based Deep
learning
(ANN+
LSTM)
Raw ECG
PPG
RMSE: 1.27
MAE: 0.93
RMSE: 0.73
MAE: 0.52
Wang et al. [18] 58,795
intervals
of PPG
(MIMIC 1)
Cal-based Deep
learning
(ANN)
Features PPG MAE: 4.02
STD: 2.79
MAE: 2.27
STD: 1.82
This study 15 subjects
30 min
Cal-based Deep
learning
(CNN+
Bi-GRU)
Raw BCG ME: −0.82
STD: 7.50
ME: −0.97
STD: 5.36
ECG
PPG
MAE: 4.46
STD: 4.06
MAE: 3.70
STD: 3.37
Deep
learning
(CNN+
Bi-GRU+
Attention)
ECG
PPG
BCG
MAE: 4.06
STD: 4.04
MAE: 3.33
STD: 3.42