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Abstract

More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since 

the discovery of RAN translation by Zu et al. in 2011, eight expansion disorders have been 

identified as RAN-positive diseases. RAN proteins are translated from different types of 

nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In 

some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we 

review the pathological and molecular aspects associated with RAN protein accumulation for each 

particular disorder, the correlation between disease pathology and the available in vivo models and 

the common aspects shared by some of the newly discovered RAN proteins.

Introduction

More than 40 neurological diseases are caused by microsatellites repeat expansions, 

including Huntington disease (HD), fragile X syndrome (FXS), myotonic dystrophy types 1 

and 2 (DM1, DM2), C9orf72 amyotrophic lateral sclerosis (ALS)/frontotemporal dementia 

(FTD), spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, 8, 10, 12, 17, 31 and 36 and Fuchs 

endothelial corneal dystrophy (FECD)1–4

Microsatellites repeats are tandem stretches of 2–10 nucleotides in the DNA. These repeats, 

which are normally found within the genome, are often polymorphic in length. At some 

genetic loci microsatellite repeats become genetically unstable5,6 and result in disease when 

the sequence length exceeds a certain threshold. This size threshold differs for each repeat- 

harboring gene. In HD, which is caused by a CAG•CTG expansion mutation within the 

huntingtin (HTT) gene, disease causing mutations typically range from 40–70 CAG repeats, 
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whereas individuals with DM1 harbor hundreds to thousand CTG•CAG repeats in the 

DMPK gene7,8.

Disease-causing repeat expansion mutations can be found in exonic, intronic as well as 5’ or 

3’ untranslated regions (UTRs). The location of various expansion mutations within their 

respective genes has been historically used to group specific expansion diseases into one of 

the following mechanistic categories: 1)Protein Gain of function (GOF), exemplified by HD 

and other polyglutamine expansion diseases in which the expansion mutation is contained 

within a ORF and translated into polyGln expanded motifs; 2)RNA GOF, for mutations 

located in the non-coding regions of their corresponding genes. One clear example occurs in 

DM1, where CUG expanded DMPK transcripts accumulate as intranuclear RNA foci and 

sequester RNA binding proteins belonging to the muscleblind-like (MBNL) family, which 

prevents them from performing their function; 3) FXS provides a protein loss of function 

(LOF) example. FXS is caused by expansions of >200 repeats of a CGG located in the 

promoter and 5’-UTR of the FMR1 gene. The expanded CGG region undergoes 

methylation, leading to transcriptional silencing of the FMR1 gene and therefore, the 

absence or loss of function of the FMR1 protein9.

A “Pathological mystery “

Although significant data supports the contribution of the expanded RNA and expanded 

polyglutamine proteins in specific dominantly inherited repeat expansion disorders, the 

molecular mechanisms underlying these diseases is still unclear. Several observations 

suggest a lack of correlation between the pathological findings and the expression of the 

corresponding expanded polyglutamine protein or RNA, suggesting that some pieces of the 

“pathogenic mechanism” puzzle remain to be uncovered.

Some examples come from the CAG/polyGln expansion disorders, from cases in which the 

established causative mutant protein accumulates in brain regions not typically associated 

with neurodegeneration. For example, white matter alterations reported in HD or SCA3 can 

be detected at very early stages of the disease, but these changes appear to occur in the 

absence or with minimal accumulation of Huntingtin or ataxin-3 polyGln aggregates. These 

polyGln aggregates preferentially accumulate inside nuclei of specific types of 

neurons7,10–13. One clear example is the HD cerebellum, where recent reports describe 

white matter alterations7,14,15 that are mainly negative for polyglutamine16, and still haven’t 

been sufficiently explored despite signs of possible cerebellar dysfunction in HD. Another 

example is the accumulation of SCA7 polyGln aggregates in the cerebral cortex17 a brain 

region typically not considered to be a primary site of neuropathology. Additionally, several 

studies propose that soluble or oligomeric polyglutamine proteins are toxic and the 

aggregates themselves may be neuroprotective18. Taken together, these observations suggest 

that in addition to polyGln other molecular factors contribute to disease.

An additional pathological puzzle is illustrated by fragile X tremor ataxia syndrome 

(FXTAS). After the disease was first recognized in elderly men who carry CGG premutation 

alleles in FMR1, large ubiquitin positive inclusions which colocalize with CGG expansion 

RNAs were observed in neurons and astrocytes throughout the brain19–24. While the number 
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of inclusions correlated with the size of the CGG repeat expansion21,22, they did not contain 

the CGG-expanded mutant protein FMRP and in a FXTAs mouse model, the ubiquitin 

aggregates contained a very limited amount of FMR1 mRNA25. These data suggested that 

additional molecular components contribute to these FXTAS inclusions.

Changing perspectives: bidirectional transcription and RAN translation

The additional discovery that bidirectional transcription occurs at the DM126 and SCA827 

loci offered a different view of how expansion mutations could cause disease. For DM1, 

small 21nt RNAs were reported26. For SCA8, CUG and CAG expansion transcripts are 

expressed27,28. Bidirectional transcription is now recognized as common across many 

microsatellite expansion29–31 raising the possibility that sense and antisense transcripts and 

resulting proteins contribute to disease.

The discovery of repeat associated non-AUG (RAN) translation in 201132 added another 

level of complexity to possible molecular mechanisms underlying repeat diseases. Several 

types of microsatellite expansion mutations have been shown to undergo RAN translation. 

Because RAN translation can occur in all three reading frames across both sense and 

antisense expanded transcripts, a cocktail of up to six proteins may result from a single 

mutation. RAN translation was initially reported in SCA8 and DM132 and has become a 

fast-growing field with nine different RAN diseases reported to date. The current list 

includes SCA8 (CTG•CAG expansion), DM1 (CTG•CAG), C9orf72 ALS/FTD 

(GGGGCC•CCCGG), fragile X tremor ataxia syndrome (FXTAS) and fragile X premature 

ovarian insufficiency (FXPOI) (CGG•CCG), HD (CAG•CTG), SCA31 (TGGAA•TTCCA), 

DM2 (CCTG•CAGG) and FECD (CTG•CAG)16,30,32–39. Here we review the pathological 

features of RAN protein accumulation across these diseases.

RAN proteins accumulation and disease pathology

SCA8

Spinocerebellar ataxia type 8 (SCA8) is a dominantly inherited progressive ataxia caused by 

a CTG•CAG expansion in the overlapping ATXN8OS and ATXN8 genes. SCA8 symptoms 

include limb and gait ataxia, dysarthria and nystagmus40. Although SCA8 is generally an 

adult-onset disease, infantile and juvenile forms have been reported41.

The CUG-expanded ATNX8OS transcripts lead to the formation of RNA foci and the 

sequestration of MBNL proteins42. The initial observation of SCA8 CUG expansion 

transcripts43 was followed by the discoveries of a CAG expansion transcript that encodes an 

ATG-initiated polyGln protein27. Later, polyAla32 and polySer33 RAN proteins, expressed 

from ATXN8 CAG expansion transcripts, were found.

The RAN polyAla protein (translated from the GCA frame) was detected in the soma and 

dendrites of Purkinje cells from SCA8 human postmortem tissue and SCA8 BAC mice32. In 

contrast, SCA8 RAN polySer protein (from the AGC frame) accumulates in the cerebellum 

of SCA8 patients and SCA8 transgenic mice33 (Fig. 1). Curiously, the ATG-initiated 

polyGln protein and RAN polySer protein show strikingly different patterns of 
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accumulation, with intranuclear polyGln aggregates appearing primarily in Purkinje cells, 

whereas the RAN polySer accumulates primarily subcortical, and deep white matter regions 

of the cerebellum (Table 1). SCA8 polyGln and polySer aggregates are also detected in the 

frontal cortex, hippocampus and brain stem, in similar regions, but do not colocalize33.

In SCA8 BAC transgenic mice, polySer aggregates increase with age and disease 

progression, initially accumulating in the brainstem at two months of age, which is 

consistent with the early motor defects observed in these mice27,33. In both SCA8 mice and 

human post mortem tissue, SCA8 polySer preferentially accumulates in white matter regions 

that also show signs of axonal breakage and demyelination. In contrast, no signs of axonal 

loss or demyelination were found in brain regions negative for polySer accumulation33.

Taken together, these data support possible roles for polyGln, RAN polyAla and RAN 

polySer proteins in SCA8 pathology. The location of polyGln and RAN polyAla suggest a 

role in Purkinje cell loss32 and the accumulation of RAN polySer in the white matter regions 

suggest its involvement in demyelination32,33,44,45. Additionally, the CUG transcripts form 

RNA foci in Purkinje cells. It is also possible that RAN proteins expressed from CUG 

expansion transcripts will be found in the future and may contribute to disease.

C9orf72 ALS/FTD

C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD) is a 

dominantly inherited disorder caused by a GGGGCC hexanucleotide repeat expansion in the 

first intron of the C9orf72 gene. This mutation is the most common known genetic cause of 

both familial and sporadic ALS and FTD46–48.

C9orf72 ALS, is characterized by the degeneration of upper and lower motor neurons, which 

leads to muscle weakness and paralysis, respiratory failure and death, usually within 2–5 

years49. For FTD, marked neurodegeneration occurs in the frontal and anterior temporal 

lobes, leading to speech difficulties and cognitive and behavioral abnormalities, such as loss 

of empathy, abrupt mood changes, disinhibition and behavioral changes50,51.

The C9orf72 expansion mutation is bidirectional transcribed and both sense (GGGGCC) and 

antisense (GGCCCC) RNA foci accumulate throughout the brain and spinal cord52. The 

expanded transcripts also undergo RAN translation, generating C9-polyGlyPro (GP), C9-

polyGlyArg (GR) and C9-polyGlyAla (GA) RAN proteins from the sense strand; and C9-

polyGlyPro (GP), C9-polyProArg (PR) and C9-polyProAla (PA) proteins from the antisense 

transcript30,31,53.

Although the 2011 discovery of the GGGGCC mutation that connects ALS/FTD with the 

microsatellite repeat disorders is quite recent46,47, there has been an intense research focus 

on understanding the pathogenic mechanisms. Data supporting C9orf72 protein LOF, sense 

and antisense RNA GOF, and RAN protein toxicity are all being hotly pursued. Here we 

focus on the role of C9 RAN proteins in disease.

RAN proteins are found in multiple regions in postmortem CNS tissue, including frontal and 

motor cortex, hippocampus, cerebellum and spinal cord. RAN proteins typically accumulate 

as cytoplasmic or perinuclear cytoplasmic aggregates primarily in neurons. While RAN 
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protein aggregates have been observed in motor neurons, they are relatively rare in these 

ALS vulnerable cells yet abundant in other brain regions that are not typically thought to be 

affected in ALS patients including the cerebellum. These data raise questions about whether 

or not RAN proteins are a primary driver of disease54–57 It is also possible that cells which 

are most vulnerable in C9 ALS/FTD patients, including motor neurons, are highly sensitive 

to RAN proteins and die before aggregates are visible or that cells that had RAN protein 

aggregates had already died, and are no longer detectable in most postmortem cases. RAN 

positive immunostaining shows variable density, with some brain areas showing intense and 

clustered accumulation of C9-RAN proteins, while other regions show a more scattered 

pattern of RAN protein aggregates. C9-RAN protein aggregates colocalize with p62 and are 

TDP-43 negative30,31,34,35,57,58. While TDP43 aggregates do not co-localize with C9 RAN 

proteins, a hallmark feature of C9 and other forms of ALS are cytoplasmic TDP43 

aggregates. A recent Drosophila study links RAN protein accumulation, karyopherin-α 
pathology and TDP-43 accumulation and mislocalization59.

Additional experimental models support a toxic role for individual C9 RAN proteins in the 

absence of RNA GOF effects: PR and GR have been shown to be highly toxic in multiple 

model systems including cultured cells60–65, zebrafish66, Drosophila60,67–73 and mice74, 

where the can affect development, motor performance and cellular function. GA and PA 

proteins have also been reported to be toxic in a variety of in vitro and in vivo 

models66,67,75–79 and GA accumulation have been correlated with neurodegeneration across 

both C9 ALS and FTD pathology80.

The cellular pathways affected by RAN protein overexpression are numerous and include 

ER stress74,76, oxidative stress and DNA damage81, protein translation abnormalities73, 

nuclear transport deficits69,70,82–84 and stress granule formation74. Nevertheless, it is less 

clear if RAN proteins play a major role in disease when expressed at endogenous levels. To 

address this issue, number of BAC transgenic mouse models have been developed using the 

endogenous human promoters85–88. Surprisingly, two of these models showed molecular 

phenotypes including the accumulation of RAN proteins but did not develop phenotypic 

manifestations of the disease. Two models developed molecular and disease phenotypes. The 

Zhu model showed mild behavioral abnormalities and subtle neuronal loss in the 

hippocampus. The Liu et al., model developed classic features of ALS and FTD including 

weight loss, paralysis, motor neuron loss, cortical and hippocampal degeneration, muscle 

denervation, anxiety-like behavior and decrease survival. RAN protein aggregates are found 

in regions showing neurodegeneration and increase with disease onset and phenotype.

FXTAS and FXPOI

Fragile X tremor ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder 

caused by a 55–200 long CGG repeat in the 5’UTR of the FMR1 gene on the X 

chromosome. The disease primarily affects older men who develop progressively worsening 

tremor, gait ataxia, parkinsonism and dementia20,89–92. A pathological hallmark of FXTAS 

is the accumulation of eosinophilic nuclear inclusions that are ubiquitin positive in both 

neurons and astrocytes21,22. In contrast to Fragile X syndrome patients (FXS), in which 

expansion mutation (>200 repeats) shut down gene expression, FMR1 transcript levels are 
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2–8 times higher in FXTAS patients than in control individuals93,94. FXTAS CGG-

expansion transcripts RNAs form foci that have been reported to sequester RBPs including 

Purα95 hnRNP A2/B196 and Sam6897 causing splicing deficits in FXTAS brain samples and 

neurodegeneration in Drosophila models96–98

FMR1 CGG expansion RNAs undergo RAN translation in a length-dependent manner, 

producing polyGly and polyAla proteins in the GGC and GCG reading frames, 

respectively36. PolyGly accumulation was detected in FXTAS fly and mouse models, and in 

the frontal cortex, cerebellum and hippocampus of postmortem FXTAS brains36. 

Homopolymeric RAN proteins are also expressed from antisense CCG expansion RNAs. 

The accumulation of antisense polypro (CCG), polyArg (CGC) and polyAla (GCC) have 

been detected in cell culture99. PolyPro accumulates in hippocampus, cortex, midbrain and 

pons while polyAla is detected in hippocampus, cortex, and midbrain99 (Fig. 1, Table 1).

Interestingly, polyGly, polyPro and polyAla RAN proteins all preferentially accumulate as 

neuronal perinuclear or intranuclear inclusions, which are also ubiquitin positive, a 

previously established pathological marker of FXTAs21,22,100, suggesting that RAN proteins 

contribute to disease. Further evidence supporting a role for polyGly in disease comes from 

a mouse model study. Sellier et al., compared FXTAS mice with or without a close cognate 

initiation codon required for polyGly expression101. The first model, expressing both CGG-

expanded RNA and polyGly aggregates showed brain inflammation, Purkinje cell loss, 

motor impairment and decreased survival. In contrast, no significant pathology was observed 

in mice expressing CGG expansion transcripts in the absence of polyGly protein. The 

expression of the FMR1 polyGly protein also causes death in neuronal cell cultures101. The 

polyGly repeat motif was shown to be necessary for protein aggregation and the C-terminal 

region is required to drive cell toxicity, possibly through interactions with LAP2b and 

disruptions in nuclear lamina101.

Fragile X premature ovarian insufficiency (FXPOI), like FXTAS, is caused by expansions of 

55–200 CGGs in the 5’UTR of the FMR1 gene. FXPOI causes early (≤40 years old) ovarian 

dysfunction in women carrying the repeat expansion, who are also at risk of developing 

FXTAS later in life89,102,103. For many years it has been known that CGG-expanded FMR1 
transcripts are upregulated in FXPOI patients and ubiquitin-positive intranuclear inclusions 

accumulate in the ovarian stromal cells of FXPOI patients104. A recent study identified RAN 

polyGly aggregates in ovarian stromal cells of a single FXPOI patient, which are also 

positive for ubiquitin105.

PolyGly/ubiquitin aggregates are also found in a FXTAS knock-in mice carrying 98 CGG 

repeats. Animal studies show polyGly aggregates increase with age and are abundant in 40 

week old mice. Older animals also show a higher number of primordial follicles (1.5 fold) 

compared to wild type animals105. Additionally, RAN polyGly aggregates are found in the 

pituitary gland of FXTAS mice but not control mice105, suggesting that polyGly might 

contribute to ovarian failure by affecting the hypothalamus-pituitary-adrenal axis.

Taken together, these studies show RAN proteins accumulate in patient samples and in 

animal models. While there is substantial evidence that polyGly is toxic, additional work 
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will be required to understand the contributions that polyGly and other known and yet to be 

detected RAN proteins play in FXTAS and FXPOI.

HD

Huntington disease (HD) is a dominantly inherited disorder caused by a CAG•CTG 

expansion mutation in the first exon of the HTT gene2,7. The disease is characterized by 

severe motor, cognitive and psychiatric alterations that normally presents adult-onset, but 

can also manifest early in life with more severe and faster progressing juvenile onset cases. 

HD is fully penetrant at 40 CAG•CTG repeats, and there is a clear correlation between 

longer repeat expansion and earlier onset and more severe forms of the disease.

The HD expansion mutation results in an abnormally expanded polyGln tract in the 

huntingtin (HTT) protein. Since the discovery of the causative gene in 1993106, most 

research has focused on understanding the toxic role of the mutant, polyGln-expanded, 

ATG-initiated HTT protein7,107. RNA-mediated toxicity has also been reported to play a role 

in HD through the expression of CUG-expanded antisense transcripts108 and the generation 

of CAG microRNA species109. However, critical aspects of HD, such as the differential 

vulnerability of specific brain regions and the distinct and more severe pathology in juvenile 

onset cases are not fully understood.

The possibility of RAN translation occurring in HD has been explored by different groups 

with polyAla and polySer expressed from HTT minigenes in cultured cells32,110. In 2015, 

Banez-Coronel et al.16 demonstrated that RAN translation can also occur across relatively 

small repeat expansions located in protein coding regions and also in vivo. The HD 

CAG/CTG expansion expressed four novel homopolymeric RAN proteins from both sense 

and antisense transcripts. Banez et al., showed polyAla, polySer, polyLeu and polyCys RAN 

proteins accumulate in several brain regions including caudate/putamen, cortical white 

matter and cerebellum (Fig. 1, Table 1), with RAN protein signal dramatically higher in the 

cerebellum of juvenile-onset cases showing severe cerebellar atrophy.

HD RAN protein accumulation is variable, and can be detected by increased nuclear or 

cytoplasmic staining, with soluble or aggregated patterns. Although HD-RAN proteins are 

detected in neurons, they are more frequently found in glial cells. Strikingly, prominent 

RAN protein staining was observed in the white matter bundles of the striatum, Bergman 

glia, white matter regions of the cerebellum and white matter regions around the dentate 

nuclei, regions in which polyGln aggregates are absent or minimal. These data suggest RAN 

proteins contribute to the white matter abnormalities reported in HD111–115.

Another important link between HD-RAN accumulation and disease pathology comes from 

the frequent colocalization between RAN proteins and active Caspase3. These data suggest 

that RAN positive cells are damaged or undergoing cell death. HD-RAN proteins are more 

frequently found in brain regions showing atrophy, astrogliosis and microglial activation, 

and areas showing severe atrophy16. All four identified HD-RAN proteins are toxic to neural 

cells in vitro, independent of RNA-mediated effects16.
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Taken together, these findings demonstrate that sense and antisense RAN proteins 

accumulate in HD brains and correlate with sites of degenerative changes.

DM2

Myotonic Dystrophy type 2 is caused by an intronic CCTG expansion in the CNBP gene116. 

This multisystemic disease, which causes muscle weakness and myotonia, also affects the 

heart, the eye, the endocrine system and the brain. CNS features include executive function 

deficits and white matter abnormalities117–122. DM2 CCUG-expanded transcripts form 

nuclear RNA foci which sequester the muscleblind (MBNL) family of RNA binding 

proteins, causing abnormalities in RNA localization and processing1,123,124. For many years, 

RNA GOF effects have been considered to be the major driver of disease in DM2. However, 

a recent study by Zu et al.38 showed the DM2 tetranucleotide expansion is bidirectionally 

transcribed and produces both, sense (CCUG) and antisense (CAGG), expansion transcripts. 

These transcripts, in turn, undergo RAN translation, generating tetrapeptide leucine-proline-

alanine-cysteine (LPAC) and glutamine-alanine-glycine-arginine (QAGR) repeat expansion 

proteins without an AUG-initiation codon. These RAN proteins accumulate in the cortex, 

hippocampus and striatum of DM2 patient brains with specific patterns (Fig. 1): LPAC 

accumulates as small cytoplasmic punctate aggregates that can be perinuclear or located in 

the cell processes, while QAGR immunostaining is primarily nuclear, with small aggregates 

at or in close proximity to the nuclear membrane (Table 1).

LPAC is consistently detected in grey matter regions of the brain. LPAC aggregates are 

found primarily in neurons, and occasionally in glia. There is considerable variability in the 

frequency of LPAC positive cells within the brain, even within the same brain regions. 

Interestingly, LPAC positive regions show abundant macrophage staining, suggesting that 

inflammation can be a trigger that favors RAN translation or that RAN LPAC proteins 

trigger inflammatory processes. In contrast, QAGR primarily accumulates in the white 

matter regions of the brain and QAGR positive white matter regions show rarefaction of 

fibers, suggesting a role for QAGR in axonal loss and increased water intercalation38 (Table 

1). Additionally, both LPAC and QAGR are toxic to cultured cells in the absence of RNA-

mediated effects, supporting a pathogenic role of these RAN proteins. Zu et al. also showed 

that MBNL overexpression decreases RAN protein levels by sequestering CCUG expansion 

transcripts within the nuclei. When CCUG repeats are not sequestered they can be exported 

into the cytoplasm where they undergo RAN translation.

DM1

Myotonic dystrophy type 1 is a dominantly inherited neuromuscular disorder with 

multisystemic features including myotonia, progressive muscle weakness and wasting, 

cataracts, cardiac effects, testicular atrophy and CNS abnormalities119. The disease is caused 

by a CAG•CTG expansion in the 3’UTR of the DMPK gene. Healthy individuals have 5–38 

repeats while DM1 patients carry large expansions containing hundreds or thousands of 

repeats8.

DM1 is generally considered an RNA GOF disease based on a wealth of genetic and 

biochemical data and on the location of the causative expansion in a non-coding 
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region125,126. CUG expansion transcripts expressed from the DM1 locus form nuclear RNA 

foci which sequester the RBP MBNL1 and cause alternative splicing abnormalities127,128.

The detection of a polyGln RAN protein in DM1 raises the possibility that RAN proteins 

contribute to this disease32. DM1 polyGln nuclear aggregates have been detected in cardiac 

myocytes of DM1 mice, as well as in skeletal muscle and peripheral leucocytes in DM1 

human samples32 (Fig. 1, Table 1). The colocalization of DM1 PolyGln with caspase 8 in 

human leukocytes suggests polyGln RAN proteins can be toxic. While RAN proteins 

expressed in the polyGln frame are found in several DM1 mouse and human tissues, 

additional work and better antibody tools are needed to understand when and where DM1 

RAN proteins accumulate, if proteins from multiple frames are expressed and if they 

accumulate in the brain, a common theme in other repeat expansion disorders.

SCA31

Spinocerebellar ataxia type 31 (SCA31) is an adult-onset autosomal dominant 

neurodegenerative disorder that shows progressive cerebellar ataxia and Purkinje cell 

degeneration129. SCA31 is associated with a TGGAA•TAAAA pentanucleotide repeat 

expansion. The mutation is located in an intronic region shared by the genes brain expressed, 
associated with Nedd4 (BEAN1) from one DNA strand, and thymidine kinase 2 (TK2) from 

the opposite strand130,131. In support of an RNA GOF model, Nimi et al., show that 

UGGAA expansion transcripts form nuclear RNA foci in Purkinje cells132. Additionally, 

Ishiguro et al.37 demonstrated the accumulation of a tryptophan-asparagine-glycine-

methionine-glutamic acid (WNGME) pentapeptide repeat protein in vivo. This repeat is 

distinct from other expansion mutations in that an ATG codon, which may be used for 

translation initiation is embedded throughout the repeat tract.

Both RNA foci and WNGME RAN proteins accumulate in an SCA31 fly model and induce 

severe neurodegeneration and a shortened life span. SCA31 RAN pentapeptides accumulate 

as granular structures in the cell body and dendrites of Purkinje cells in the cerebellum of 

SCA31 patients, but not in control cases (Fig. 1, Table 1). Interestingly, the RBPs TDP-43, 

FUS and hnRNPA2B1 bind to the UGGAA RNA expansion acting as chaperones and 

reducing RNA foci, RAN protein levels and toxicity in the fly eye37. Although new studies 

are necessary to further unravel the pathogenic mechanisms in SCA31, these results suggest 

that RNA GOF, RAN protein GOF or both mechanisms are involved in SCA31 onset and 

progression.

FECD

The most recent addition to the list of RAN protein disorders is Fuchs Endothelial Corneal 

Distrophy (FECD). FECD is an inherited degenerative disease that severely affects the 

corneal endothelium and results in corneal edema and, in severe cases, vision loss133,134. 

There are several genes associated with FECD, but the most specific genetic association 

known is a CTG•CAG expansion in the third intron of TCF4135.

Similar to DM1 and SCA8 disorders, CUG expansion transcripts expressed from TCF4 form 

nuclear RNA foci that colocalize with MBNL1, which is believed to underlie the aberrant 

RNA splicing found in the cornea of FECD patients136. Additional experiments by Soragni 
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et al.39 showed that overexpression CUG expansion transcripts from FECD minigenes, 

generates RAN polyCys proteins in cultured cells, which cause toxicity and oxidative stress 

in immortalized corneal endothelial cells. PolyCys is also detected in in the corneal 

endothelium of patients with FECD39 (Fig. 1, Table 1). Additionally, this group detected a 

polyGln protein in FECD fibroblasts. Similar to other expansion diseases, further studies are 

needed to understand the contributions that RNA GOF and RAN proteins have in FECD.

Common aspects across RAN protein diseases

Although each RAN positive disorder has its own set of distinct clinical features and 

pathology, individual RAN proteins, even if they harbor the same repeat motif, should be 

considered distinct because they often have unique flanking sequences and tissue 

accumulation patterns. Nevertheless, there are several common themes underlying RAN 

translation and RAN-mediated pathology that provide insight.

Repeat length dependence.

RAN translation is often repeat length dependent, with a length threshold required for RAN 

protein production and increased RAN proteins accumulation with longer repeat tracts. 

Length-dependent RAN translation has been observed using a variety of minigene constructs 

for SCA832, HD109, FXTAS36 and C9orf72 ALS/FTD30.

In FXTAS cell culture experiments, RAN polyAla proteins are detected from constructs 

expressing 88 CGG repeats but not from constructs with 30 repeats36. Similarly, for HD, 

transfection experiments using HTT exon1 minigenes showed RAN polyAla proteins were 

detected in cells expressing ≥50 CAG repeats and RAN polySer detected with 35 CAG 

repeats. The polySer aggregates showed progressively increasing aggregation with longer 

repeat lengths16. The correlation of higher RAN protein levels and increased RAN protein 

aggregates may contribute to the repeat-length dependent genetic anticipation that is found 

in most of the repeat expansion disorders.

White matter accumulation.

The prominent RAN protein accumulation in damaged white matter brain regions in HD, 

DM2 and SCA8 cases16,33,38 supports the hypothesis that RAN proteins play a role in the 

white matter alterations that can occur very early in each of these diseases. The mechanisms 

underlying these white matter abnormalities have historically been considered a 

consequence of neuronal death process since the expected toxic CUG RNA or polyGln 

proteins do not accumulate in these regions. The findings of astroglyosis, demyelinization, 

microglial and/or caspase activation in white matter regions with abundant RAN protein 

accumulation offer an exciting new pathogenic hypothesis that needs further study. It is 

possible that RAN white matter accumulation will be found in other known and yet to be 

identified RAN protein diseases137–139.

Variable RAN protein accumulation.

Immunohistochemistry studies have shown that RAN protein aggregates frequently show 

variable densities. For example, some brain areas show clustered accumulation and high-
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dense staining while other areas within the same brain region (e.g. the hippocampus, 

cerebellum of frontal cortex) show less frequent or no RAN positive cells30,33,109. These 

data suggest localized molecular or environmental triggers can activate RAN translation. 

The observation of RAN translation clusters in regions of infarction (DM2)38 suggest that 

external factors such as hypoxia, inflammatory molecules, free radicals, specific metabolites 

or energy deficits might promote RAN translation140–142. Another possibility is that RAN 

proteins or factors required for RAN translation can propagate from cell to cell, facilitating 

RAN accumulation in neighboring cells. This hypothesis has been validated for C9orf72 
GA, GP and PA RAN proteins in cultured cells143,144.

A clear understanding of the mechanisms underlying variable or patchy RAN protein 

accumulation may provide valuable knowledge about disease progression and regional 

susceptibility, a possibility suggested by Zu et al30.

Prospecting for proteins in other diseases

RAN translation is a rapid moving field, with nine different repeat disorders identified as 

RAN positive diseases since the discovery of RAN translation by Zu et al. in 201132. The 

demonstration that RAN translation can occur from repeats located in both coding and non-

coding regions suggests RAN proteins may be found in additional polyGln expansion 

disorders. Interestingly, recent reports show ATXN8OS expansions and FXTAS mutations, 

as well as FXTAS-polyGly proteins are found in autopsy brains from patients with 

progressive supranuclear palsy (PSP) and Parkinsonism145,146. These findings highlight that 

known or yet to be discovered repeat expansion mutations may contribute to the 

symptomatology of additional neurological disorders.

Better detection tools are badly needed to identify novel RAN-translated proteins and to 

characterize diseases already known to express one or more RAN proteins36,39,101. Reduced 

protein solubility, low protein levels, age- or stress-dependent RAN protein 

expression140–142 all present technical challenges for protein detection in patient samples. 

Additionally, with the exception of polyGln antibodies, it has been difficult to generate 

specific antibodies to detect homopolymeric repeat tracts, which would allow screening for 

RAN proteins across diseases with the same repeat expansion mutation (e.g. the CAG•CTG 

SCAs). It is also likely that with the recent advances in DNA including long sequencing 

technology147, novel repeat expansion diseases will be identified.

Blocking RAN proteins as a therapeutic strategy

The discovery of RAN proteins in an increasing number of expansion disorders and the 

various lines of evidence that support their pathogenic role highlights the need to develop 

strategies to block RAN translation. This would allow scientist to test and better understand 

the contribution of RNA GOF vs. RAN protein toxicity and may lead to the development of 

therapeutic strategies. The use of antisense oligonucleotides (ASOs) to degrade expansion 

RNAs has received a lot of attention. While ASOs provide a platform to degrade multiple 

types of disease-causing expansion transcripts and therefore would reduce RAN protein 

levels expressed from those transcripts at the same time, ASO-based therapeutic efforts have 
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focused on targeting the expanded transcript that was initially discovered and not the other 

strand148–154.

The recurrent observations that bidirectional transcription and RAN translation occur across 

both strands of the repeat expansion mutation suggests that targeting both sense and 

antisense transcripts may be required for some of these disorders. It will also be important to 

consider the possibility that downregulation of sense transcripts may lead to the upregulation 

of antisense transcripts in some of these diseases155,156.

An interesting alternative therapeutic approach would be to block RAN translation. This 

could be achieved using strategies to prevent expansions RNAs from leaving the nucleus 

including the overexpression of RBPs such as MBNL38 or TDP-4337 or by reducing levels 

of factors that favor RAN translation such as the eukaryotic initiation factor 3F (eIF3F)33.

Additional therapeutic approaches can be aimed at preventing the toxicity of specific RAN 

proteins. Efforts aligned with this strategy include the generation of drugs that prevent RAN 

protein function and/or interactions, targeting RAN proteins for clearance through 

ubiquitination, or the use of antibodies to specifically target individual or sets of RAN 

proteins. For example, anti-RAN protein antibodies have been shown to prevent protein 

propagation in cell culture143.

Conclusions

RAN translation has now been reported in nine diseases caused by repeat expansion 

mutations. Different microsatellite motifs, including tri-, tetra-, penta- and hexanucleotide 

repeat expansions are permissive for RAN translation, suggesting RAN translation may be a 

common process across most microsatellite expansion disorders. The development of better 

tools to detect RAN products is likely to identify new RAN-positive diseases as well as 

novel RAN protein motifs. Because the production of both sense and antisense RAN 

proteins is a common feature found in many of these disorders, developing therapeutic 

strategies to target both sense and antisense RAN proteins will be important. Finally, the 

development of new in vivo models in that allow both sense and antisense expression will 

help the community to test and better understand the promise and limitations of various 

therapeutic strategies.
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Fig. 1. 
RAN proteins identified in patient tissue
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Table 1.

Summary of RAN proteins identified in neurologic disease.

Transcript RAN 
protein Protein accumulation in vivo

C9 ALS/FTD

Sense

GP

All C9 RNA protein are found as cytoplasmic or perinuclearaggregates in different brain regions of C9 ALS/FTD 
postmortem tissue, including frontal and motor cortex, hippocampus, dentate gyrus granular layer, cerebellar 
molecular layer and spinal cord of. In a C9 BAC transgenic mouse model with motor and neurodegenerative 
phenotype, PolyGlyAla accumulation increase with mouse age and phenotype. Individual C9 RAN proteins 
induce toxicity both in vitro and in vivo. Some of the C9-RAN mediated toxic mechanisms include alterations of 
the nucleocytoplasmic transport, ER stress, oxidative stress, stress granule formation, deficits in protein 
translation or DNA damage (26, 27,29,31,58,59,61–68,70–78,80–82).

GR

GA

Antisense

GP

PR

PA

FXTAS

Sense PolyGly

PolyGly protein accumulates as nuclear and perinuclear aggregates in the frontal cortex and hippocampus of 
FXTAS patients, frequently colocalizimg with ubiquitin. A specific signal for polyGly protein is detected by 
Western blotting in lysates from FXTAS cerebellum. Colocalization between polyGly and ubiquitin is also 
detected in a FXTAS Drosophila model carrying 90 CGG repeats (32).

Antisense

PolyPro Specific PolyPro intranuclear aggregates detected t in cortex, hippocampus, cerebellum, midbrain and pons from 
FXTAS brain tissue. These aggregates are mainly found un neurons and colocalize with Ubiquitin (90).

PolyAla Show a perinuclear and intranuclear accumulation in the neurons of FXTAS hippocampus and cortex, being also 
found in midbrain and pons. Intranuclear PolyAla inclusions are Ubiquitin positive (90).

FXPOI

Sense PolyGly
FXPOI RAN PolyGly accumulates in the ovarian stromal cells of a FXPOI patient and FXTAS mice. Mice show 
and increase number of primordial follicules at 40 weeks and polyGly aggregates in the pituitary gland. PolyGly 
accumulates as intranuclear inclusions that are ubiquitin positive (104).

HD

Sense
polySer All four proteins accumulate in grey matter regions and more abundantly in white matter regions of the striatum, 

frontal cortex and cerebellum of HD postmortem brain tissue. RAN positive show apoptotic and 
neuroinflammatory markers. HD-RAN proteins primarily show cytoplasmic, nuclear or perinuclear localization 
in neurons. In glial cells, the proteins predominantly show nuclear localization. Although both soluble and 
aggregated accumulation patters are frequently detected, polySer proteins accumulate as dotlike aggregates more 
frequently than polyAla, polyCys and polyLeu (33).

polyAla

Antisense
PolyCys

polyLeu

SCA8

Sense PolySer

Detected in the cerebellum of SCA8 patients and in the cortex, hippocampus, brain stem and cerebellum of 
SCA8 BAC transfenic mice. In mice, polySer accumulates as dot-like agreggates in an age-dependent manner 
that correlates with the mouse motor dysfunction phenotype. PolySer preferentially accumulates in white matter 
regions that show demyelination and axonal degeneration (30).

Antisense PolyAla Accumulates in the cerebellum SCA8 mice and in the cerebellum of SCA8 patients. RAN SCA8 PolyAla is 
detected in the soma and dendrites of Purkinje cells (28).

DM1

Antisense PolyGIn
Accumulates as nuclear aggregates in DM1 cardiac myocytes and leukocytes. PolyGIn inclusions are also found 
in myoblasts and skeletal muscle at low frequency. DM1 mice carrying 55CTG repeats show polyGIn staining in 
leukocytes in cardiac tissue (28).

DM2

Sense LPAC
Primarily accumulates as small cytoplasmic or perinuclear aggregates in neurons, but also occasionally in glial 
cells, in brain regions showing abundant macrophages. Cortex, hippocampus and striatum are positive for LPAC 
acumulation (34).

Antisense QAGR
Show nuclear accumulation that forms small agregates around the nuclear membrane. Preferentially accumulates 
in white matter regions displaying rarefaction of the fibers. QAGR is detected in DM2 cortex, hippocampus and 
striatum (34).

SCA31
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Transcript RAN 
protein Protein accumulation in vivo

Sense WNGME
Detected in the eye imaginal discs of a SCA31 Drosophila model and in the cerebellum of SCA31 patients, 
where it accumulates as dot-like granules in the cell bodies and dendrites of Purkinje cells. In flies, WNGME 
levels correlate with increased eye degeneration (35).

FECD

Sense PolyCys Detected as nuclear immunostaining in the comeal endothelium of FECD patients carrying ≥ 55 repeats (36).

Antisense PolyGIn Detected by Western blot in fibroblast derived from FECD patients that are homozygous for the repeat expansion 
(36).
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