Skip to main content
. 2020 Apr 21;20(8):2363. doi: 10.3390/s20082363

Table 1.

Convolutional neural network (CNN) architecture variations for tested models.

Layers Layer Parameters Model 1 Model 2 Model 3 Model 4 Model 5
Filters 16 16 8 8 16
Convolutional Layer Kernel Size 4×4 4×4 4×4 4×4 4×4
Activation Function ReLu ReLu ReLu ReLu ELU
Max Pooling Kernel Size 2×2 2×2 2×2 2×2 2×2
Dropout 0.2 0.2 0.2 0.2 0.2
Filters 16 16 8 8 16
Convolutional Layer Kernel Size 5×5 5×5 5×5 5×5 5×5
Activation Function ReLu ReLu ReLu ReLu ELU
Max Pooling Kernel Size 2×2 2×2 2×2 2×2 2×2
Dropout 0.1 0.1 0.1 0.1 0.1
Filters 16 16 8 8 16
Convolutional Layer Kernel Size 6×6 6×6 6×6 6×6 6×6
Activation Function ReLu ReLu ReLu ReLu ELU
Max Pooling Kernel Size 2×2 2×2 2×2 2×2 2×2
Dense Neurons 64 64 64 64 64
Activation Function ReLu ReLu ReLu ReLu ELU
Dense Neurons 128 32 32 128 128
Activation Function ReLu ReLu ReLu ReLu ELU
Dense Neurons 64 16 16 64 64
Activation Function ReLu ReLu ReLu ReLu ELU
Dense Neurons 4 4 4 4 4
Activation Function ReLu ReLu ReLu ReLu ELU
Test Loss 0.2413 0.2459 0.1891 0.2040 0.2145
Test Accuracy 0.9440 0.9397 0.9483 0.9586 0.9570