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We consider epidemic extinction in finite networks with a broad variation in local connectivity.
Generalizing the theory of large fluctuations to random networks with a given degree distribution, we are
able to predict the most probable, or optimal, paths to extinction in various configurations, including
truncated power laws. We find that paths for heterogeneous networks follow a limiting form in which
infection first decreases in low-degree nodes, which triggers a rapid extinction in high-degree nodes, and
finishes with a residual low-degree extinction. The usefulness of our approach is further demonstrated
through optimal control strategies that leverage the dependence of finite-size fluctuations on network
topology. Interestingly, we find that the optimal control is a mix of treating both high- and low-degree
nodes based on theoretical predictions, in contrast to methods that ignore dynamical fluctuations.
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The extinction of epidemics in finite networks is an
important topic in population dynamics [1,2]. Though
many factors may contribute, such as environmental
changes and social behavior, it has been demonstrated,
and rigorously proven for finite populations, that internal
fluctuations in a system’s dynamics can organize in such a
way to induce a large fluctuation along a most probable,
or optimal, path to extinction [3–5]. Such fluctuations to
infection-free states have been studied extensively in
well-mixed systems, including the role of vaccination
and treatment programs in reducing the average time to
extinction [3,6]. Similarly, the most probable extinction
paths have been found in networks with homogeneous
degree, but the behavior appears to be independent of
network topology, as in the well-mixed limit [7].
Somewhat separately, much work has been done in

characterizing the deterministic dynamics, epidemic thresh-
old, outbreak size distributions, small fluctuations, localiza-
tion, and phases of epidemics in complex networks [8–14].
Only very recently has there been progress in understanding
the interplay between stochastic noise and network dynamics
that can lead to large fluctuations and switching between
states [15]. However, very little is known about how internal
noise inherent to epidemic extinction pertains in hetero-
geneous networks having vastly differing topologies.
In this Letter we construct and analyze the most probable

path through heterogeneous networks to extinction. Novel
in this work is that we show the path has two primary
forms, close to and far from the epidemic threshold. In the
latter, we demonstrate an interesting multistep structure in
which low-degree node infections decrease first, followed
by a quick, nearly complete extinction in high-degree
nodes, and finishing with a low-degree extinction. The
approach is then used to design a novel targeted optimal
treatment strategy that can exponentially reduce extinction

times, but does not trivially treat the most well connected
nodes, minimize the epidemic size, or maximize the
number of treatments. Instead, the optimal control mini-
mizes the “action” associated with a transition to extinction
with respect to the network topology. Such controls that
manipulate finite-size fluctuations inherent in contact
processes based on topology are also novel in the study
of complex networks [6,15].
To understand how extinctions depend on topological

heterogeneity, we consider the stochastic susceptible-infec-
tious-susceptible (SIS) model on uncorrelated random
networks with a given degree distribution gk, where the
degree k is the number of links of a node. Simple graphs
with N nodes can be generated from gk in several ways, for
example, with a configuration model network (CMN) [16].
Such networks are usefully represented by an adjacency
matrix A, where Aij is 1 if nodes i and j are linked, and 0
otherwise. In this representation a network’s SIS dynamics
is captured by the states and transitions of its nodes; e.g.,
node i is either infected, denoted νi ¼ 1, or susceptible,
νi ¼ 0, and changes its state νi∶0 → 1 with probability per
unit time βð1 − νiÞ

P
jAijνj, and νi∶1 → 0 with probability

per unit time ανi, where β and α are known as the infection
and recovery rates, respectively.
In order to describe the dynamics given these reactions,

it is useful to approximate Aij with its expectation value in
an ensemble of networks hAiji, which for uncorrelated
networks takes the form hAiji ¼ kikj=ðNhkiÞ in the limit
of large N. This is known as the “annealed” network
approximation and represents a mean field for hetero-
geneous networks [8–10,14], though other techniques give
similar results to those shown here [17]. Given this form,
the state of the network can be described by the number of
infected nodes with degree k, Ik, which has corresponding
reactions and rates: Ik → Ik þ 1 with rate of infection
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winf
k ðIÞ ¼ βkðNk − IkÞ

P
k0k

0Ik0=ðNhkiÞ, and Ik → Ik − 1

with recovery rate wrec
k ðIÞ ¼ αIk, where Ik ¼

hIk1; Ik2;…; Ikmax
i, and Nk ¼ gkN.

Since the SIS model is stochastic, associated with all
network states is a probability distribution ρðI; tÞ, which
for networks having a general degree distribution satisfies
an approximate master equation

∂ρ
∂t ðI; tÞ ¼

X
k

winf
k ðI − 1kÞρðI − 1k; tÞ − winf

k ðIÞρðI; tÞ

þ wrec
k ðIþ 1kÞρðIþ 1k; tÞ − wrec

k ðIÞρðI; tÞ;
ð1Þ

where 1k ¼ h0k1 ; 0k2 ;…; 1k;…; 0kmax
i. We are interested in

the behavior of Eq. (1) for large, but finite, networks. As
customary, we assume N is large and take the leading order
in a 1=N expansion [3,18]. This is similar to the Wentzel-
Kramers-Brillouin (WKB) ansatz of quantum mechanics,
where 1=N plays the role of Planck’s constant in
Schrödinger’s equation. In accordance with WKB, by
writing ρðI; tÞ ¼ e−NSðx;tÞ, where x ¼ I=N, and taking
the leading order in 1=N, or wkðI� 1kÞ ≈ wkðIÞ and
ρðI� 1k; tÞ ≈ e−NSðxÞe∓∂S=∂xk , we find a Hamilton-Jacobi
equation, ð∂S=∂tÞ þH½x; ð∂S=∂xÞ� ¼ 0, where S and H
are called the action and Hamiltonian, respectively. As in
classical mechanics, the Hamiltonian is a function of the
coordinate x and its conjugate momentum p ¼ ∂S=∂x:

Hðx;pÞ ¼
X
k

�
βkðgk − xkÞðepk − 1Þ

X
k0

k0xk0
hki

þ αxkðe−pk − 1Þ
�
: ð2Þ

In this context, momenta behave as fluctuations on
x—describing both size and direction.
It is convenient to analyze Eq. (2) by solving the

canonical equations of motion, _xk ¼ ∂H=∂pk,
_pk ¼ −∂H=∂xk, in terms of the fraction of each degree
class infected yk ¼ xk=gk, the ratio β=α ¼ ~β, and the
rescaled time τ ¼ αt:

_yk ¼ ~βkð1 − ykÞepk

X
k0

k0gk0
hki yk0 − yke−pk ;

_pk ¼ ~βk
X
k0

k0gk0
hki ½yk0 ðepk − 1Þ − ð1 − yk0 Þðepk0 − 1Þ�

− e−pk þ 1. ð3Þ

Of interest are particular solutions of Eq. (3) which
correspond to network trajectories that remain near an
endemic state for some time, and then decay into an extinct
state, with no more infectious nodes. When the two states

are well separated, the distribution ρðI; tÞ is quasista-
tionary, or in the WKB ansatz, ð∂S=∂tÞ ¼ H ¼ 0:

S ¼
Z

½p · _x −H�dt ¼
X
k

gk

Z
pkdyk: ð4Þ

This suggests that we look for solutions of Eq. (3) in the
form of heteroclinic paths connecting two saddle-point
equilibria: from an endemic fixed point, y�k ¼ 1=
½1þ 1=ðY ~βkÞ�, pk ¼ 0, to extinction with nonzero momen-
tum, yk ¼ 0, p�

k ¼ − ln½1þ ~βkð1 − PÞ� [3,5,19]. The func-
tions Y and P depend on ~β, with ðY; PÞ → ð0; 1Þ as
~βhk2i=hki≡ R0 → 1, and ðY; PÞ → ð1; 0Þ as ~β → ∞.
Importantly, because such paths extremize their action,
they extremize their probability, and therefore correspond
to most probable paths through a network to extinction
[18,20]. Figure 1 shows comparisons between projections
of prehistory trajectories to extinction from stochastic
simulations and optimal paths of Eq. (3) for several
network configurations computed with the iterative action
minimizing method [21].
In general, the average time to reach extinction hTi will

depend on ~β and network properties in complicated ways
[22,23]. However, for sufficiently large N, the transition is
an exponential process with a rate proportional to the
probability, and therefore hTi ∼ eNS. The network action

(a) (c)

(b) (d)

FIG. 1. Density (unnormalized) of 1000 simulations projected
into the fraction of infected high-degree (H) and low-degree (L)
nodes. Predicted paths are shown in blue from the endemic state
(*) to extinction (∘). (a) A network with Aij ¼ kikj=ðNhkiÞ,
N ¼ 300, and ~β ¼ 0.096, and with two degree classes,
ki ∈ f5; 50g; k ¼ 50 nodes occupying 10% of the network.
(b) A corresponding CMN. (c) A CMN with N ¼ 350,
~β ¼ 0.092, and gk ¼ e−1616k=k! where high-degree nodes have
16 ≤ k ≤ 18, and low-degree have 13 ≤ k ≤ 15. (d) A CMN
with N ¼ 600, ~β ¼ 0.038, and gk ¼ k−2.5=

P
300
k0¼10

k0−2.5, where
high-degree nodes have 70 ≤ k ≤ 235, and low-degree have
10 ≤ k ≤ 12.
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(4) is thus central to understanding the dependencies of
extinction times on network topology.
Qualitatively, we find two important parameter regions

to consider. First, close to the epidemic threshold when
R0 − 1≳ 0 (which we call “weak”), the paths to extinction
are approximately linear from ðy�k; 0Þ to ð0; p�

kÞ. The
explicit form can be seen by expanding the equilibria in
powers of R0 − 1, which gives to first order y�k≈
khk2iðR0 − 1Þ=hk3i ¼ −p�

k, implying that the endemic
state and momentum at extinction are simply proportional
to degree when the infection is weak. This is intuitive since
in the weak limit high-degree nodes drive the epidemic,
when only their local reproductive numbers are sufficient to
spread infection, ( ~βk > 1), and therefore must recover
disproportionately without reinfection in order for extinc-
tion to occur. Paths near the weak limit can be seen in
Figs. 1(b) and 1(d) where R0 ¼ 1.6 and R0 ¼ 2.0, respec-
tively, and in Fig. 2(a) (red).
Also for weak infection, the action along the path from

Eq. (4) is therefore

Sweak ¼
hk2i3
2hk3i2 ðR0 − 1Þ2 þOðR0 − 1Þ3; ð5Þ

which depends on the distance from the epidemic threshold
and a nontrivial topological factor that generally decreases
with increased broadness in the degree distribution. In
contrast, in thewell-mixed limit (corresponding to the simple
complete graph) the action only depends on R0 [3,22]; the
predicted reduction in extinction times with topological
fluctuations is intuitive, since for very heterogeneous net-
works only a small fraction of highly connected nodes must
recover without reinfection, compared with most nodes in
networks where nodes are topologically similar.
On the other hand if most nodes can propagate infection,

~βhki ≫ 1 (which we call “strong”), then the interplay

between degree classes and the path to extinction is more
complicated as the global dynamical structure of the path
becomes apparent. However, we find that a limiting form
emerges when comparing the dynamics of low- and high-
degree nodes by which the path can be described in
multiple steps.
Since in the strong limit most nodes will be infected in the

endemic state, it is very improbable that high-degree nodes
can recover without being reinfected, and thus we expect
infection must first disproportionately decrease in low-
degree nodes. We can extract the form of this step, by
analyzing the unstable eigenmode of the endemic equilib-
rium ðyk; pkÞ ¼ ðy�k þ ϵð1Þk ; μð1Þk Þ to linear order and studying
the asymptotic scaling of ðϵð1Þk ; μð1Þk Þ for large ~βk. Inserting

these assumptions into Eq. (3), we find that ðϵð1Þk ; μð1Þk Þ must
satisfy an eigenvalue equation for the rate λð1Þ:

�
λð1Þ þ 1þ kð ~βhki − 1Þ

hki
�
ϵð1Þk −

�
2 −

1

~βk
−

1

~βhki

�
μð1Þk

≈
X
k0

k0gk0
hki ϵð1Þk0 :

Since λð1Þ and the sum are k independent, it must be that

for large ~βk, we have ϵð1Þk =ϵð1Þk0 ∼ k0=k [the relative decrease
in infection shown in Fig. 2(b) (1)], with relative momenta
initially tending to a constant.
In the second step [Fig. 2(b) (2)], the small buildup of

momenta for high-degree nodes becomes rapid as the
k-dependent contribution to _pk approaches a maximum
along the path. In analogy with mechanics, this can be
thought of as the network’s contribution to the “force” on yk,
which near its maximum quickly “pushes” −pk from near
zero to its maximum−p�

k. On the other hand, since yk andpk

decreases along the path, by inspecting _yk, we can find an
upper bound for−_yk, max½−_yk�<max½−yke−pk �<−y�ke

−p�
k ,

because the k-dependent contribution to _yk is positive. Since
yk ≈ y�k until −pk differs from zero, as the force approaches
its maximum, −_yk can be approximated by the upper bound,

giving the scaling for large ~βk: ϵð2Þk =ϵð2Þk0 ∼ k=k0.
In the last step [Fig. 2(b) (3)], we expect to have a final

decrease in low-degree node infections in a background of
very small numbers of infected high-degree nodes, since
the latter were rapidly depleted in the second step. The
scaling can be found by analyzing the extinct state’s
stable eigenmode ðyk; pkÞ ¼ ðϵð3Þk ; p�

k þ μð3Þk Þ, which gives
an eigenvalue equation for the rate λð3Þ

�
1þ 1

~βk
−

1

~βhki

��
λð3Þ þ 1þ kð~βhki − 1Þ

hki
�
ϵð3Þk

≈
X
k0

k0gk0
hki ϵð3Þk0 ;

(a) (b)

FIG. 2. (a) Projections of the optimal paths for the truncated
power law [see Fig. 1(d)] shown for increasing R0 ∈ ½1.1; 5.1�
(red → black, weak → strong) in steps of 0.5, compared with the
path into the endemic state for R0 ¼ 5.1 (green). Arrows indicate
direction in time. (b) Projections into yk for the same distribution
with R0 ¼ 9 and 17 bins [24], shown for bins with increasing k
fk ¼ 12; 14 ≤ k ≤ 15; 18 ≤ k ≤ 20; 24 ≤ k ≤ 27; 34 ≤ k ≤ 41;
53 ≤ k ≤ 69; 97 ≤ k ≤ 143; 236 ≤ k ≤ 300g (blue → black),
and compared with the predicted scaling for the highest bin
(dashed lines).
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which in the limit of large ~βk implies ϵð3Þk =ϵð3Þk0 ∼ k0=k.
Examples are shown in Figs. 2(a) (black) and 2(b) (black);
in the former, the strong limit scaling starts to be visible for
R0 ≳ 3. Also, Fig. 2(a) shows the significant qualitative
difference between the epidemic path toward the endemic
state (green), which has been well studied, and the optimal
path to extinction [8].
In addition to a theoretical interest in the geometry of

the optimal path through a network, it is also practically
interesting, because extinction times scale exponentially
with the action [3]. Since the action depends nontrivially on
network topology, e.g., Eq. (5), we suggest exploiting
topology as a basis for optimal epidemic control strategies
in finite networks, with the goal of minimizing extinction
times [6,15,25]. We illustrate the approach with a random
treatment procedure for infected nodes with degree k, such
that they recover with an increased rate αþ γwk, where γ is
the overall treatment rate, and wk is a targeting fraction of
the infected population with degree k:

P
kwk ¼ 1.

In the weak limit we expect optimal treatment to favor
large k (similar to targeted immunization), since y�k and p�

k
are proportional to k [26]. However, in the strong limit,
treating low-degree nodes close to hki will tend to decrease
S, since their numbers must be lowered in the first step,
before momenta differ significantly from zero. In inter-
mediate cases, we expect a mixed strategy to minimize S.
Treatment results are shown in Fig. 3 for a simple bimodal
network with two degree classes for clarity, as a function of
the targeting fraction for high-degree nodes, w50.
Interestingly, we find that choosing the optimal wk for

the bimodal network can result in a nearly 50% decrease in
the network action, implying an enormous reduction in
extinction times, i.e., hTi → hTi1=2 (inset of Fig. 3).
Furthermore, we note that in Fig. 3 the size of the endemic
state is minimized when w50 ¼ 0 (circles), the equilibrium

treatment rate γ
P

kwkgky�k, is maximized when w50 ¼ 0

(circles), and R0 is minimized when w50 ¼ 1 (triangles),
but none corresponds to the minimum extinction time
control (squares) [27]. The example demonstrates that
designing optimal controls intended to drive epidemics
to extinction in finite networks cannot be found from the
intuitive results of the deterministic limit alone, pk ¼ 0, but
by targeting the network’s components in such a way as to
minimize the network’s action.
In conclusion, we have considered how fluctuations in

the SIS model produce extinctions from internal noise in
finite heterogeneous networks, and have found that the
process is captured by a most probable path. We were able
to construct paths by combining the theory of rare events
and random networks with a general degree distribution,
and predict important consequences, such as the exponen-
tial decrease in extinction times with topological variation,
as well as the multistep scaling of extinction through nodes
with very different degree. Furthermore, we demonstrated
how the theory can be used to manipulate fluctuations for
optimal network control, producing exponential decreases
in extinction times with a simple treatment strategy that
minimized the action by leveraging its dependence on
topology. Our theoretically predicted results were con-
firmed by simulations over large parameter ranges and
different network topologies.
Lastly, we suggest the theoretical approach can be

tailored to more arbitrary weighted networks and general
epidemic processes that would allow one to predict the
paths to extinction through real networks [1,8,13,17]. The
specific formalism presented here could be augmented, in
addition, to include degree correlations that may amplify or
reverse the patterns described in interesting ways depend-
ing on the network assortativity.
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